gzdoom-gles/libraries/timidity/instrum_dls.cpp
alexey.lysiuk 071b0d12d6 - fixed compilation with GCC and Clang
libraries/timidity/instrum_dls.cpp:1071:18: error: ‘INT_MIN’ was not declared in this scope
libraries/timidity/instrum_font.cpp:37:47: error: ‘stricmp’ was not declared in this scope
libraries/timidity/timidity.cpp:207:32: error: ‘strcmp’ was not declared in this scope
libraries/timidity/timidity.cpp:235:24: error: ‘strcmp’ was not declared in this scope
libraries/timidity/timidity.cpp:310:33: error: ‘strchr’ was not declared in this scope
libraries/timidity/timidity.cpp:515:30: error: ‘strchr’ was not declared in this scope
libraries/timidity/timidity.cpp:602:34: error: ‘memset’ was not declared in this scope
libraries/timidity/timidity.cpp:648:35: error: ‘memcpy’ was not declared in this scope
libraries/timidity/timidity.cpp:753:41: error: ‘memset’ was not declared in this scope
2020-01-05 01:22:16 +01:00

1243 lines
34 KiB
C++

/*
TiMidity -- Experimental MIDI to WAVE converter
Copyright (C) 1995 Tuukka Toivonen <toivonen@clinet.fi>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
instrum_dls.c
*/
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <limits.h>
#include "t_swap.h"
#include "timidity.h"
#include "common.h"
#include "instrum.h"
#include "playmidi.h"
#define __Sound_SetError(x)
namespace Timidity
{
/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * load_riff.h * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
struct RIFF_Chunk
{
RIFF_Chunk()
{
memset(this, 0, sizeof(*this));
}
~RIFF_Chunk()
{
// data is not freed here because it may be owned by a parent chunk
if (child != NULL)
{
delete child;
}
if (next != NULL)
{
delete next;
}
}
uint32_t magic;
uint32_t length;
uint32_t subtype;
uint8_t *data;
RIFF_Chunk *child;
RIFF_Chunk *next;
};
RIFF_Chunk *LoadRIFF(FILE *src);
void FreeRIFF(RIFF_Chunk *chunk);
void PrintRIFF(RIFF_Chunk *chunk, int level);
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * load_riff.c * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
#define RIFF MAKE_ID('R','I','F','F')
#define LIST MAKE_ID('L','I','S','T')
static bool ChunkHasSubType(uint32_t magic)
{
return (magic == RIFF || magic == LIST);
}
static int ChunkHasSubChunks(uint32_t magic)
{
return (magic == RIFF || magic == LIST);
}
static void LoadSubChunks(RIFF_Chunk *chunk, uint8_t *data, uint32_t left)
{
uint8_t *subchunkData;
uint32_t subchunkDataLen;
while ( left > 8 ) {
RIFF_Chunk *child = new RIFF_Chunk;
RIFF_Chunk *next, *prev = NULL;
for ( next = chunk->child; next; next = next->next ) {
prev = next;
}
if ( prev ) {
prev->next = child;
} else {
chunk->child = child;
}
child->magic = *(uint32_t *)data;
data += 4;
left -= 4;
child->length = LittleLong(*(uint32_t *)data);
data += 4;
left -= 4;
child->data = data;
if ( child->length > left ) {
child->length = left;
}
subchunkData = child->data;
subchunkDataLen = child->length;
if ( ChunkHasSubType(child->magic) && subchunkDataLen >= 4 ) {
child->subtype = *(uint32_t *)subchunkData;
subchunkData += 4;
subchunkDataLen -= 4;
}
if ( ChunkHasSubChunks(child->magic) ) {
LoadSubChunks(child, subchunkData, subchunkDataLen);
}
data += child->length + (child->length & 1);
left -= child->length + (child->length & 1);
}
}
RIFF_Chunk *LoadRIFF(FILE *src)
{
RIFF_Chunk *chunk;
uint8_t *subchunkData;
uint32_t subchunkDataLen;
/* Allocate the chunk structure */
chunk = new RIFF_Chunk;
/* Make sure the file is in RIFF format */
fread(&chunk->magic, 4, 1, src);
fread(&chunk->length, 4, 1, src);
chunk->length = LittleLong(chunk->length);
if ( chunk->magic != RIFF ) {
__Sound_SetError("Not a RIFF file");
delete chunk;
return NULL;
}
chunk->data = (uint8_t *)malloc(chunk->length);
if ( chunk->data == NULL ) {
__Sound_SetError(ERR_OUT_OF_MEMORY);
delete chunk;
return NULL;
}
if ( fread(chunk->data, chunk->length, 1, src) != 1 ) {
__Sound_SetError(ERR_IO_ERROR);
FreeRIFF(chunk);
return NULL;
}
subchunkData = chunk->data;
subchunkDataLen = chunk->length;
if ( ChunkHasSubType(chunk->magic) && subchunkDataLen >= 4 ) {
chunk->subtype = *(uint32_t *)subchunkData;
subchunkData += 4;
subchunkDataLen -= 4;
}
if ( ChunkHasSubChunks(chunk->magic) ) {
LoadSubChunks(chunk, subchunkData, subchunkDataLen);
}
return chunk;
}
void FreeRIFF(RIFF_Chunk *chunk)
{
free(chunk->data);
delete chunk;
}
void PrintRIFF(RIFF_Chunk *chunk, int level)
{
static char prefix[128];
if ( level == sizeof(prefix)-1 ) {
return;
}
if ( level > 0 ) {
prefix[(level-1)*2] = ' ';
prefix[(level-1)*2+1] = ' ';
}
prefix[level*2] = '\0';
printf("%sChunk: %c%c%c%c (%d bytes)", prefix,
((chunk->magic >> 0) & 0xFF),
((chunk->magic >> 8) & 0xFF),
((chunk->magic >> 16) & 0xFF),
((chunk->magic >> 24) & 0xFF), chunk->length);
if ( chunk->subtype ) {
printf(" subtype: %c%c%c%c",
((chunk->subtype >> 0) & 0xFF),
((chunk->subtype >> 8) & 0xFF),
((chunk->subtype >> 16) & 0xFF),
((chunk->subtype >> 24) & 0xFF));
}
printf("\n");
if ( chunk->child ) {
printf("%s{\n", prefix);
PrintRIFF(chunk->child, level + 1);
printf("%s}\n", prefix);
}
if ( chunk->next ) {
PrintRIFF(chunk->next, level);
}
if ( level > 0 ) {
prefix[(level-1)*2] = '\0';
}
}
#ifdef TEST_MAIN_RIFF
main(int argc, char *argv[])
{
int i;
for ( i = 1; i < argc; ++i ) {
RIFF_Chunk *chunk;
SDL_RWops *src = SDL_RWFromFile(argv[i], "rb");
if ( !src ) {
fprintf(stderr, "Couldn't open %s: %s", argv[i], SDL_GetError());
continue;
}
chunk = LoadRIFF(src);
if ( chunk ) {
PrintRIFF(chunk, 0);
FreeRIFF(chunk);
} else {
fprintf(stderr, "Couldn't load %s: %s\n", argv[i], SDL_GetError());
}
SDL_RWclose(src);
}
}
#endif // TEST_MAIN
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * load_dls.h * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
/* This code is based on the DLS spec version 1.1, available at:
http://www.midi.org/about-midi/dls/dlsspec.shtml
*/
/* Some typedefs so the public dls headers don't need to be modified */
#define FAR
typedef int16_t SHORT;
typedef uint16_t USHORT;
typedef int32_t LONG;
typedef uint32_t ULONG;
typedef uint32_t DWORD;
#define mmioFOURCC MAKE_ID
#define DEFINE_GUID(A, B, C, E, F, G, H, I, J, K, L, M)
#include "dls1.h"
#include "dls2.h"
struct WaveFMT
{
uint16_t wFormatTag;
uint16_t wChannels;
uint32_t dwSamplesPerSec;
uint32_t dwAvgBytesPerSec;
uint16_t wBlockAlign;
uint16_t wBitsPerSample;
};
struct DLS_Wave
{
WaveFMT *format;
uint8_t *data;
uint32_t length;
WSMPL *wsmp;
WLOOP *wsmp_loop;
};
struct DLS_Region
{
RGNHEADER *header;
WAVELINK *wlnk;
WSMPL *wsmp;
WLOOP *wsmp_loop;
CONNECTIONLIST *art;
CONNECTION *artList;
};
struct DLS_Instrument
{
const char *name;
INSTHEADER *header;
DLS_Region *regions;
CONNECTIONLIST *art;
CONNECTION *artList;
};
struct DLS_Data
{
RIFF_Chunk *chunk;
uint32_t cInstruments;
DLS_Instrument *instruments;
POOLTABLE *ptbl;
POOLCUE *ptblList;
DLS_Wave *waveList;
const char *name;
const char *artist;
const char *copyright;
const char *comments;
};
DLS_Data *LoadDLS(FILE *src);
void FreeDLS(DLS_Data *chunk);
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * load_dls.c * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
#define FOURCC_LIST mmioFOURCC('L','I','S','T')
#define FOURCC_FMT mmioFOURCC('f','m','t',' ')
#define FOURCC_DATA mmioFOURCC('d','a','t','a')
#define FOURCC_INFO mmioFOURCC('I','N','F','O')
#define FOURCC_IARL mmioFOURCC('I','A','R','L')
#define FOURCC_IART mmioFOURCC('I','A','R','T')
#define FOURCC_ICMS mmioFOURCC('I','C','M','S')
#define FOURCC_ICMT mmioFOURCC('I','C','M','T')
#define FOURCC_ICOP mmioFOURCC('I','C','O','P')
#define FOURCC_ICRD mmioFOURCC('I','C','R','D')
#define FOURCC_IENG mmioFOURCC('I','E','N','G')
#define FOURCC_IGNR mmioFOURCC('I','G','N','R')
#define FOURCC_IKEY mmioFOURCC('I','K','E','Y')
#define FOURCC_IMED mmioFOURCC('I','M','E','D')
#define FOURCC_INAM mmioFOURCC('I','N','A','M')
#define FOURCC_IPRD mmioFOURCC('I','P','R','D')
#define FOURCC_ISBJ mmioFOURCC('I','S','B','J')
#define FOURCC_ISFT mmioFOURCC('I','S','F','T')
#define FOURCC_ISRC mmioFOURCC('I','S','R','C')
#define FOURCC_ISRF mmioFOURCC('I','S','R','F')
#define FOURCC_ITCH mmioFOURCC('I','T','C','H')
static void FreeRegions(DLS_Instrument *instrument)
{
if ( instrument->regions ) {
free(instrument->regions);
}
}
static void AllocRegions(DLS_Instrument *instrument)
{
int datalen = (instrument->header->cRegions * sizeof(DLS_Region));
FreeRegions(instrument);
instrument->regions = (DLS_Region *)malloc(datalen);
if ( instrument->regions ) {
memset(instrument->regions, 0, datalen);
}
}
static void FreeInstruments(DLS_Data *data)
{
if ( data->instruments ) {
uint32_t i;
for ( i = 0; i < data->cInstruments; ++i ) {
FreeRegions(&data->instruments[i]);
}
free(data->instruments);
}
}
static void AllocInstruments(DLS_Data *data)
{
int datalen = (data->cInstruments * sizeof(DLS_Instrument));
FreeInstruments(data);
data->instruments = (DLS_Instrument *)malloc(datalen);
if ( data->instruments ) {
memset(data->instruments, 0, datalen);
}
}
static void FreeWaveList(DLS_Data *data)
{
if ( data->waveList ) {
free(data->waveList);
}
}
static void AllocWaveList(DLS_Data *data)
{
int datalen = (data->ptbl->cCues * sizeof(DLS_Wave));
FreeWaveList(data);
data->waveList = (DLS_Wave *)malloc(datalen);
if ( data->waveList ) {
memset(data->waveList, 0, datalen);
}
}
static void Parse_colh(DLS_Data *data, RIFF_Chunk *chunk)
{
data->cInstruments = LittleLong(*(uint32_t *)chunk->data);
AllocInstruments(data);
}
static void Parse_insh(DLS_Data *data, RIFF_Chunk *chunk, DLS_Instrument *instrument)
{
INSTHEADER *header = (INSTHEADER *)chunk->data;
header->cRegions = LittleLong(header->cRegions);
header->Locale.ulBank = LittleLong(header->Locale.ulBank);
header->Locale.ulInstrument = LittleLong(header->Locale.ulInstrument);
instrument->header = header;
AllocRegions(instrument);
}
static void Parse_rgnh(DLS_Data *data, RIFF_Chunk *chunk, DLS_Region *region)
{
RGNHEADER *header = (RGNHEADER *)chunk->data;
header->RangeKey.usLow = LittleShort(header->RangeKey.usLow);
header->RangeKey.usHigh = LittleShort(header->RangeKey.usHigh);
header->RangeVelocity.usLow = LittleShort(header->RangeVelocity.usLow);
header->RangeVelocity.usHigh = LittleShort(header->RangeVelocity.usHigh);
header->fusOptions = LittleShort(header->fusOptions);
header->usKeyGroup = LittleShort(header->usKeyGroup);
region->header = header;
}
static void Parse_wlnk(DLS_Data *data, RIFF_Chunk *chunk, DLS_Region *region)
{
WAVELINK *wlnk = (WAVELINK *)chunk->data;
wlnk->fusOptions = LittleShort(wlnk->fusOptions);
wlnk->usPhaseGroup = LittleShort(wlnk->usPhaseGroup);
wlnk->ulChannel = LittleLong((unsigned int)wlnk->ulChannel);
wlnk->ulTableIndex = LittleLong((unsigned int)wlnk->ulTableIndex);
region->wlnk = wlnk;
}
static void Parse_wsmp(DLS_Data *data, RIFF_Chunk *chunk, WSMPL **wsmp_ptr, WLOOP **wsmp_loop_ptr)
{
uint32_t i;
WSMPL *wsmp = (WSMPL *)chunk->data;
WLOOP *loop;
wsmp->cbSize = LittleLong(wsmp->cbSize);
wsmp->usUnityNote = LittleShort(wsmp->usUnityNote);
wsmp->sFineTune = LittleShort(wsmp->sFineTune);
wsmp->lAttenuation = LittleLong(wsmp->lAttenuation);
wsmp->fulOptions = LittleLong(wsmp->fulOptions);
wsmp->cSampleLoops = LittleLong(wsmp->cSampleLoops);
loop = (WLOOP *)((uint8_t *)chunk->data + wsmp->cbSize);
*wsmp_ptr = wsmp;
*wsmp_loop_ptr = loop;
for ( i = 0; i < wsmp->cSampleLoops; ++i ) {
loop->cbSize = LittleLong(loop->cbSize);
loop->ulType = LittleLong(loop->ulType);
loop->ulStart = LittleLong(loop->ulStart);
loop->ulLength = LittleLong(loop->ulLength);
++loop;
}
}
static void Parse_art(DLS_Data *data, RIFF_Chunk *chunk, CONNECTIONLIST **art_ptr, CONNECTION **artList_ptr)
{
uint32_t i;
CONNECTIONLIST *art = (CONNECTIONLIST *)chunk->data;
CONNECTION *artList;
art->cbSize = LittleLong(art->cbSize);
art->cConnections = LittleLong(art->cConnections);
artList = (CONNECTION *)((uint8_t *)chunk->data + art->cbSize);
*art_ptr = art;
*artList_ptr = artList;
for ( i = 0; i < art->cConnections; ++i ) {
artList->usSource = LittleShort(artList->usSource);
artList->usControl = LittleShort(artList->usControl);
artList->usDestination = LittleShort(artList->usDestination);
artList->usTransform = LittleShort(artList->usTransform);
artList->lScale = LittleLong(artList->lScale);
++artList;
}
}
static void Parse_lart(DLS_Data *data, RIFF_Chunk *chunk, CONNECTIONLIST **conn_ptr, CONNECTION **connList_ptr)
{
/* FIXME: This only supports one set of connections */
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_ART1:
case FOURCC_ART2:
Parse_art(data, chunk, conn_ptr, connList_ptr);
return;
}
}
}
static void Parse_rgn(DLS_Data *data, RIFF_Chunk *chunk, DLS_Region *region)
{
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_RGNH:
Parse_rgnh(data, chunk, region);
break;
case FOURCC_WLNK:
Parse_wlnk(data, chunk, region);
break;
case FOURCC_WSMP:
Parse_wsmp(data, chunk, &region->wsmp, &region->wsmp_loop);
break;
case FOURCC_LART:
case FOURCC_LAR2:
Parse_lart(data, chunk, &region->art, &region->artList);
break;
}
}
}
static void Parse_lrgn(DLS_Data *data, RIFF_Chunk *chunk, DLS_Instrument *instrument)
{
uint32_t region = 0;
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_RGN:
case FOURCC_RGN2:
if ( region < instrument->header->cRegions ) {
Parse_rgn(data, chunk, &instrument->regions[region++]);
}
break;
}
}
}
static void Parse_INFO_INS(DLS_Data *data, RIFF_Chunk *chunk, DLS_Instrument *instrument)
{
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_INAM: /* Name */
instrument->name = (const char *)chunk->data;
break;
}
}
}
static void Parse_ins(DLS_Data *data, RIFF_Chunk *chunk, DLS_Instrument *instrument)
{
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_INSH:
Parse_insh(data, chunk, instrument);
break;
case FOURCC_LRGN:
Parse_lrgn(data, chunk, instrument);
break;
case FOURCC_LART:
case FOURCC_LAR2:
Parse_lart(data, chunk, &instrument->art, &instrument->artList);
break;
case FOURCC_INFO:
Parse_INFO_INS(data, chunk, instrument);
break;
}
}
}
static void Parse_lins(DLS_Data *data, RIFF_Chunk *chunk)
{
uint32_t instrument = 0;
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_INS:
if ( instrument < data->cInstruments ) {
Parse_ins(data, chunk, &data->instruments[instrument++]);
}
break;
}
}
}
static void Parse_ptbl(DLS_Data *data, RIFF_Chunk *chunk)
{
uint32_t i;
POOLTABLE *ptbl = (POOLTABLE *)chunk->data;
ptbl->cbSize = LittleLong(ptbl->cbSize);
ptbl->cCues = LittleLong(ptbl->cCues);
data->ptbl = ptbl;
data->ptblList = (POOLCUE *)((uint8_t *)chunk->data + ptbl->cbSize);
for ( i = 0; i < ptbl->cCues; ++i ) {
data->ptblList[i].ulOffset = LittleLong(data->ptblList[i].ulOffset);
}
AllocWaveList(data);
}
static void Parse_fmt(DLS_Data *data, RIFF_Chunk *chunk, DLS_Wave *wave)
{
WaveFMT *fmt = (WaveFMT *)chunk->data;
fmt->wFormatTag = LittleShort(fmt->wFormatTag);
fmt->wChannels = LittleShort(fmt->wChannels);
fmt->dwSamplesPerSec = LittleLong(fmt->dwSamplesPerSec);
fmt->dwAvgBytesPerSec = LittleLong(fmt->dwAvgBytesPerSec);
fmt->wBlockAlign = LittleShort(fmt->wBlockAlign);
fmt->wBitsPerSample = LittleShort(fmt->wBitsPerSample);
wave->format = fmt;
}
static void Parse_data(DLS_Data *data, RIFF_Chunk *chunk, DLS_Wave *wave)
{
wave->data = chunk->data;
wave->length = chunk->length;
}
static void Parse_wave(DLS_Data *data, RIFF_Chunk *chunk, DLS_Wave *wave)
{
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_FMT:
Parse_fmt(data, chunk, wave);
break;
case FOURCC_DATA:
Parse_data(data, chunk, wave);
break;
case FOURCC_WSMP:
Parse_wsmp(data, chunk, &wave->wsmp, &wave->wsmp_loop);
break;
}
}
}
static void Parse_wvpl(DLS_Data *data, RIFF_Chunk *chunk)
{
uint32_t wave = 0;
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_wave:
if ( wave < data->ptbl->cCues ) {
Parse_wave(data, chunk, &data->waveList[wave++]);
}
break;
}
}
}
static void Parse_INFO_DLS(DLS_Data *data, RIFF_Chunk *chunk)
{
for ( chunk = chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_IARL: /* Archival Location */
break;
case FOURCC_IART: /* Artist */
data->artist = (const char *)chunk->data;
break;
case FOURCC_ICMS: /* Commisioned */
break;
case FOURCC_ICMT: /* Comments */
data->comments = (const char *)chunk->data;
break;
case FOURCC_ICOP: /* Copyright */
data->copyright = (const char *)chunk->data;
break;
case FOURCC_ICRD: /* Creation Date */
break;
case FOURCC_IENG: /* Engineer */
break;
case FOURCC_IGNR: /* Genre */
break;
case FOURCC_IKEY: /* Keywords */
break;
case FOURCC_IMED: /* Medium */
break;
case FOURCC_INAM: /* Name */
data->name = (const char *)chunk->data;
break;
case FOURCC_IPRD: /* Product */
break;
case FOURCC_ISBJ: /* Subject */
break;
case FOURCC_ISFT: /* Software */
break;
case FOURCC_ISRC: /* Source */
break;
case FOURCC_ISRF: /* Source Form */
break;
case FOURCC_ITCH: /* Technician */
break;
}
}
}
DLS_Data *LoadDLS(FILE *src)
{
RIFF_Chunk *chunk;
DLS_Data *data = (DLS_Data *)malloc(sizeof(*data));
if ( !data ) {
__Sound_SetError(ERR_OUT_OF_MEMORY);
return NULL;
}
memset(data, 0, sizeof(*data));
data->chunk = LoadRIFF(src);
if ( !data->chunk ) {
FreeDLS(data);
return NULL;
}
for ( chunk = data->chunk->child; chunk; chunk = chunk->next ) {
uint32_t magic = (chunk->magic == FOURCC_LIST) ? chunk->subtype : chunk->magic;
switch(magic) {
case FOURCC_COLH:
Parse_colh(data, chunk);
break;
case FOURCC_LINS:
Parse_lins(data, chunk);
break;
case FOURCC_PTBL:
Parse_ptbl(data, chunk);
break;
case FOURCC_WVPL:
Parse_wvpl(data, chunk);
break;
case FOURCC_INFO:
Parse_INFO_DLS(data, chunk);
break;
}
}
return data;
}
void FreeDLS(DLS_Data *data)
{
if ( data->chunk ) {
FreeRIFF(data->chunk);
}
FreeInstruments(data);
FreeWaveList(data);
free(data);
}
static const char *SourceToString(USHORT usSource)
{
static char unknown[32];
switch(usSource) {
case CONN_SRC_NONE:
return "NONE";
case CONN_SRC_LFO:
return "LFO";
case CONN_SRC_KEYONVELOCITY:
return "KEYONVELOCITY";
case CONN_SRC_KEYNUMBER:
return "KEYNUMBER";
case CONN_SRC_EG1:
return "EG1";
case CONN_SRC_EG2:
return "EG2";
case CONN_SRC_PITCHWHEEL:
return "PITCHWHEEL";
case CONN_SRC_CC1:
return "CC1";
case CONN_SRC_CC7:
return "CC7";
case CONN_SRC_CC10:
return "CC10";
case CONN_SRC_CC11:
return "CC11";
case CONN_SRC_POLYPRESSURE:
return "POLYPRESSURE";
case CONN_SRC_CHANNELPRESSURE:
return "CHANNELPRESSURE";
case CONN_SRC_VIBRATO:
return "VIBRATO";
case CONN_SRC_MONOPRESSURE:
return "MONOPRESSURE";
case CONN_SRC_CC91:
return "CC91";
case CONN_SRC_CC93:
return "CC93";
default:
snprintf(unknown, sizeof(unknown), "UNKNOWN (0x%04x)", usSource);
return unknown;
}
}
static const char *TransformToString(USHORT usTransform)
{
static char unknown[32];
switch (usTransform) {
case CONN_TRN_NONE:
return "NONE";
case CONN_TRN_CONCAVE:
return "CONCAVE";
case CONN_TRN_CONVEX:
return "CONVEX";
case CONN_TRN_SWITCH:
return "SWITCH";
default:
snprintf(unknown, sizeof(unknown), "UNKNOWN (0x%04x)", usTransform);
return unknown;
}
}
static const char *DestinationToString(USHORT usDestination)
{
static char unknown[32];
switch (usDestination) {
case CONN_DST_NONE:
return "NONE";
case CONN_DST_ATTENUATION:
return "ATTENUATION";
case CONN_DST_PITCH:
return "PITCH";
case CONN_DST_PAN:
return "PAN";
case CONN_DST_LFO_FREQUENCY:
return "LFO_FREQUENCY";
case CONN_DST_LFO_STARTDELAY:
return "LFO_STARTDELAY";
case CONN_DST_EG1_ATTACKTIME:
return "EG1_ATTACKTIME";
case CONN_DST_EG1_DECAYTIME:
return "EG1_DECAYTIME";
case CONN_DST_EG1_RELEASETIME:
return "EG1_RELEASETIME";
case CONN_DST_EG1_SUSTAINLEVEL:
return "EG1_SUSTAINLEVEL";
case CONN_DST_EG2_ATTACKTIME:
return "EG2_ATTACKTIME";
case CONN_DST_EG2_DECAYTIME:
return "EG2_DECAYTIME";
case CONN_DST_EG2_RELEASETIME:
return "EG2_RELEASETIME";
case CONN_DST_EG2_SUSTAINLEVEL:
return "EG2_SUSTAINLEVEL";
case CONN_DST_KEYNUMBER:
return "KEYNUMBER";
case CONN_DST_LEFT:
return "LEFT";
case CONN_DST_RIGHT:
return "RIGHT";
case CONN_DST_CENTER:
return "CENTER";
case CONN_DST_LEFTREAR:
return "LEFTREAR";
case CONN_DST_RIGHTREAR:
return "RIGHTREAR";
case CONN_DST_LFE_CHANNEL:
return "LFE_CHANNEL";
case CONN_DST_CHORUS:
return "CHORUS";
case CONN_DST_REVERB:
return "REVERB";
case CONN_DST_VIB_FREQUENCY:
return "VIB_FREQUENCY";
case CONN_DST_VIB_STARTDELAY:
return "VIB_STARTDELAY";
case CONN_DST_EG1_DELAYTIME:
return "EG1_DELAYTIME";
case CONN_DST_EG1_HOLDTIME:
return "EG1_HOLDTIME";
case CONN_DST_EG1_SHUTDOWNTIME:
return "EG1_SHUTDOWNTIME";
case CONN_DST_EG2_DELAYTIME:
return "EG2_DELAYTIME";
case CONN_DST_EG2_HOLDTIME:
return "EG2_HOLDTIME";
case CONN_DST_FILTER_CUTOFF:
return "FILTER_CUTOFF";
case CONN_DST_FILTER_Q:
return "FILTER_Q";
default:
snprintf(unknown, sizeof(unknown), "UNKNOWN (0x%04x)", usDestination);
return unknown;
}
}
static void PrintArt(const char *type, CONNECTIONLIST *art, CONNECTION *artList)
{
uint32_t i;
printf("%s Connections:\n", type);
for ( i = 0; i < art->cConnections; ++i ) {
printf(" Source: %s, Control: %s, Destination: %s, Transform: %s, Scale: %d\n",
SourceToString(artList[i].usSource),
SourceToString(artList[i].usControl),
DestinationToString(artList[i].usDestination),
TransformToString(artList[i].usTransform),
artList[i].lScale);
}
}
static void PrintWave(DLS_Wave *wave, uint32_t index)
{
WaveFMT *format = wave->format;
if ( format ) {
printf(" Wave %u: Format: %hu, %hu channels, %u Hz, %hu bits (length = %u)\n", index, format->wFormatTag, format->wChannels, format->dwSamplesPerSec, format->wBitsPerSample, wave->length);
}
if ( wave->wsmp ) {
uint32_t i;
printf(" wsmp->usUnityNote = %hu\n", wave->wsmp->usUnityNote);
printf(" wsmp->sFineTune = %hd\n", wave->wsmp->sFineTune);
printf(" wsmp->lAttenuation = %d\n", wave->wsmp->lAttenuation);
printf(" wsmp->fulOptions = 0x%8.8x\n", wave->wsmp->fulOptions);
printf(" wsmp->cSampleLoops = %u\n", wave->wsmp->cSampleLoops);
for ( i = 0; i < wave->wsmp->cSampleLoops; ++i ) {
WLOOP *loop = &wave->wsmp_loop[i];
printf(" Loop %u:\n", i);
printf(" ulStart = %u\n", loop->ulStart);
printf(" ulLength = %u\n", loop->ulLength);
}
}
}
static void PrintRegion(DLS_Region *region, uint32_t index)
{
printf(" Region %u:\n", index);
if ( region->header ) {
printf(" RangeKey = { %hu - %hu }\n", region->header->RangeKey.usLow, region->header->RangeKey.usHigh);
printf(" RangeVelocity = { %hu - %hu }\n", region->header->RangeVelocity.usLow, region->header->RangeVelocity.usHigh);
printf(" fusOptions = 0x%4.4hx\n", region->header->fusOptions);
printf(" usKeyGroup = %hu\n", region->header->usKeyGroup);
}
if ( region->wlnk ) {
printf(" wlnk->fusOptions = 0x%4.4hx\n", region->wlnk->fusOptions);
printf(" wlnk->usPhaseGroup = %hu\n", region->wlnk->usPhaseGroup);
printf(" wlnk->ulChannel = %u\n", region->wlnk->ulChannel);
printf(" wlnk->ulTableIndex = %u\n", region->wlnk->ulTableIndex);
}
if ( region->wsmp ) {
uint32_t i;
printf(" wsmp->usUnityNote = %hu\n", region->wsmp->usUnityNote);
printf(" wsmp->sFineTune = %hd\n", region->wsmp->sFineTune);
printf(" wsmp->lAttenuation = %d\n", region->wsmp->lAttenuation);
printf(" wsmp->fulOptions = 0x%8.8x\n", region->wsmp->fulOptions);
printf(" wsmp->cSampleLoops = %u\n", region->wsmp->cSampleLoops);
for ( i = 0; i < region->wsmp->cSampleLoops; ++i ) {
WLOOP *loop = &region->wsmp_loop[i];
printf(" Loop %u:\n", i);
printf(" ulStart = %u\n", loop->ulStart);
printf(" ulLength = %u\n", loop->ulLength);
}
}
if ( region->art && region->art->cConnections > 0 ) {
PrintArt("Region", region->art, region->artList);
}
}
static void PrintInstrument(DLS_Instrument *instrument, uint32_t index)
{
printf("Instrument %u:\n", index);
if ( instrument->name ) {
printf(" Name: %s\n", instrument->name);
}
if ( instrument->header ) {
uint32_t i;
printf(" ulBank = 0x%8.8x\n", instrument->header->Locale.ulBank);
printf(" ulInstrument = %u\n", instrument->header->Locale.ulInstrument);
printf(" Regions: %u\n", instrument->header->cRegions);
for ( i = 0; i < instrument->header->cRegions; ++i ) {
PrintRegion(&instrument->regions[i], i);
}
}
if ( instrument->art && instrument->art->cConnections > 0 ) {
PrintArt("Instrument", instrument->art, instrument->artList);
}
};
void PrintDLS(DLS_Data *data)
{
printf("DLS Data:\n");
printf("cInstruments = %u\n", data->cInstruments);
if ( data->instruments ) {
uint32_t i;
for ( i = 0; i < data->cInstruments; ++i ) {
PrintInstrument(&data->instruments[i], i);
}
}
if ( data->ptbl && data->ptbl->cCues > 0 ) {
uint32_t i;
printf("Cues: ");
for ( i = 0; i < data->ptbl->cCues; ++i ) {
if ( i > 0 ) {
printf(", ");
}
printf("%u", data->ptblList[i].ulOffset);
}
printf("\n");
}
if ( data->waveList && data->ptbl ) {
uint32_t i;
printf("Waves:\n");
for ( i = 0; i < data->ptbl->cCues; ++i ) {
PrintWave(&data->waveList[i], i);
}
}
if ( data->name ) {
printf("Name: %s\n", data->name);
}
if ( data->artist ) {
printf("Artist: %s\n", data->artist);
}
if ( data->copyright ) {
printf("Copyright: %s\n", data->copyright);
}
if ( data->comments ) {
printf("Comments: %s\n", data->comments);
}
}
#ifdef TEST_MAIN_DLS
}
int main(int argc, char *argv[])
{
int i;
for ( i = 1; i < argc; ++i ) {
Timidity::DLS_Data *data;
FILE *src = fopen(argv[i], "rb");
if ( !src ) {
fprintf(stderr, "Couldn't open %s: %s", argv[i], strerror(errno));
continue;
}
data = Timidity::LoadDLS(src);
if ( data ) {
Timidity::PrintRIFF(data->chunk, 0);
Timidity::PrintDLS(data);
Timidity::FreeDLS(data);
} else {
fprintf(stderr, "Couldn't load %s: %s\n", argv[i], strerror(errno));
}
fclose(src);
}
return 0;
}
namespace Timidity
{
#endif // TEST_MAIN
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
/* * * * * * * * * * * * * * * * * instrum_dls.c * * * * * * * * * * * * * */
/*-------------------------------------------------------------------------*/
#ifndef TEST_MAIN_DLS
DLS_Data *Timidity_LoadDLS(FILE *src)
{
return LoadDLS(src);
}
void Timidity_FreeDLS(DLS_Data *patches)
{
FreeDLS(patches);
}
/* convert timecents to sec */
static double to_msec(int timecent)
{
if (timecent == INT_MIN || timecent == 0)
return 0.0;
return 1000.0 * pow(2.0, (double)(timecent / 65536) / 1200.0);
}
/* convert decipercent to {0..1} */
static double to_normalized_percent(int decipercent)
{
return ((double)(decipercent / 65536)) / 1000.0;
}
/* convert from 8bit value to fractional offset (15.15) */
static int32_t to_offset(int offset)
{
return (int32_t)offset << (7+15);
}
/* calculate ramp rate in fractional unit;
* diff = 8bit, time = msec
*/
static int32_t calc_rate(Renderer *song, int diff, int sample_rate, double msec)
{
double rate;
if(msec < 6)
msec = 6;
if(diff == 0)
diff = 255;
diff <<= (7+15);
rate = ((double)diff / song->rate) * song->control_ratio * 1000.0 / msec;
return (int32_t)rate;
}
static int load_connection(ULONG cConnections, CONNECTION *artList, USHORT destination)
{
ULONG i;
int value = 0;
for (i = 0; i < cConnections; ++i) {
CONNECTION *conn = &artList[i];
if(conn->usDestination == destination) {
// The formula for the destination is:
// usDestination = usDestination + usTransform(usSource * (usControl * lScale))
// Since we are only handling source/control of NONE and identity
// transform, this simplifies to: usDestination = usDestination + lScale
if (conn->usSource == CONN_SRC_NONE &&
conn->usControl == CONN_SRC_NONE &&
conn->usTransform == CONN_TRN_NONE)
value += conn->lScale;
}
}
return value;
}
static void load_region_dls(Renderer *song, Sample *sample, DLS_Instrument *ins, uint32_t index)
{
DLS_Region *rgn = &ins->regions[index];
DLS_Wave *wave = &song->patches->waveList[rgn->wlnk->ulTableIndex];
sample->type = INST_DLS;
sample->self_nonexclusive = !!(rgn->header->fusOptions & F_RGN_OPTION_SELFNONEXCLUSIVE);
sample->key_group = (int8_t)rgn->header->usKeyGroup;
sample->low_freq = note_to_freq(rgn->header->RangeKey.usLow);
sample->high_freq = note_to_freq(rgn->header->RangeKey.usHigh);
sample->root_freq = note_to_freq(rgn->wsmp->usUnityNote + rgn->wsmp->sFineTune * .01f);
sample->low_vel = (uint8_t)rgn->header->RangeVelocity.usLow;
sample->high_vel = (uint8_t)rgn->header->RangeVelocity.usHigh;
sample->modes = wave->format->wBitsPerSample == 8 ? PATCH_UNSIGNED : PATCH_16;
sample->sample_rate = wave->format->dwSamplesPerSec;
sample->data = NULL;
sample->data_length = wave->length;
convert_sample_data(sample, wave->data);
if (rgn->wsmp->cSampleLoops)
{
sample->modes |= (PATCH_LOOPEN | PATCH_SUSTAIN/* | PATCH_NO_SRELEASE*/);
sample->loop_start = rgn->wsmp_loop->ulStart / 2;
sample->loop_end = sample->loop_start + (rgn->wsmp_loop->ulLength / 2);
}
sample->scale_factor = 1024;
sample->scale_note = rgn->wsmp->usUnityNote;
if (sample->modes & PATCH_SUSTAIN)
{
int value;
int attack, hold, decay, release; int sustain;
CONNECTIONLIST *art = NULL;
CONNECTION *artList = NULL;
if (ins->art && ins->art->cConnections > 0 && ins->artList) {
art = ins->art;
artList = ins->artList;
} else {
art = rgn->art;
artList = rgn->artList;
}
attack = load_connection(art->cConnections, artList, CONN_DST_EG1_ATTACKTIME);
hold = load_connection(art->cConnections, artList, CONN_DST_EG1_HOLDTIME);
decay = load_connection(art->cConnections, artList, CONN_DST_EG1_DECAYTIME);
release = load_connection(art->cConnections, artList, CONN_DST_EG1_RELEASETIME);
sustain = load_connection(art->cConnections, artList, CONN_DST_EG1_SUSTAINLEVEL);
value = load_connection(art->cConnections, artList, CONN_DST_PAN);
sample->panning = (int)((0.5 + to_normalized_percent(value)) * 16383.f);
/*
printf("%d, Rate=%d LV=%d HV=%d Low=%d Hi=%d Root=%d Pan=%d Attack=%f Hold=%f Sustain=%d Decay=%f Release=%f\n", index, sample->sample_rate, rgn->header->RangeVelocity.usLow, rgn->header->RangeVelocity.usHigh, sample->low_freq, sample->high_freq, sample->root_freq, sample->panning, attack, hold, sustain, decay, release);
*/
sample->envelope.sf2.delay_vol = -32768;
sample->envelope.sf2.attack_vol = (short)(attack >> 16);
sample->envelope.sf2.hold_vol = (short)(hold >> 16);
sample->envelope.sf2.decay_vol = (short)(decay >> 16);
sample->envelope.sf2.release_vol = (short)(release >> 16);
sample->envelope.sf2.sustain_vol = (short)(sustain >> 16);
}
sample->data_length <<= FRACTION_BITS;
sample->loop_start <<= FRACTION_BITS;
sample->loop_end <<= FRACTION_BITS;
}
Instrument *load_instrument_dls(Renderer *song, int drum, int bank, int instrument)
{
Instrument *inst;
uint32_t i;
DLS_Instrument *dls_ins = NULL;
if (song->patches == NULL)
{
return NULL;
}
drum = drum ? 0x80000000 : 0;
for (i = 0; i < song->patches->cInstruments; ++i)
{
dls_ins = &song->patches->instruments[i];
if ((dls_ins->header->Locale.ulBank & 0x80000000) == (ULONG)drum &&
((dls_ins->header->Locale.ulBank >> 8) & 0xFF) == (ULONG)bank &&
dls_ins->header->Locale.ulInstrument == (ULONG)instrument)
break;
}
if (i == song->patches->cInstruments && bank == 0)
{
for (i = 0; i < song->patches->cInstruments; ++i)
{
dls_ins = &song->patches->instruments[i];
if ((dls_ins->header->Locale.ulBank & 0x80000000) == (ULONG)drum &&
dls_ins->header->Locale.ulInstrument == (ULONG)instrument)
break;
}
}
if (i == song->patches->cInstruments)
{
// SNDDBG(("Couldn't find %s instrument %d in bank %d\n", drum ? "drum" : "melodic", instrument, bank));
return NULL;
}
inst = (Instrument *)safe_malloc(sizeof(Instrument));
inst->samples = dls_ins->header->cRegions;
inst->sample = (Sample *)safe_malloc(inst->samples * sizeof(Sample));
memset(inst->sample, 0, inst->samples * sizeof(Sample));
/*
printf("Found %s instrument %d in bank %d named %s with %d regions\n", drum ? "drum" : "melodic", instrument, bank, dls_ins->name, inst->samples);
*/
for (i = 0; i < dls_ins->header->cRegions; ++i)
{
load_region_dls(song, &inst->sample[i], dls_ins, i);
}
return inst;
}
#endif /* !TEST_MAIN_DLS */
}