gzdoom-gles/src/v_palette.cpp
Randy Heit de8ec46c06 - Fixed: R_GetOneSkyColumn() and R_GetTwoSkyColumns are mulscaling an
unsigned integer that can use all 32 bits. They must therefore use
  the unsigned mul instruction rather than the signed imul instruction.
- Fixed several signed/unsigned comparison and possibly uninitialized
  variable warnings flagged by GCC.


SVN r1965 (trunk)
2009-11-08 02:51:22 +00:00

922 lines
22 KiB
C++

/*
** v_palette.cpp
** Automatic colormap generation for "colored lights", etc.
**
**---------------------------------------------------------------------------
** Copyright 1998-2006 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
#include <stddef.h>
#include <string.h>
#include <math.h>
#include <float.h>
#ifdef _WIN32
#include <io.h>
#else
#include <unistd.h>
#define O_BINARY 0
#endif
#include <fcntl.h>
#include "templates.h"
#include "v_video.h"
#include "i_system.h"
#include "r_main.h" // For lighting constants
#include "w_wad.h"
#include "i_video.h"
#include "c_dispatch.h"
#include "g_level.h"
#include "st_stuff.h"
#include "gi.h"
#include "x86.h"
#include "colormatcher.h"
#include "v_palette.h"
extern "C" {
FDynamicColormap NormalLight;
}
FPalette GPalette;
TArray<FSpecialColormap> SpecialColormaps;
BYTE DesaturateColormap[31][256];
struct FSpecialColormapParameters
{
float Start[3], End[3];
};
static FSpecialColormapParameters SpecialColormapParms[] =
{
// Doom invulnerability is an inverted grayscale.
// Strife uses it when firing the Sigil
{ { 1, 1, 1 }, { 0, 0, 0 } },
// Heretic invulnerability is a golden shade.
{ { 0, 0, 0 }, { 1.5, 0.75, 0 }, },
// [BC] Build the Doomsphere colormap. It is red!
{ { 0, 0, 0 }, { 1.5, 0, 0 } },
// [BC] Build the Guardsphere colormap. It's a greenish-white kind of thing.
{ { 0, 0, 0 }, { 1.25, 1.5, 1 } },
// Build a blue colormap.
{{ 0, 0, 0 }, { 0, 0, 1.5 } },
};
static void FreeSpecialLights();
FColorMatcher ColorMatcher;
/* Current color blending values */
int BlendR, BlendG, BlendB, BlendA;
static int STACK_ARGS sortforremap (const void *a, const void *b);
static int STACK_ARGS sortforremap2 (const void *a, const void *b);
/**************************/
/* Gamma correction stuff */
/**************************/
BYTE newgamma[256];
CUSTOM_CVAR (Float, Gamma, 1.f, CVAR_ARCHIVE|CVAR_GLOBALCONFIG)
{
if (self == 0.f)
{ // Gamma values of 0 are illegal.
self = 1.f;
return;
}
if (screen != NULL)
{
screen->SetGamma (self);
}
}
/****************************/
/* Palette management stuff */
/****************************/
extern "C" BYTE BestColor_MMX (DWORD rgb, const DWORD *pal);
int BestColor (const uint32 *pal_in, int r, int g, int b, int first, int num)
{
#ifdef X86_ASM
if (CPU.bMMX)
{
int pre = 256 - num - first;
return BestColor_MMX (((first+pre)<<24)|(r<<16)|(g<<8)|b, pal_in-pre) - pre;
}
#endif
const PalEntry *pal = (const PalEntry *)pal_in;
int bestcolor = first;
int bestdist = 257*257+257*257+257*257;
for (int color = first; color < num; color++)
{
int x = r - pal[color].r;
int y = g - pal[color].g;
int z = b - pal[color].b;
int dist = x*x + y*y + z*z;
if (dist < bestdist)
{
if (dist == 0)
return color;
bestdist = dist;
bestcolor = color;
}
}
return bestcolor;
}
FPalette::FPalette ()
{
}
FPalette::FPalette (const BYTE *colors)
{
SetPalette (colors);
}
void FPalette::SetPalette (const BYTE *colors)
{
for (int i = 0; i < 256; i++, colors += 3)
{
BaseColors[i] = PalEntry (colors[0], colors[1], colors[2]);
Remap[i] = i;
}
// Find white and black from the original palette so that they can be
// used to make an educated guess of the translucency % for a BOOM
// translucency map.
WhiteIndex = BestColor ((DWORD *)BaseColors, 255, 255, 255);
BlackIndex = BestColor ((DWORD *)BaseColors, 0, 0, 0);
}
// In ZDoom's new texture system, color 0 is used as the transparent color.
// But color 0 is also a valid color for Doom engine graphics. What to do?
// Simple. The default palette for every game has at least one duplicate
// color, so find a duplicate pair of palette entries, make one of them a
// duplicate of color 0, and remap every graphic so that it uses that entry
// instead of entry 0.
void FPalette::MakeGoodRemap ()
{
PalEntry color0 = BaseColors[0];
int i;
// First try for an exact match of color 0. Only Hexen does not have one.
for (i = 1; i < 256; ++i)
{
if (BaseColors[i] == color0)
{
Remap[0] = i;
break;
}
}
// If there is no duplicate of color 0, find the first set of duplicate
// colors and make one of them a duplicate of color 0. In Hexen's PLAYPAL
// colors 209 and 229 are the only duplicates, but we cannot assume
// anything because the player might be using a custom PLAYPAL where those
// entries are not duplicates.
if (Remap[0] == 0)
{
PalEntry sortcopy[256];
for (i = 0; i < 256; ++i)
{
sortcopy[i] = BaseColors[i] | (i << 24);
}
qsort (sortcopy, 256, 4, sortforremap);
for (i = 255; i > 0; --i)
{
if ((sortcopy[i] & 0xFFFFFF) == (sortcopy[i-1] & 0xFFFFFF))
{
int new0 = sortcopy[i].a;
int dup = sortcopy[i-1].a;
if (new0 > dup)
{
// Make the lower-numbered entry a copy of color 0. (Just because.)
swap (new0, dup);
}
Remap[0] = new0;
Remap[new0] = dup;
BaseColors[new0] = color0;
break;
}
}
}
// If there were no duplicates, InitPalette() will remap color 0 to the
// closest matching color. Hopefully nobody will use a palette where all
// 256 entries are different. :-)
}
static int STACK_ARGS sortforremap (const void *a, const void *b)
{
return (*(const DWORD *)a & 0xFFFFFF) - (*(const DWORD *)b & 0xFFFFFF);
}
struct RemappingWork
{
DWORD Color;
BYTE Foreign; // 0 = local palette, 1 = foreign palette
BYTE PalEntry; // Entry # in the palette
BYTE Pad[2];
};
void FPalette::MakeRemap (const DWORD *colors, BYTE *remap, const BYTE *useful, int numcolors) const
{
RemappingWork workspace[255+256];
int i, j, k;
// Fill in workspace with the colors from the passed palette and this palette.
// By sorting this array, we can quickly find exact matches so that we can
// minimize the time spent calling BestColor for near matches.
for (i = 1; i < 256; ++i)
{
workspace[i-1].Color = DWORD(BaseColors[i]) & 0xFFFFFF;
workspace[i-1].Foreign = 0;
workspace[i-1].PalEntry = i;
}
for (i = k = 0, j = 255; i < numcolors; ++i)
{
if (useful == NULL || useful[i] != 0)
{
workspace[j].Color = colors[i] & 0xFFFFFF;
workspace[j].Foreign = 1;
workspace[j].PalEntry = i;
++j;
++k;
}
else
{
remap[i] = 0;
}
}
qsort (workspace, j, sizeof(RemappingWork), sortforremap2);
// Find exact matches
--j;
for (i = 0; i < j; ++i)
{
if (workspace[i].Foreign)
{
if (!workspace[i+1].Foreign && workspace[i].Color == workspace[i+1].Color)
{
remap[workspace[i].PalEntry] = workspace[i+1].PalEntry;
workspace[i].Foreign = 2;
++i;
--k;
}
}
}
// Find near matches
if (k > 0)
{
for (i = 0; i <= j; ++i)
{
if (workspace[i].Foreign == 1)
{
remap[workspace[i].PalEntry] = BestColor ((DWORD *)BaseColors,
RPART(workspace[i].Color), GPART(workspace[i].Color), BPART(workspace[i].Color),
1, 255);
}
}
}
}
static int STACK_ARGS sortforremap2 (const void *a, const void *b)
{
const RemappingWork *ap = (const RemappingWork *)a;
const RemappingWork *bp = (const RemappingWork *)b;
if (ap->Color == bp->Color)
{
return bp->Foreign - ap->Foreign;
}
else
{
return ap->Color - bp->Color;
}
}
static bool FixBuildPalette (BYTE *opal, int lump, bool blood)
{
if (Wads.LumpLength (lump) < 768)
{
return false;
}
FMemLump data = Wads.ReadLump (lump);
const BYTE *ipal = (const BYTE *)data.GetMem();
// Reverse the palette because BUILD used entry 255 as
// transparent, but we use 0 as transparent.
for (int c = 0; c < 768; c += 3)
{
if (!blood)
{
opal[c] = (ipal[765-c] << 2) | (ipal[765-c] >> 4);
opal[c+1] = (ipal[766-c] << 2) | (ipal[766-c] >> 4);
opal[c+2] = (ipal[767-c] << 2) | (ipal[767-c] >> 4);
}
else
{
opal[c] = ipal[765-c];
opal[c+1] = ipal[766-c];
opal[c+2] = ipal[767-c];
}
}
return true;
}
int AddSpecialColormap(float r1, float g1, float b1, float r2, float g2, float b2)
{
// Clamp these in range for the hardware shader.
r1 = clamp(r1, 0.0f, 2.0f);
g1 = clamp(g1, 0.0f, 2.0f);
b1 = clamp(b1, 0.0f, 2.0f);
r2 = clamp(r2, 0.0f, 2.0f);
g2 = clamp(g2, 0.0f, 2.0f);
b2 = clamp(b2, 0.0f, 2.0f);
for(unsigned i=0; i<SpecialColormaps.Size(); i++)
{
// Avoid precision issues here when trying to find a proper match.
if (fabs(SpecialColormaps[i].ColorizeStart[0]- r1) < FLT_EPSILON &&
fabs(SpecialColormaps[i].ColorizeStart[1]- g1) < FLT_EPSILON &&
fabs(SpecialColormaps[i].ColorizeStart[2]- b1) < FLT_EPSILON &&
fabs(SpecialColormaps[i].ColorizeEnd[0]- r2) < FLT_EPSILON &&
fabs(SpecialColormaps[i].ColorizeEnd[1]- g2) < FLT_EPSILON &&
fabs(SpecialColormaps[i].ColorizeEnd[2]- b2) < FLT_EPSILON)
{
return i; // The map already exists
}
}
FSpecialColormap *cm = &SpecialColormaps[SpecialColormaps.Reserve(1)];
cm->ColorizeStart[0] = float(r1);
cm->ColorizeStart[1] = float(g1);
cm->ColorizeStart[2] = float(b1);
cm->ColorizeEnd[0] = float(r2);
cm->ColorizeEnd[1] = float(g2);
cm->ColorizeEnd[2] = float(b2);
r2 -= r1;
g2 -= g1;
b2 -= b1;
r1 *= 255;
g1 *= 255;
b1 *= 255;
for (int c = 0; c < 256; c++)
{
double intensity = (GPalette.BaseColors[c].r * 77 +
GPalette.BaseColors[c].g * 143 +
GPalette.BaseColors[c].b * 37) / 256.0;
PalEntry pe = PalEntry( MIN(255, int(r1 + intensity*r2)),
MIN(255, int(g1 + intensity*g2)),
MIN(255, int(b1 + intensity*b2)));
cm->Colormap[c] = ColorMatcher.Pick(pe);
}
// This table is used by the texture composition code
for(int i = 0;i < 256; i++)
{
cm->GrayscaleToColor[i] = PalEntry( MIN(255, int(r1 + i*r2)),
MIN(255, int(g1 + i*g2)),
MIN(255, int(b1 + i*b2)));
}
return SpecialColormaps.Size() - 1;
}
void InitPalette ()
{
BYTE pal[768];
int c;
bool usingBuild = false;
int lump;
atterm (FreeSpecialLights);
if ((lump = Wads.CheckNumForFullName ("palette.dat")) >= 0 && Wads.LumpLength (lump) >= 768)
{
usingBuild = FixBuildPalette (pal, lump, false);
}
else if ((lump = Wads.CheckNumForFullName ("blood.pal")) >= 0 && Wads.LumpLength (lump) >= 768)
{
usingBuild = FixBuildPalette (pal, lump, true);
}
if (!usingBuild)
{
FWadLump palump = Wads.OpenLumpName ("PLAYPAL");
palump.Read (pal, 768);
}
GPalette.SetPalette (pal);
GPalette.MakeGoodRemap ();
ColorMatcher.SetPalette ((DWORD *)GPalette.BaseColors);
// The BUILD engine already has a transparent color, so it doesn't need any remapping.
if (!usingBuild)
{
if (GPalette.Remap[0] == 0)
{ // No duplicates, so settle for something close to color 0
GPalette.Remap[0] = BestColor ((DWORD *)GPalette.BaseColors,
GPalette.BaseColors[0].r, GPalette.BaseColors[0].g, GPalette.BaseColors[0].b, 1, 255);
}
}
NormalLight.Color = PalEntry (255, 255, 255);
NormalLight.Fade = 0;
// NormalLight.Maps is set by R_InitColormaps()
// build default special maps (e.g. invulnerability)
SpecialColormaps.Clear();
for (unsigned i = 0; i < countof(SpecialColormapParms); ++i)
{
AddSpecialColormap(SpecialColormapParms[i].Start[0], SpecialColormapParms[i].Start[1],
SpecialColormapParms[i].Start[2], SpecialColormapParms[i].End[0],
SpecialColormapParms[i].End[1], SpecialColormapParms[i].End[2]);
}
// desaturated colormaps
for(int m = 0; m < 31; m++)
{
BYTE *shade = DesaturateColormap[m];
for (c = 0; c < 256; c++)
{
int intensity = (GPalette.BaseColors[c].r * 77 +
GPalette.BaseColors[c].g * 143 +
GPalette.BaseColors[c].b * 37) / 255;
int r = (GPalette.BaseColors[c].r * (31-m) + intensity *m) / 31;
int g = (GPalette.BaseColors[c].g * (31-m) + intensity *m) / 31;
int b = (GPalette.BaseColors[c].b * (31-m) + intensity *m) / 31;
shade[c] = ColorMatcher.Pick (r, g, b);
}
}
}
extern "C" void STACK_ARGS DoBlending_MMX (const PalEntry *from, PalEntry *to, int count, int r, int g, int b, int a);
extern void DoBlending_SSE2 (const PalEntry *from, PalEntry *to, int count, int r, int g, int b, int a);
void DoBlending (const PalEntry *from, PalEntry *to, int count, int r, int g, int b, int a)
{
if (a == 0)
{
if (from != to)
{
memcpy (to, from, count * sizeof(DWORD));
}
}
else if (a == 256)
{
DWORD t = MAKERGB(r,g,b);
int i;
for (i = 0; i < count; i++)
{
to[i] = t;
}
}
#if defined(_M_X64) || defined(_M_IX86) || defined(__i386__) || defined(__amd64__)
else if (CPU.bSSE2)
{
if (count >= 4)
{
int not3count = count & ~3;
DoBlending_SSE2 (from, to, not3count, r, g, b, a);
count &= 3;
if (count <= 0)
{
return;
}
from += not3count;
to += not3count;
}
}
#endif
#ifdef X86_ASM
else if (CPU.bMMX)
{
if (count >= 4)
{
int not3count = count & ~3;
DoBlending_MMX (from, to, not3count, r, g, b, a);
count &= 3;
if (count <= 0)
{
return;
}
from += not3count;
to += not3count;
}
}
#endif
int i, ia;
ia = 256 - a;
r *= a;
g *= a;
b *= a;
for (i = count; i > 0; i--, to++, from++)
{
to->r = (r + from->r * ia) >> 8;
to->g = (g + from->g * ia) >> 8;
to->b = (b + from->b * ia) >> 8;
}
}
void V_SetBlend (int blendr, int blendg, int blendb, int blenda)
{
// Don't do anything if the new blend is the same as the old
if (((blenda|BlendA) == 0) ||
(blendr == BlendR &&
blendg == BlendG &&
blendb == BlendB &&
blenda == BlendA))
return;
V_ForceBlend (blendr, blendg, blendb, blenda);
}
void V_ForceBlend (int blendr, int blendg, int blendb, int blenda)
{
BlendR = blendr;
BlendG = blendg;
BlendB = blendb;
BlendA = blenda;
screen->SetFlash (PalEntry (BlendR, BlendG, BlendB), BlendA);
}
CCMD (testblend)
{
FString colorstring;
int color;
float amt;
if (argv.argc() < 3)
{
Printf ("testblend <color> <amount>\n");
}
else
{
if ( !(colorstring = V_GetColorStringByName (argv[1])).IsEmpty() )
{
color = V_GetColorFromString (NULL, colorstring);
}
else
{
color = V_GetColorFromString (NULL, argv[1]);
}
amt = (float)atof (argv[2]);
if (amt > 1.0f)
amt = 1.0f;
else if (amt < 0.0f)
amt = 0.0f;
BaseBlendR = RPART(color);
BaseBlendG = GPART(color);
BaseBlendB = BPART(color);
BaseBlendA = amt;
}
}
CCMD (testfade)
{
FString colorstring;
DWORD color;
if (argv.argc() < 2)
{
Printf ("testfade <color>\n");
}
else
{
if ( !(colorstring = V_GetColorStringByName (argv[1])).IsEmpty() )
{
color = V_GetColorFromString (NULL, colorstring);
}
else
{
color = V_GetColorFromString (NULL, argv[1]);
}
level.fadeto = color;
NormalLight.ChangeFade (color);
}
}
/****** Colorspace Conversion Functions ******/
// Code from http://www.cs.rit.edu/~yxv4997/t_convert.html
// r,g,b values are from 0 to 1
// h = [0,360], s = [0,1], v = [0,1]
// if s == 0, then h = -1 (undefined)
// Green Doom guy colors:
// RGB - 0: { .46 1 .429 } 7: { .254 .571 .206 } 15: { .0317 .0794 .0159 }
// HSV - 0: { 116.743 .571 1 } 7: { 112.110 .639 .571 } 15: { 105.071 .800 .0794 }
void RGBtoHSV (float r, float g, float b, float *h, float *s, float *v)
{
float min, max, delta, foo;
if (r == g && g == b)
{
*h = 0;
*s = 0;
*v = r;
return;
}
foo = r < g ? r : g;
min = (foo < b) ? foo : b;
foo = r > g ? r : g;
max = (foo > b) ? foo : b;
*v = max; // v
delta = max - min;
*s = delta / max; // s
if (r == max)
*h = (g - b) / delta; // between yellow & magenta
else if (g == max)
*h = 2 + (b - r) / delta; // between cyan & yellow
else
*h = 4 + (r - g) / delta; // between magenta & cyan
*h *= 60; // degrees
if (*h < 0)
*h += 360;
}
void HSVtoRGB (float *r, float *g, float *b, float h, float s, float v)
{
int i;
float f, p, q, t;
if (s == 0)
{ // achromatic (grey)
*r = *g = *b = v;
return;
}
h /= 60; // sector 0 to 5
i = (int)floor (h);
f = h - i; // factorial part of h
p = v * (1 - s);
q = v * (1 - s * f);
t = v * (1 - s * (1 - f));
switch (i)
{
case 0: *r = v; *g = t; *b = p; break;
case 1: *r = q; *g = v; *b = p; break;
case 2: *r = p; *g = v; *b = t; break;
case 3: *r = p; *g = q; *b = v; break;
case 4: *r = t; *g = p; *b = v; break;
default: *r = v; *g = p; *b = q; break;
}
}
/****** Colored Lighting Stuffs ******/
FDynamicColormap *GetSpecialLights (PalEntry color, PalEntry fade, int desaturate)
{
FDynamicColormap *colormap;
// If this colormap has already been created, just return it
for (colormap = &NormalLight; colormap != NULL; colormap = colormap->Next)
{
if (color == colormap->Color &&
fade == colormap->Fade &&
desaturate == colormap->Desaturate)
{
return colormap;
}
}
// Not found. Create it.
colormap = new FDynamicColormap;
colormap->Next = NormalLight.Next;
colormap->Color = color;
colormap->Fade = fade;
colormap->Desaturate = desaturate;
NormalLight.Next = colormap;
if (screen->UsesColormap())
{
colormap->Maps = new BYTE[NUMCOLORMAPS*256];
colormap->BuildLights ();
}
else colormap->Maps = NULL;
return colormap;
}
// Free all lights created with GetSpecialLights
static void FreeSpecialLights()
{
FDynamicColormap *colormap, *next;
for (colormap = NormalLight.Next; colormap != NULL; colormap = next)
{
next = colormap->Next;
delete[] colormap->Maps;
delete colormap;
}
}
// Builds NUMCOLORMAPS colormaps lit with the specified color
void FDynamicColormap::BuildLights ()
{
int l, c;
int lr, lg, lb, ld, ild;
PalEntry colors[256], basecolors[256];
BYTE *shade;
if (Maps == NULL)
return;
// Scale light to the range 0-256, so we can avoid
// dividing by 255 in the bottom loop.
lr = Color.r*256/255;
lg = Color.g*256/255;
lb = Color.b*256/255;
ld = Desaturate*256/255;
if (ld < 0) // No negative desaturations, please.
{
ld = -ld;
}
ild = 256-ld;
if (ld == 0)
{
memcpy (basecolors, GPalette.BaseColors, sizeof(basecolors));
}
else
{
// Desaturate the palette before lighting it.
for (c = 0; c < 256; c++)
{
int r = GPalette.BaseColors[c].r;
int g = GPalette.BaseColors[c].g;
int b = GPalette.BaseColors[c].b;
int intensity = ((r * 77 + g * 143 + b * 37) >> 8) * ld;
basecolors[c].r = (r*ild + intensity) >> 8;
basecolors[c].g = (g*ild + intensity) >> 8;
basecolors[c].b = (b*ild + intensity) >> 8;
basecolors[c].a = 0;
}
}
// build normal (but colored) light mappings
for (l = 0; l < NUMCOLORMAPS; l++)
{
DoBlending (basecolors, colors, 256,
Fade.r, Fade.g, Fade.b, l * (256 / NUMCOLORMAPS));
shade = Maps + 256*l;
if ((DWORD)Color == MAKERGB(255,255,255))
{ // White light, so we can just pick the colors directly
for (c = 0; c < 256; c++)
{
*shade++ = ColorMatcher.Pick (colors[c].r, colors[c].g, colors[c].b);
}
}
else
{ // Colored light, so do the (slightly) slower thing
for (c = 0; c < 256; c++)
{
*shade++ = ColorMatcher.Pick (
(colors[c].r*lr)>>8,
(colors[c].g*lg)>>8,
(colors[c].b*lb)>>8);
}
}
}
}
void FDynamicColormap::ChangeColor (PalEntry lightcolor, int desaturate)
{
if (lightcolor != Color || desaturate != Desaturate)
{
Color = lightcolor;
// [BB] desaturate must be in [0,255]
if( desaturate > 255 )
desaturate = 255;
else if ( desaturate < 0 )
desaturate = 0;
Desaturate = desaturate;
if (Maps) BuildLights ();
}
}
void FDynamicColormap::ChangeFade (PalEntry fadecolor)
{
if (fadecolor != Fade)
{
Fade = fadecolor;
if (Maps) BuildLights ();
}
}
void FDynamicColormap::ChangeColorFade (PalEntry lightcolor, PalEntry fadecolor)
{
if (lightcolor != Color || fadecolor != Fade)
{
Color = lightcolor;
Fade = fadecolor;
if (Maps) BuildLights ();
}
}
void FDynamicColormap::RebuildAllLights()
{
if (screen->UsesColormap())
{
FDynamicColormap *cm;
for (cm = &NormalLight; cm != NULL; cm = cm->Next)
{
if (cm->Maps == NULL)
{
cm->Maps = new BYTE[NUMCOLORMAPS*256];
cm->BuildLights ();
}
}
}
}
CCMD (testcolor)
{
FString colorstring;
DWORD color;
int desaturate;
if (argv.argc() < 2)
{
Printf ("testcolor <color> [desaturation]\n");
}
else
{
if ( !(colorstring = V_GetColorStringByName (argv[1])).IsEmpty() )
{
color = V_GetColorFromString (NULL, colorstring);
}
else
{
color = V_GetColorFromString (NULL, argv[1]);
}
if (argv.argc() > 2)
{
desaturate = atoi (argv[2]);
}
else
{
desaturate = NormalLight.Desaturate;
}
NormalLight.ChangeColor (color, desaturate);
}
}