gzdoom-gles/src/vectors.cpp
Randy Heit 35ca16ba4f - Added the MF2_PASSMOBJ for P_Thing_Spawn() from January 4, 2003, to
DLevelScript::DoSpawn().
- Changed VectorNormalize() (and VectorNormalize2) to use doubles for storing
  the vector lengths, fixing desyncs between GCC/VC++ games that happened
  because the two compilers produced slightly different results for some
  slopes. GCC kept them in registers, so they were never truncated to floats.
  VC++ stored them to memory and reloaded them in order to truncate them to
  the defined precision. Lesson learned: Floating point numbers in local
  variables should always be doubles to produce the best code with VC++ that
  has the best chance of matching GCC's default behavior.
- Removed netget and netsend function pointers. PacketGet and PacketSend are
  now called directly.
- Fixed: Watching a demo from the point of view of someone other than the
  first player could cause a crash when the demo ended.
- Removed invcount from the expression evaluator at Grubber's suggestion,
  because it doesn't work.
- Fixed: vid_nowidescreen should fire off setsizeneeded so that changes to it
  can happen immediately instead of at the next resolution change.


SVN r355 (trunk)
2006-10-20 01:58:26 +00:00

253 lines
5.4 KiB
C++

#include "vectors.h"
#include "actor.h"
#include "tables.h"
#define DEG2RAD( a ) ( a * M_PI ) / 180.0F
// [RH] Convert a thing's position into a vec3_t
void VectorPosition (const AActor *thing, vec3_t out)
{
out[0] = (float)thing->x / 65536.0f;
out[1] = (float)thing->y / 65536.0f;
out[2] = (float)thing->z / 65536.0f;
}
void FixedAngleToVector (angle_t an, int pitch, vec3_t v)
{
an >>= ANGLETOFINESHIFT;
v[0] = ((float)finecosine[an]) / 65536.0f;
v[1] = ((float)finesine[an]) / 65536.0f;
v[2] = ((float)finetangent[FINEANGLES/4-(pitch>>ANGLETOFINESHIFT)]) / 65536.0f;
VectorNormalize (v);
}
// Taken from Q2
vec_t VectorLength (const vec3_t v)
{
float length;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrtf (length);
return length;
}
void VectorMA (const vec3_t a, float scale, const vec3_t b, vec3_t out)
{
out[0] = a[0] + scale * b[0];
out[1] = a[1] + scale * b[1];
out[2] = a[2] + scale * b[2];
}
void VectorScale (const vec3_t v, float scale, vec3_t out)
{
out[0] = v[0] * scale;
out[1] = v[1] * scale;
out[2] = v[2] * scale;
}
void VectorScale2 (vec3_t v, float scale)
{
v[0] = v[0] * scale;
v[1] = v[1] * scale;
v[2] = v[2] * scale;
}
int VectorCompare (const vec3_t v1, const vec3_t v2)
{
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2])
return 0;
return 1;
}
vec_t VectorNormalize (vec3_t v)
{
double length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length);
if (length)
{
ilength = 1/length;
v[0] = vec_t(v[0] * ilength);
v[1] = vec_t(v[1] * ilength);
v[2] = vec_t(v[2] * ilength);
}
return vec_t(length);
}
vec_t VectorNormalize2 (const vec3_t v, vec3_t out)
{
double length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
length = sqrt (length);
if (length)
{
ilength = 1/length;
out[0] = vec_t(v[0] * ilength);
out[1] = vec_t(v[1] * ilength);
out[2] = vec_t(v[2] * ilength);
}
return vec_t(length);
}
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross)
{
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
}
#ifdef _MSC_VER
#pragma optimize( "", off )
#endif
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
{
float m[3][3];
float im[3][3];
float zrot[3][3];
float tmpmat[3][3];
float rot[3][3];
int i;
vec3_t vr, vup, vf;
vf[0] = dir[0];
vf[1] = dir[1];
vf[2] = dir[2];
PerpendicularVector( vr, dir );
CrossProduct( vr, vf, vup );
m[0][0] = vr[0];
m[1][0] = vr[1];
m[2][0] = vr[2];
m[0][1] = vup[0];
m[1][1] = vup[1];
m[2][1] = vup[2];
m[0][2] = vf[0];
m[1][2] = vf[1];
m[2][2] = vf[2];
memcpy( im, m, sizeof( im ) );
im[0][1] = m[1][0];
im[0][2] = m[2][0];
im[1][0] = m[0][1];
im[1][2] = m[2][1];
im[2][0] = m[0][2];
im[2][1] = m[1][2];
memset( zrot, 0, sizeof( zrot ) );
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
zrot[0][0] = (float)cos( DEG2RAD( degrees ) );
zrot[0][1] = (float)sin( DEG2RAD( degrees ) );
zrot[1][0] = (float)-sin( DEG2RAD( degrees ) );
zrot[1][1] = (float)cos( DEG2RAD( degrees ) );
R_ConcatRotations( m, zrot, tmpmat );
R_ConcatRotations( tmpmat, im, rot );
for ( i = 0; i < 3; i++ )
{
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
}
}
#ifdef _MSC_VER
#pragma optimize( "", on )
#endif
void ProjectPointOnPlane (vec3_t dst, const vec3_t p, const vec3_t normal)
{
float d;
vec3_t n;
float inv_denom;
inv_denom = 1.0F / DotProduct( normal, normal );
d = DotProduct( normal, p ) * inv_denom;
n[0] = normal[0] * inv_denom;
n[1] = normal[1] * inv_denom;
n[2] = normal[2] * inv_denom;
dst[0] = p[0] - d * n[0];
dst[1] = p[1] - d * n[1];
dst[2] = p[2] - d * n[2];
}
/*
** assumes "src" is normalized
*/
void PerpendicularVector (vec3_t dst, const vec3_t src)
{
int pos;
int i;
float minelem = 1.0F;
vec3_t tempvec;
/*
** find the smallest magnitude axially aligned vector
*/
for ( pos = 0, i = 0; i < 3; i++ )
{
if ( fabs( src[i] ) < minelem )
{
pos = i;
minelem = (float)fabs( src[i] );
}
}
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
tempvec[pos] = 1.0F;
/*
** project the point onto the plane defined by src
*/
ProjectPointOnPlane( dst, tempvec, src );
/*
** normalize the result
*/
VectorNormalize( dst );
}
/*
================
R_ConcatRotations
================
*/
void R_ConcatRotations (const float in1[3][3], const float in2[3][3], float out[3][3])
{
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
in1[0][2] * in2[2][0];
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
in1[0][2] * in2[2][1];
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
in1[0][2] * in2[2][2];
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
in1[1][2] * in2[2][0];
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
in1[1][2] * in2[2][1];
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
in1[1][2] * in2[2][2];
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
in1[2][2] * in2[2][0];
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
in1[2][2] * in2[2][1];
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
in1[2][2] * in2[2][2];
}