gzdoom-gles/src/swrenderer/r_swcanvas.cpp
Christoph Oelckers 9b87a167d7 - replaced a large batch of DWORDs.
Most of those which still rely on ZDoom's own definition should be gone, unfortunately the code in files that include Windows headers is a gigantic mess with DWORDs being longs there intead of ints, so this needs to be done with care. DWORD should only remain where the Windows type is actually wanted.
2017-03-09 20:19:55 +01:00

857 lines
21 KiB
C++

/*
** r_swcanvas.cpp
** Draw to a canvas using software rendering
**
**---------------------------------------------------------------------------
** Copyright 1998-2008 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include "swrenderer/viewport/r_viewport.h"
#include "swrenderer/scene/r_light.h"
#include "swrenderer/r_renderthread.h"
#include "v_palette.h"
#include "v_video.h"
#include "m_png.h"
#include "colormatcher.h"
#include "r_swcanvas.h"
#include "textures/textures.h"
#include "r_data/voxels.h"
#include "drawers/r_draw_rgba.h"
EXTERN_CVAR(Bool, r_blendmethod)
using namespace swrenderer;
void SWCanvas::DrawTexture(DCanvas *canvas, FTexture *img, DrawParms &parms)
{
static short bottomclipper[MAXWIDTH], topclipper[MAXWIDTH];
auto viewport = RenderViewport::Instance();
viewport->RenderTarget = canvas;
viewport->RenderTarget->Lock(true);
lighttable_t *translation = nullptr;
FDynamicColormap *basecolormap = &identitycolormap;
int shade = 0;
if (APART(parms.colorOverlay) != 0)
{
// The software renderer cannot invert the source without inverting the overlay
// too. That means if the source is inverted, we need to do the reverse of what
// the invert overlay flag says to do.
INTBOOL invertoverlay = (parms.style.Flags & STYLEF_InvertOverlay);
if (parms.style.Flags & STYLEF_InvertSource)
{
invertoverlay = !invertoverlay;
}
if (invertoverlay)
{
parms.colorOverlay = PalEntry(parms.colorOverlay).InverseColor();
}
// Note that this overrides the translation in software, but not in hardware.
FDynamicColormap *colormap = GetSpecialLights(MAKERGB(255, 255, 255), parms.colorOverlay & MAKEARGB(0, 255, 255, 255), 0);
if (viewport->RenderTarget->IsBgra())
{
basecolormap = colormap;
shade = (APART(parms.colorOverlay)*NUMCOLORMAPS / 255) << FRACBITS;
}
else
{
translation = &colormap->Maps[(APART(parms.colorOverlay)*NUMCOLORMAPS / 255) * 256];
}
}
else if (parms.remap != NULL)
{
if (viewport->RenderTarget->IsBgra())
translation = (lighttable_t *)parms.remap->Palette;
else
translation = parms.remap->Remap;
}
SpriteDrawerArgs drawerargs;
drawerargs.SetTranslationMap(translation);
drawerargs.SetLight(basecolormap, 0.0f, shade);
bool visible = drawerargs.SetStyle(parms.style, parms.Alpha, -1, parms.fillcolor, basecolormap);
double x0 = parms.x - parms.left * parms.destwidth / parms.texwidth;
double y0 = parms.y - parms.top * parms.destheight / parms.texheight;
if (visible)
{
double centeryback = viewport->CenterY;
viewport->CenterY = 0;
// There is not enough precision in the drawing routines to keep the full
// precision for y0. :(
double sprtopscreen;
modf(y0, &sprtopscreen);
double yscale = parms.destheight / img->GetHeight();
double iyscale = 1 / yscale;
double spryscale = yscale;
assert(spryscale > 0);
bool sprflipvert = false;
fixed_t iscale = FLOAT2FIXED(1 / spryscale);
//dc_texturemid = (CenterY - 1 - sprtopscreen) * iscale / 65536;
fixed_t frac = 0;
double xiscale = img->GetWidth() / parms.destwidth;
double x2 = x0 + parms.destwidth;
short *mfloorclip;
short *mceilingclip;
if (bottomclipper[0] != parms.dclip)
{
fillshort(bottomclipper, screen->GetWidth(), (short)parms.dclip);
}
if (parms.uclip != 0)
{
if (topclipper[0] != parms.uclip)
{
fillshort(topclipper, screen->GetWidth(), (short)parms.uclip);
}
mceilingclip = topclipper;
}
else
{
mceilingclip = zeroarray;
}
mfloorclip = bottomclipper;
if (parms.flipX)
{
frac = (img->GetWidth() << FRACBITS) - 1;
xiscale = -xiscale;
}
if (parms.windowleft > 0 || parms.windowright < parms.texwidth)
{
double wi = MIN(parms.windowright, parms.texwidth);
double xscale = parms.destwidth / parms.texwidth;
x0 += parms.windowleft * xscale;
frac += FLOAT2FIXED(parms.windowleft);
x2 -= (parms.texwidth - wi) * xscale;
}
if (x0 < parms.lclip)
{
frac += FLOAT2FIXED((parms.lclip - x0) * xiscale);
x0 = parms.lclip;
}
if (x2 > parms.rclip)
{
x2 = parms.rclip;
}
int x = int(x0);
int x2_i = int(x2);
fixed_t xiscale_i = FLOAT2FIXED(xiscale);
static RenderThread thread(nullptr);
thread.DrawQueue->ThreadedRender = false;
while (x < x2_i)
{
drawerargs.DrawMaskedColumn(&thread, x, iscale, img, frac, spryscale, sprtopscreen, sprflipvert, mfloorclip, mceilingclip, !parms.masked);
x++;
frac += xiscale_i;
}
viewport->CenterY = centeryback;
}
viewport->RenderTarget->Unlock();
viewport->RenderTarget = canvas;
}
void SWCanvas::FillSimplePoly(DCanvas *canvas, FTexture *tex, FVector2 *points, int npoints,
double originx, double originy, double scalex, double scaley, DAngle rotation,
FDynamicColormap *colormap, PalEntry flatcolor, int lightlevel, int bottomclip)
{
// Use an equation similar to player sprites to determine shade
fixed_t shade = LightVisibility::LightLevelToShade(lightlevel, true) - 12 * FRACUNIT;
float topy, boty, leftx, rightx;
int toppt, botpt, pt1, pt2;
int i;
int y1, y2, y;
fixed_t x;
bool dorotate = rotation != 0.;
double cosrot, sinrot;
if (--npoints < 2)
{ // not a polygon or we're not locked
return;
}
if (bottomclip <= 0)
{
bottomclip = canvas->GetHeight();
}
// Find the extents of the polygon, in particular the highest and lowest points.
for (botpt = toppt = 0, boty = topy = points[0].Y, leftx = rightx = points[0].X, i = 1; i <= npoints; ++i)
{
if (points[i].Y < topy)
{
topy = points[i].Y;
toppt = i;
}
if (points[i].Y > boty)
{
boty = points[i].Y;
botpt = i;
}
if (points[i].X < leftx)
{
leftx = points[i].X;
}
if (points[i].X > rightx)
{
rightx = points[i].X;
}
}
if (topy >= bottomclip || // off the bottom of the screen
boty <= 0 || // off the top of the screen
leftx >= canvas->GetWidth() || // off the right of the screen
rightx <= 0) // off the left of the screen
{
return;
}
auto viewport = RenderViewport::Instance();
viewport->RenderTarget = canvas;
viewport->RenderTarget->Lock(true);
scalex /= tex->Scale.X;
scaley /= tex->Scale.Y;
// Use the CRT's functions here.
cosrot = cos(rotation.Radians());
sinrot = sin(rotation.Radians());
// Setup constant texture mapping parameters.
SpanDrawerArgs drawerargs;
drawerargs.SetTexture(tex);
if (colormap)
drawerargs.SetLight(colormap, 0, clamp(shade >> FRACBITS, 0, NUMCOLORMAPS - 1));
else
drawerargs.SetLight(&identitycolormap, 0, 0);
if (drawerargs.TextureWidthBits() != 0)
{
scalex = double(1u << (32 - drawerargs.TextureWidthBits())) / scalex;
drawerargs.SetTextureUStep(xs_RoundToInt(cosrot * scalex));
}
else
{ // Texture is one pixel wide.
scalex = 0;
drawerargs.SetTextureUStep(0);
}
if (drawerargs.TextureHeightBits() != 0)
{
scaley = double(1u << (32 - drawerargs.TextureHeightBits())) / scaley;
drawerargs.SetTextureVStep(xs_RoundToInt(sinrot * scaley));
}
else
{ // Texture is one pixel tall.
scaley = 0;
drawerargs.SetTextureVStep(0);
}
int width = canvas->GetWidth();
// Travel down the right edge and create an outline of that edge.
static short spanend[MAXHEIGHT];
pt1 = toppt;
pt2 = toppt + 1; if (pt2 > npoints) pt2 = 0;
y1 = xs_RoundToInt(points[pt1].Y + 0.5f);
do
{
x = FLOAT2FIXED(points[pt1].X + 0.5f);
y2 = xs_RoundToInt(points[pt2].Y + 0.5f);
if (y1 >= y2 || (y1 < 0 && y2 < 0) || (y1 >= bottomclip && y2 >= bottomclip))
{
}
else
{
fixed_t xinc = FLOAT2FIXED((points[pt2].X - points[pt1].X) / (points[pt2].Y - points[pt1].Y));
int y3 = MIN(y2, bottomclip);
if (y1 < 0)
{
x += xinc * -y1;
y1 = 0;
}
for (y = y1; y < y3; ++y)
{
spanend[y] = clamp<short>(x >> FRACBITS, -1, width);
x += xinc;
}
}
y1 = y2;
pt1 = pt2;
pt2++; if (pt2 > npoints) pt2 = 0;
} while (pt1 != botpt);
static RenderThread thread(nullptr);
thread.DrawQueue->ThreadedRender = false;
// Travel down the left edge and fill it in.
pt1 = toppt;
pt2 = toppt - 1; if (pt2 < 0) pt2 = npoints;
y1 = xs_RoundToInt(points[pt1].Y + 0.5f);
do
{
x = FLOAT2FIXED(points[pt1].X + 0.5f);
y2 = xs_RoundToInt(points[pt2].Y + 0.5f);
if (y1 >= y2 || (y1 < 0 && y2 < 0) || (y1 >= bottomclip && y2 >= bottomclip))
{
}
else
{
fixed_t xinc = FLOAT2FIXED((points[pt2].X - points[pt1].X) / (points[pt2].Y - points[pt1].Y));
int y3 = MIN(y2, bottomclip);
if (y1 < 0)
{
x += xinc * -y1;
y1 = 0;
}
for (y = y1; y < y3; ++y)
{
int x1 = x >> FRACBITS;
int x2 = spanend[y];
if (x2 > x1 && x2 > 0 && x1 < width)
{
x1 = MAX(x1, 0);
x2 = MIN(x2, width);
#if 0
memset(this->Buffer + y * this->Pitch + x1, (int)tex, x2 - x1);
#else
drawerargs.SetDestY(y);
drawerargs.SetDestX1(x1);
drawerargs.SetDestX2(x2 - 1);
DVector2 tex(x1 - originx, y - originy);
if (dorotate)
{
double t = tex.X;
tex.X = t * cosrot - tex.Y * sinrot;
tex.Y = tex.Y * cosrot + t * sinrot;
}
drawerargs.SetTextureUPos(xs_RoundToInt(tex.X * scalex));
drawerargs.SetTextureVPos(xs_RoundToInt(tex.Y * scaley));
drawerargs.DrawSpan(&thread);
#endif
}
x += xinc;
}
}
y1 = y2;
pt1 = pt2;
pt2--; if (pt2 < 0) pt2 = npoints;
} while (pt1 != botpt);
viewport->RenderTarget->Unlock();
viewport->RenderTarget = screen;
}
void SWCanvas::DrawLine(DCanvas *canvas, int x0, int y0, int x1, int y1, int palColor, uint32_t realcolor)
{
const int WeightingScale = 0;
const int WEIGHTBITS = 6;
const int WEIGHTSHIFT = 16 - WEIGHTBITS;
const int NUMWEIGHTS = (1 << WEIGHTBITS);
const int WEIGHTMASK = (NUMWEIGHTS - 1);
if (palColor < 0)
{
palColor = PalFromRGB(realcolor);
}
canvas->Lock();
int deltaX, deltaY, xDir;
if (y0 > y1)
{
int temp = y0; y0 = y1; y1 = temp;
temp = x0; x0 = x1; x1 = temp;
}
PUTTRANSDOT(canvas, x0, y0, palColor, 0);
if ((deltaX = x1 - x0) >= 0)
{
xDir = 1;
}
else
{
xDir = -1;
deltaX = -deltaX;
}
if ((deltaY = y1 - y0) == 0)
{ // horizontal line
if (x0 > x1)
{
swapvalues(x0, x1);
}
if (canvas->IsBgra())
{
uint32_t fillColor = GPalette.BaseColors[palColor].d;
uint32_t *spot = (uint32_t*)canvas->GetBuffer() + y0*canvas->GetPitch() + x0;
for (int i = 0; i <= deltaX; i++)
spot[i] = fillColor;
}
else
{
memset(canvas->GetBuffer() + y0*canvas->GetPitch() + x0, palColor, deltaX + 1);
}
}
else if (deltaX == 0)
{ // vertical line
if (canvas->IsBgra())
{
uint32_t fillColor = GPalette.BaseColors[palColor].d;
uint32_t *spot = (uint32_t*)canvas->GetBuffer() + y0*canvas->GetPitch() + x0;
int pitch = canvas->GetPitch();
do
{
*spot = fillColor;
spot += pitch;
} while (--deltaY != 0);
}
else
{
uint8_t *spot = canvas->GetBuffer() + y0*canvas->GetPitch() + x0;
int pitch = canvas->GetPitch();
do
{
*spot = palColor;
spot += pitch;
} while (--deltaY != 0);
}
}
else if (deltaX == deltaY)
{ // diagonal line.
if (canvas->IsBgra())
{
uint32_t fillColor = GPalette.BaseColors[palColor].d;
uint32_t *spot = (uint32_t*)canvas->GetBuffer() + y0*canvas->GetPitch() + x0;
int advance = canvas->GetPitch() + xDir;
do
{
*spot = fillColor;
spot += advance;
} while (--deltaY != 0);
}
else
{
uint8_t *spot = canvas->GetBuffer() + y0*canvas->GetPitch() + x0;
int advance = canvas->GetPitch() + xDir;
do
{
*spot = palColor;
spot += advance;
} while (--deltaY != 0);
}
}
else
{
// line is not horizontal, diagonal, or vertical
fixed_t errorAcc = 0;
if (deltaY > deltaX)
{ // y-major line
fixed_t errorAdj = (((unsigned)deltaX << 16) / (unsigned)deltaY) & 0xffff;
if (xDir < 0)
{
if (WeightingScale == 0)
{
while (--deltaY)
{
errorAcc += errorAdj;
y0++;
int weighting = (errorAcc >> WEIGHTSHIFT) & WEIGHTMASK;
PUTTRANSDOT(canvas, x0 - (errorAcc >> 16), y0, palColor, weighting);
PUTTRANSDOT(canvas, x0 - (errorAcc >> 16) - 1, y0,
palColor, WEIGHTMASK - weighting);
}
}
else
{
while (--deltaY)
{
errorAcc += errorAdj;
y0++;
int weighting = ((errorAcc * WeightingScale) >> (WEIGHTSHIFT + 8)) & WEIGHTMASK;
PUTTRANSDOT(canvas, x0 - (errorAcc >> 16), y0, palColor, weighting);
PUTTRANSDOT(canvas, x0 - (errorAcc >> 16) - 1, y0,
palColor, WEIGHTMASK - weighting);
}
}
}
else
{
if (WeightingScale == 0)
{
while (--deltaY)
{
errorAcc += errorAdj;
y0++;
int weighting = (errorAcc >> WEIGHTSHIFT) & WEIGHTMASK;
PUTTRANSDOT(canvas, x0 + (errorAcc >> 16), y0, palColor, weighting);
PUTTRANSDOT(canvas, x0 + (errorAcc >> 16) + xDir, y0,
palColor, WEIGHTMASK - weighting);
}
}
else
{
while (--deltaY)
{
errorAcc += errorAdj;
y0++;
int weighting = ((errorAcc * WeightingScale) >> (WEIGHTSHIFT + 8)) & WEIGHTMASK;
PUTTRANSDOT(canvas, x0 + (errorAcc >> 16), y0, palColor, weighting);
PUTTRANSDOT(canvas, x0 + (errorAcc >> 16) + xDir, y0,
palColor, WEIGHTMASK - weighting);
}
}
}
}
else
{ // x-major line
fixed_t errorAdj = (((uint32_t)deltaY << 16) / (uint32_t)deltaX) & 0xffff;
if (WeightingScale == 0)
{
while (--deltaX)
{
errorAcc += errorAdj;
x0 += xDir;
int weighting = (errorAcc >> WEIGHTSHIFT) & WEIGHTMASK;
PUTTRANSDOT(canvas, x0, y0 + (errorAcc >> 16), palColor, weighting);
PUTTRANSDOT(canvas, x0, y0 + (errorAcc >> 16) + 1,
palColor, WEIGHTMASK - weighting);
}
}
else
{
while (--deltaX)
{
errorAcc += errorAdj;
x0 += xDir;
int weighting = ((errorAcc * WeightingScale) >> (WEIGHTSHIFT + 8)) & WEIGHTMASK;
PUTTRANSDOT(canvas, x0, y0 + (errorAcc >> 16), palColor, weighting);
PUTTRANSDOT(canvas, x0, y0 + (errorAcc >> 16) + 1,
palColor, WEIGHTMASK - weighting);
}
}
}
PUTTRANSDOT(canvas, x1, y1, palColor, 0);
}
canvas->Unlock();
}
void SWCanvas::DrawPixel(DCanvas *canvas, int x, int y, int palColor, uint32_t realcolor)
{
if (palColor < 0)
{
palColor = PalFromRGB(realcolor);
}
canvas->GetBuffer()[canvas->GetPitch() * y + x] = (uint8_t)palColor;
}
void SWCanvas::PUTTRANSDOT(DCanvas *canvas, int xx, int yy, int basecolor, int level)
{
static int oldyy;
static int oldyyshifted;
if (yy == oldyy + 1)
{
oldyy++;
oldyyshifted += canvas->GetPitch();
}
else if (yy == oldyy - 1)
{
oldyy--;
oldyyshifted -= canvas->GetPitch();
}
else if (yy != oldyy)
{
oldyy = yy;
oldyyshifted = yy * canvas->GetPitch();
}
if (canvas->IsBgra())
{
uint32_t *spot = (uint32_t*)canvas->GetBuffer() + oldyyshifted + xx;
uint32_t fg = swrenderer::LightBgra::shade_pal_index_simple(basecolor, swrenderer::LightBgra::calc_light_multiplier(0));
uint32_t fg_red = (((fg >> 16) & 0xff) * (63 - level)) >> 6;
uint32_t fg_green = (((fg >> 8) & 0xff) * (63 - level)) >> 6;
uint32_t fg_blue = ((fg & 0xff) * (63 - level)) >> 6;
uint32_t bg_red = (((*spot >> 16) & 0xff) * level) >> 6;
uint32_t bg_green = (((*spot >> 8) & 0xff) * level) >> 6;
uint32_t bg_blue = (((*spot) & 0xff) * level) >> 6;
uint32_t red = fg_red + bg_red;
uint32_t green = fg_green + bg_green;
uint32_t blue = fg_blue + bg_blue;
*spot = 0xff000000 | (red << 16) | (green << 8) | blue;
}
else if (!r_blendmethod)
{
uint8_t *spot = canvas->GetBuffer() + oldyyshifted + xx;
uint32_t *bg2rgb = Col2RGB8[1 + level];
uint32_t *fg2rgb = Col2RGB8[63 - level];
uint32_t fg = fg2rgb[basecolor];
uint32_t bg = bg2rgb[*spot];
bg = (fg + bg) | 0x1f07c1f;
*spot = RGB32k.All[bg&(bg >> 15)];
}
else
{
uint8_t *spot = canvas->GetBuffer() + oldyyshifted + xx;
uint32_t r = (GPalette.BaseColors[*spot].r * (64 - level) + GPalette.BaseColors[basecolor].r * level) / 256;
uint32_t g = (GPalette.BaseColors[*spot].g * (64 - level) + GPalette.BaseColors[basecolor].g * level) / 256;
uint32_t b = (GPalette.BaseColors[*spot].b * (64 - level) + GPalette.BaseColors[basecolor].b * level) / 256;
*spot = (uint8_t)RGB256k.RGB[r][g][b];
}
}
void SWCanvas::Clear(DCanvas *canvas, int left, int top, int right, int bottom, int palcolor, uint32_t color)
{
int x, y;
if (left == right || top == bottom)
{
return;
}
assert(left < right);
assert(top < bottom);
int Width = canvas->GetWidth();
int Height = canvas->GetHeight();
int Pitch = canvas->GetPitch();
if (left >= Width || right <= 0 || top >= Height || bottom <= 0)
{
return;
}
left = MAX(0, left);
right = MIN(Width, right);
top = MAX(0, top);
bottom = MIN(Height, bottom);
if (palcolor < 0)
{
palcolor = PalFromRGB(color);
}
if (canvas->IsBgra())
{
uint32_t fill_color = GPalette.BaseColors[palcolor];
uint32_t *dest = (uint32_t*)canvas->GetBuffer() + top * Pitch + left;
x = right - left;
for (y = top; y < bottom; y++)
{
for (int i = 0; i < x; i++)
dest[i] = fill_color;
dest += Pitch;
}
}
else
{
uint8_t *dest = canvas->GetBuffer() + top * Pitch + left;
x = right - left;
for (y = top; y < bottom; y++)
{
memset(dest, palcolor, x);
dest += Pitch;
}
}
}
void SWCanvas::Dim(DCanvas *canvas, PalEntry color, float damount, int x1, int y1, int w, int h)
{
if (damount == 0.f)
return;
int Width = canvas->GetWidth();
int Height = canvas->GetHeight();
int Pitch = canvas->GetPitch();
if (x1 >= Width || y1 >= Height)
{
return;
}
if (x1 + w > Width)
{
w = Width - x1;
}
if (y1 + h > Height)
{
h = Height - y1;
}
if (w <= 0 || h <= 0)
{
return;
}
if (canvas->IsBgra())
{
uint32_t *spot = (uint32_t*)canvas->GetBuffer() + x1 + y1*Pitch;
int gap = Pitch - w;
uint32_t fg = color.d;
uint32_t fg_red = (fg >> 16) & 0xff;
uint32_t fg_green = (fg >> 8) & 0xff;
uint32_t fg_blue = fg & 0xff;
uint32_t alpha = (uint32_t)clamp(damount * 256 + 0.5f, 0.0f, 256.0f);
uint32_t inv_alpha = 256 - alpha;
fg_red *= alpha;
fg_green *= alpha;
fg_blue *= alpha;
for (int y = h; y != 0; y--)
{
for (int x = w; x != 0; x--)
{
uint32_t bg_red = (*spot >> 16) & 0xff;
uint32_t bg_green = (*spot >> 8) & 0xff;
uint32_t bg_blue = (*spot) & 0xff;
uint32_t red = (fg_red + bg_red * inv_alpha) / 256;
uint32_t green = (fg_green + bg_green * inv_alpha) / 256;
uint32_t blue = (fg_blue + bg_blue * inv_alpha) / 256;
*spot = 0xff000000 | (red << 16) | (green << 8) | blue;
spot++;
}
spot += gap;
}
}
else
{
uint32_t *bg2rgb;
uint32_t fg;
uint8_t *spot = canvas->GetBuffer() + x1 + y1*Pitch;
int gap = Pitch - w;
int alpha = (int)((float)64 * damount);
int ialpha = 64 - alpha;
int dimmedcolor_r = color.r * alpha;
int dimmedcolor_g = color.g * alpha;
int dimmedcolor_b = color.b * alpha;
if (!r_blendmethod)
{
{
int amount;
amount = (int)(damount * 64);
bg2rgb = Col2RGB8[64 - amount];
fg = (((color.r * amount) >> 4) << 20) |
((color.g * amount) >> 4) |
(((color.b * amount) >> 4) << 10);
}
for (int y = h; y != 0; y--)
{
for (int x = w; x != 0; x--)
{
uint32_t bg;
bg = bg2rgb[(*spot) & 0xff];
bg = (fg + bg) | 0x1f07c1f;
*spot = RGB32k.All[bg&(bg >> 15)];
spot++;
}
spot += gap;
}
}
else
{
for (int y = h; y != 0; y--)
{
for (int x = w; x != 0; x--)
{
uint32_t r = (dimmedcolor_r + GPalette.BaseColors[*spot].r * ialpha) >> 8;
uint32_t g = (dimmedcolor_g + GPalette.BaseColors[*spot].g * ialpha) >> 8;
uint32_t b = (dimmedcolor_b + GPalette.BaseColors[*spot].b * ialpha) >> 8;
*spot = (uint8_t)RGB256k.RGB[r][g][b];
spot++;
}
spot += gap;
}
}
}
}
int SWCanvas::PalFromRGB(uint32_t rgb)
{
// For routines that take RGB colors, cache the previous lookup in case there
// are several repetitions with the same color.
static int LastPal = -1;
static uint32_t LastRGB;
if (LastPal >= 0 && LastRGB == rgb)
{
return LastPal;
}
// Quick check for black and white.
if (rgb == MAKEARGB(255, 0, 0, 0))
{
LastPal = GPalette.BlackIndex;
}
else if (rgb == MAKEARGB(255, 255, 255, 255))
{
LastPal = GPalette.WhiteIndex;
}
else
{
LastPal = ColorMatcher.Pick(RPART(rgb), GPART(rgb), BPART(rgb));
}
LastRGB = rgb;
return LastPal;
}