mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2025-01-07 01:40:59 +00:00
4cd0d3d454
- optimized the math to get a plane equation from a linedef. The original code used a generic algorithm that knew nothing about the fact that Doom walls are always perfectly vertical. With this knowledge the plane calculation can be reduced to a lot less code because retrieving the normal is trivial in this special case. - use the SSE2 rsqrtss instruction to calculate a wall's length, because this is by far the most frequent use of square roots in the GL renderer. So far this is only active on x64, it may be activated on 32 bit later as well, but only after it has been decided if 32 bit builds should be x87 or SSE2. # Conflicts: # src/gl/dynlights/gl_dynlight.cpp # Conflicts: # src/g_shared/a_dynlightdata.cpp
161 lines
5.1 KiB
C++
161 lines
5.1 KiB
C++
/*
|
|
** gl_geometric.h
|
|
**
|
|
**---------------------------------------------------------------------------
|
|
** Copyright 2003 Timothy Stump
|
|
** All rights reserved.
|
|
**
|
|
** Redistribution and use in source and binary forms, with or without
|
|
** modification, are permitted provided that the following conditions
|
|
** are met:
|
|
**
|
|
** 1. Redistributions of source code must retain the above copyright
|
|
** notice, this list of conditions and the following disclaimer.
|
|
** 2. Redistributions in binary form must reproduce the above copyright
|
|
** notice, this list of conditions and the following disclaimer in the
|
|
** documentation and/or other materials provided with the distribution.
|
|
** 3. The name of the author may not be used to endorse or promote products
|
|
** derived from this software without specific prior written permission.
|
|
**
|
|
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
**---------------------------------------------------------------------------
|
|
**
|
|
*/
|
|
|
|
#ifndef __GL_GEOM
|
|
#define __GL_GEOM
|
|
|
|
#include "math.h"
|
|
#include "r_defs.h"
|
|
|
|
struct GLSeg;
|
|
|
|
class Plane
|
|
{
|
|
public:
|
|
void Set(GLSeg *seg);
|
|
void Set(secplane_t &plane);
|
|
float DistToPoint(float x, float y, float z);
|
|
bool PointOnSide(float x, float y, float z);
|
|
bool PointOnSide(FVector3 &v) { return PointOnSide(v.X, v.Y, v.Z); }
|
|
bool ValidNormal() { return m_normal.LengthSquared() == 1.f; }
|
|
|
|
float A() { return m_normal.X; }
|
|
float B() { return m_normal.Y; }
|
|
float C() { return m_normal.Z; }
|
|
float D() { return m_d; }
|
|
|
|
const FVector3 &Normal() const { return m_normal; }
|
|
protected:
|
|
FVector3 m_normal;
|
|
float m_d;
|
|
};
|
|
|
|
class Matrix3x4 // used like a 4x4 matrix with the last row always being (0,0,0,1)
|
|
{
|
|
float m[3][4];
|
|
|
|
public:
|
|
|
|
void MakeIdentity()
|
|
{
|
|
memset(m, 0, sizeof(m));
|
|
m[0][0] = m[1][1] = m[2][2] = 1.f;
|
|
}
|
|
|
|
void Translate(float x, float y, float z)
|
|
{
|
|
m[0][3] = m[0][0]*x + m[0][1]*y + m[0][2]*z + m[0][3];
|
|
m[1][3] = m[1][0]*x + m[1][1]*y + m[1][2]*z + m[1][3];
|
|
m[2][3] = m[2][0]*x + m[2][1]*y + m[2][2]*z + m[2][3];
|
|
}
|
|
|
|
void Scale(float x, float y, float z)
|
|
{
|
|
m[0][0] *=x;
|
|
m[1][0] *=x;
|
|
m[2][0] *=x;
|
|
|
|
m[0][1] *=y;
|
|
m[1][1] *=y;
|
|
m[2][1] *=y;
|
|
|
|
m[0][2] *=z;
|
|
m[1][2] *=z;
|
|
m[2][2] *=z;
|
|
}
|
|
|
|
void Rotate(float ax, float ay, float az, float angle)
|
|
{
|
|
Matrix3x4 m1;
|
|
|
|
FVector3 axis(ax, ay, az);
|
|
axis.MakeUnit();
|
|
double c = cos(angle * M_PI/180.), s = sin(angle * M_PI/180.), t = 1 - c;
|
|
double sx = s*axis.X, sy = s*axis.Y, sz = s*axis.Z;
|
|
double tx, ty, txx, tyy, u, v;
|
|
|
|
tx = t*axis.X;
|
|
m1.m[0][0] = float( (txx=tx*axis.X) + c );
|
|
m1.m[0][1] = float( (u=tx*axis.Y) - sz);
|
|
m1.m[0][2] = float( (v=tx*axis.Z) + sy);
|
|
|
|
ty = t*axis.Y;
|
|
m1.m[1][0] = float( u + sz);
|
|
m1.m[1][1] = float( (tyy=ty*axis.Y) + c );
|
|
m1.m[1][2] = float( (u=ty*axis.Z) - sx);
|
|
|
|
m1.m[2][0] = float( v - sy);
|
|
m1.m[2][1] = float( u + sx);
|
|
m1.m[2][2] = float( (t-txx-tyy) + c );
|
|
|
|
m1.m[0][3] = 0.f;
|
|
m1.m[1][3] = 0.f;
|
|
m1.m[2][3] = 0.f;
|
|
|
|
*this = (*this) * m1;
|
|
}
|
|
|
|
Matrix3x4 operator *(const Matrix3x4 &other)
|
|
{
|
|
Matrix3x4 result;
|
|
|
|
result.m[0][0] = m[0][0]*other.m[0][0] + m[0][1]*other.m[1][0] + m[0][2]*other.m[2][0];
|
|
result.m[0][1] = m[0][0]*other.m[0][1] + m[0][1]*other.m[1][1] + m[0][2]*other.m[2][1];
|
|
result.m[0][2] = m[0][0]*other.m[0][2] + m[0][1]*other.m[1][2] + m[0][2]*other.m[2][2];
|
|
result.m[0][3] = m[0][0]*other.m[0][3] + m[0][1]*other.m[1][3] + m[0][2]*other.m[2][3] + m[0][3];
|
|
|
|
result.m[1][0] = m[1][0]*other.m[0][0] + m[1][1]*other.m[1][0] + m[1][2]*other.m[2][0];
|
|
result.m[1][1] = m[1][0]*other.m[0][1] + m[1][1]*other.m[1][1] + m[1][2]*other.m[2][1];
|
|
result.m[1][2] = m[1][0]*other.m[0][2] + m[1][1]*other.m[1][2] + m[1][2]*other.m[2][2];
|
|
result.m[1][3] = m[1][0]*other.m[0][3] + m[1][1]*other.m[1][3] + m[1][2]*other.m[2][3] + m[1][3];
|
|
|
|
result.m[2][0] = m[2][0]*other.m[0][0] + m[2][1]*other.m[1][0] + m[2][2]*other.m[2][0];
|
|
result.m[2][1] = m[2][0]*other.m[0][1] + m[2][1]*other.m[1][1] + m[2][2]*other.m[2][1];
|
|
result.m[2][2] = m[2][0]*other.m[0][2] + m[2][1]*other.m[1][2] + m[2][2]*other.m[2][2];
|
|
result.m[2][3] = m[2][0]*other.m[0][3] + m[2][1]*other.m[1][3] + m[2][2]*other.m[2][3] + m[2][3];
|
|
|
|
return result;
|
|
}
|
|
|
|
FVector3 operator *(const FVector3 &vec)
|
|
{
|
|
FVector3 result;
|
|
|
|
result.X = vec.X*m[0][0] + vec.Y*m[0][1] + vec.Z*m[0][2] + m[0][3];
|
|
result.Y = vec.X*m[1][0] + vec.Y*m[1][1] + vec.Z*m[1][2] + m[1][3];
|
|
result.Z = vec.X*m[2][0] + vec.Y*m[2][1] + vec.Z*m[2][2] + m[2][3];
|
|
return result;
|
|
}
|
|
};
|
|
|
|
#endif
|