gzdoom-gles/libraries/opnmidi/fraction.hpp
Wohlstand 87d46ddd11 Update libOPNMIDI library to 1.5.0
## 1.5.0   2020-09-28
 * Drum note length expanding is now supported in real-time mode (Thanks to [Jean Pierre Cimalando](https://github.com/jpcima) for a work!)
 * Added support for OPNA chip with Neko Project II Kai YM2602 emulator usage (Thanks to [Jean Pierre Cimalando](https://github.com/jpcima) for a work!)
 * Added VGM file dumper which allows to output OPN2 commands into VGM file. (A new MIDI to VGM tool is now created with basing on libOPNMIDI)
 * Fixed an incorrect work of CC-121 (See https://github.com/Wohlstand/libADLMIDI/issues/227 for details)
 * Internality has been refactored and improved
2020-10-04 12:50:10 +02:00

220 lines
6.3 KiB
C++

/*
* Fraction number handling.
* Copyright (C) 1992,2001 Bisqwit (http://iki.fi/bisqwit/)
*
* The license of this file is in Public Domain:
* https://bisqwit.iki.fi/src/index.html
*
* "... and orphan source code files are copyrighted public domain."
*/
#ifndef bqw_fraction_h
#define bqw_fraction_h
#include <cmath>
#include <limits>
template<typename inttype=int>
class fraction
{
inttype num1, num2;
typedef fraction<inttype> self;
void Optim();
#if 1
inline void Debug(char, const self &) { }
#else
inline void Debug(char op, const self &b)
{
cerr << nom() << '/' << denom() << ' ' << op
<< ' ' << b.nom() << '/' << denom()
<< ":\n";
}
#endif
public:
void set(inttype n, inttype d) { num1=n; num2=d; Optim(); }
fraction() : num1(0), num2(1) { }
fraction(inttype value) : num1(value), num2(1) { }
fraction(inttype n, inttype d) : num1(n), num2(d) { }
fraction(int value) : num1(value), num2(1) { }
template<typename floattype>
explicit fraction(const floattype value) { operator= (value); }
inline double value() const {return nom() / (double)denom(); }
inline long double valuel() const {return nom() / (long double)denom(); }
self &operator+= (const inttype &value) { num1+=value*denom(); Optim(); return *this; }
self &operator-= (const inttype &value) { num1-=value*denom(); Optim(); return *this; }
self &operator*= (const inttype &value) { num1*=value; Optim(); return *this; }
self &operator/= (const inttype &value) { num2*=value; Optim(); return *this; }
self &operator+= (const self &b);
self &operator-= (const self &b);
self &operator*= (const self &b) { Debug('*',b);num1*=b.nom(); num2*=b.denom(); Optim(); return *this; }
self &operator/= (const self &b) { Debug('/',b);num1*=b.denom(); num2*=b.nom(); Optim(); return *this; }
self operator- () const { return self(-num1, num2); }
#define fraction_blah_func(op1, op2) \
self operator op1 (const self &b) const { self tmp(*this); tmp op2 b; return tmp; }
fraction_blah_func( +, += )
fraction_blah_func( -, -= )
fraction_blah_func( /, /= )
fraction_blah_func( *, *= )
#undef fraction_blah_func
#define fraction_blah_func(op) \
bool operator op(const self &b) const { return value() op b.value(); } \
bool operator op(inttype b) const { return value() op b; }
fraction_blah_func( < )
fraction_blah_func( > )
fraction_blah_func( <= )
fraction_blah_func( >= )
#undef fraction_blah_func
const inttype &nom() const { return num1; }
const inttype &denom() const { return num2; }
inline bool operator == (inttype b) const { return denom() == 1 && nom() == b; }
inline bool operator != (inttype b) const { return denom() != 1 || nom() != b; }
inline bool operator == (const self &b) const { return denom()==b.denom() && nom()==b.nom(); }
inline bool operator != (const self &b) const { return denom()!=b.denom() || nom()!=b.nom(); }
//operator bool () const { return nom() != 0; }
inline bool negative() const { return (nom() < 0) ^ (denom() < 0); }
self &operator= (const inttype value) { num2=1; num1=value; return *this; }
//self &operator= (int value) { num2=1; num1=value; return *this; }
self &operator= (double orig) { return *this = (long double)orig; }
self &operator= (long double orig);
};
#ifdef _MSC_VER
#pragma warning(disable:4146)
#endif
template<typename inttype>
void fraction<inttype>::Optim()
{
/* Euclidean algorithm */
inttype n1, n2, nn1, nn2;
nn1 = std::numeric_limits<inttype>::is_signed ? (num1 >= 0 ? num1 : -num1) : num1;
nn2 = std::numeric_limits<inttype>::is_signed ? (num2 >= 0 ? num2 : -num2) : num2;
if(nn1 < nn2)
n1 = num1, n2 = num2;
else
n1 = num2, n2 = num1;
if(!num1) { num2 = 1; return; }
for(;;)
{
//fprintf(stderr, "%d/%d: n1=%d,n2=%d\n", nom(),denom(),n1,n2);
inttype tmp = n2 % n1;
if(!tmp)break;
n2 = n1;
n1 = tmp;
}
num1 /= n1;
num2 /= n1;
//fprintf(stderr, "result: %d/%d\n\n", nom(), denom());
}
#ifdef _MSC_VER
#pragma warning(default:4146)
#endif
template<typename inttype>
inline const fraction<inttype> abs(const fraction<inttype> &f)
{
return fraction<inttype>(abs(f.nom()), abs(f.denom()));
}
#define fraction_blah_func(op) \
template<typename inttype> \
fraction<inttype> operator op \
(const inttype bla, const fraction<inttype> &b) \
{ return fraction<inttype> (bla) op b; }
fraction_blah_func( + )
fraction_blah_func( - )
fraction_blah_func( * )
fraction_blah_func( / )
#undef fraction_blah_func
#define fraction_blah_func(op1, op2) \
template<typename inttype> \
fraction<inttype> &fraction<inttype>::operator op2 (const fraction<inttype> &b) \
{ \
inttype newnom = nom()*b.denom() op1 denom()*b.nom(); \
num2 *= b.denom(); \
num1 = newnom; \
Optim(); \
return *this; \
}
fraction_blah_func( +, += )
fraction_blah_func( -, -= )
#undef fraction_blah_func
template<typename inttype>
fraction<inttype> &fraction<inttype>::operator= (long double orig)
{
if(orig == 0.0)
{
set(0, 0);
return *this;
}
inttype cf[25];
for(int maxdepth=1; maxdepth<25; ++maxdepth)
{
inttype u,v;
long double virhe, a=orig;
int i, viim;
for(i = 0; i < maxdepth; ++i)
{
cf[i] = (inttype)a;
if(cf[i]-1 > cf[i])break;
a = 1.0 / (a - cf[i]);
}
for(viim=i-1; i < maxdepth; ++i)
cf[i] = 0;
u = cf[viim];
v = 1;
for(i = viim-1; i >= 0; --i)
{
inttype w = cf[i] * u + v;
v = u;
u = w;
}
virhe = (orig - (u / (long double)v)) / orig;
set(u, v);
//if(verbose > 4)
// cerr << "Guess: " << *this << " - error = " << virhe*100 << "%\n";
if(virhe < 1e-8 && virhe > -1e-8)break;
}
//if(verbose > 4)
//{
// cerr << "Fraction=" << orig << ": " << *this << endl;
//}
return *this;
}
/*
template<typename inttype>
ostream &operator << (ostream &dest, const fraction<inttype> &m)
{
if(m.denom() == (inttype)1) return dest << m.nom();
return dest << m.nom() << '/' << m.denom();
}
*/
#endif