mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2024-11-19 10:51:26 +00:00
35ca16ba4f
DLevelScript::DoSpawn(). - Changed VectorNormalize() (and VectorNormalize2) to use doubles for storing the vector lengths, fixing desyncs between GCC/VC++ games that happened because the two compilers produced slightly different results for some slopes. GCC kept them in registers, so they were never truncated to floats. VC++ stored them to memory and reloaded them in order to truncate them to the defined precision. Lesson learned: Floating point numbers in local variables should always be doubles to produce the best code with VC++ that has the best chance of matching GCC's default behavior. - Removed netget and netsend function pointers. PacketGet and PacketSend are now called directly. - Fixed: Watching a demo from the point of view of someone other than the first player could cause a crash when the demo ended. - Removed invcount from the expression evaluator at Grubber's suggestion, because it doesn't work. - Fixed: vid_nowidescreen should fire off setsizeneeded so that changes to it can happen immediately instead of at the next resolution change. SVN r355 (trunk)
253 lines
5.4 KiB
C++
253 lines
5.4 KiB
C++
#include "vectors.h"
|
|
#include "actor.h"
|
|
#include "tables.h"
|
|
|
|
#define DEG2RAD( a ) ( a * M_PI ) / 180.0F
|
|
|
|
|
|
// [RH] Convert a thing's position into a vec3_t
|
|
void VectorPosition (const AActor *thing, vec3_t out)
|
|
{
|
|
out[0] = (float)thing->x / 65536.0f;
|
|
out[1] = (float)thing->y / 65536.0f;
|
|
out[2] = (float)thing->z / 65536.0f;
|
|
}
|
|
|
|
void FixedAngleToVector (angle_t an, int pitch, vec3_t v)
|
|
{
|
|
an >>= ANGLETOFINESHIFT;
|
|
v[0] = ((float)finecosine[an]) / 65536.0f;
|
|
v[1] = ((float)finesine[an]) / 65536.0f;
|
|
v[2] = ((float)finetangent[FINEANGLES/4-(pitch>>ANGLETOFINESHIFT)]) / 65536.0f;
|
|
VectorNormalize (v);
|
|
}
|
|
|
|
// Taken from Q2
|
|
vec_t VectorLength (const vec3_t v)
|
|
{
|
|
float length;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrtf (length);
|
|
|
|
return length;
|
|
}
|
|
|
|
void VectorMA (const vec3_t a, float scale, const vec3_t b, vec3_t out)
|
|
{
|
|
out[0] = a[0] + scale * b[0];
|
|
out[1] = a[1] + scale * b[1];
|
|
out[2] = a[2] + scale * b[2];
|
|
}
|
|
|
|
void VectorScale (const vec3_t v, float scale, vec3_t out)
|
|
{
|
|
out[0] = v[0] * scale;
|
|
out[1] = v[1] * scale;
|
|
out[2] = v[2] * scale;
|
|
}
|
|
|
|
void VectorScale2 (vec3_t v, float scale)
|
|
{
|
|
v[0] = v[0] * scale;
|
|
v[1] = v[1] * scale;
|
|
v[2] = v[2] * scale;
|
|
}
|
|
|
|
int VectorCompare (const vec3_t v1, const vec3_t v2)
|
|
{
|
|
if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2])
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
vec_t VectorNormalize (vec3_t v)
|
|
{
|
|
double length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrt (length);
|
|
|
|
if (length)
|
|
{
|
|
ilength = 1/length;
|
|
v[0] = vec_t(v[0] * ilength);
|
|
v[1] = vec_t(v[1] * ilength);
|
|
v[2] = vec_t(v[2] * ilength);
|
|
}
|
|
|
|
return vec_t(length);
|
|
|
|
}
|
|
|
|
vec_t VectorNormalize2 (const vec3_t v, vec3_t out)
|
|
{
|
|
double length, ilength;
|
|
|
|
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
|
|
length = sqrt (length);
|
|
|
|
if (length)
|
|
{
|
|
ilength = 1/length;
|
|
out[0] = vec_t(v[0] * ilength);
|
|
out[1] = vec_t(v[1] * ilength);
|
|
out[2] = vec_t(v[2] * ilength);
|
|
}
|
|
|
|
return vec_t(length);
|
|
|
|
}
|
|
|
|
void CrossProduct (const vec3_t v1, const vec3_t v2, vec3_t cross)
|
|
{
|
|
cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
|
|
cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
|
|
cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", off )
|
|
#endif
|
|
|
|
void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees )
|
|
{
|
|
float m[3][3];
|
|
float im[3][3];
|
|
float zrot[3][3];
|
|
float tmpmat[3][3];
|
|
float rot[3][3];
|
|
int i;
|
|
vec3_t vr, vup, vf;
|
|
|
|
vf[0] = dir[0];
|
|
vf[1] = dir[1];
|
|
vf[2] = dir[2];
|
|
|
|
PerpendicularVector( vr, dir );
|
|
CrossProduct( vr, vf, vup );
|
|
|
|
m[0][0] = vr[0];
|
|
m[1][0] = vr[1];
|
|
m[2][0] = vr[2];
|
|
|
|
m[0][1] = vup[0];
|
|
m[1][1] = vup[1];
|
|
m[2][1] = vup[2];
|
|
|
|
m[0][2] = vf[0];
|
|
m[1][2] = vf[1];
|
|
m[2][2] = vf[2];
|
|
|
|
memcpy( im, m, sizeof( im ) );
|
|
|
|
im[0][1] = m[1][0];
|
|
im[0][2] = m[2][0];
|
|
im[1][0] = m[0][1];
|
|
im[1][2] = m[2][1];
|
|
im[2][0] = m[0][2];
|
|
im[2][1] = m[1][2];
|
|
|
|
memset( zrot, 0, sizeof( zrot ) );
|
|
zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
|
|
|
|
zrot[0][0] = (float)cos( DEG2RAD( degrees ) );
|
|
zrot[0][1] = (float)sin( DEG2RAD( degrees ) );
|
|
zrot[1][0] = (float)-sin( DEG2RAD( degrees ) );
|
|
zrot[1][1] = (float)cos( DEG2RAD( degrees ) );
|
|
|
|
R_ConcatRotations( m, zrot, tmpmat );
|
|
R_ConcatRotations( tmpmat, im, rot );
|
|
|
|
for ( i = 0; i < 3; i++ )
|
|
{
|
|
dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
|
|
}
|
|
}
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma optimize( "", on )
|
|
#endif
|
|
|
|
void ProjectPointOnPlane (vec3_t dst, const vec3_t p, const vec3_t normal)
|
|
{
|
|
float d;
|
|
vec3_t n;
|
|
float inv_denom;
|
|
|
|
inv_denom = 1.0F / DotProduct( normal, normal );
|
|
|
|
d = DotProduct( normal, p ) * inv_denom;
|
|
|
|
n[0] = normal[0] * inv_denom;
|
|
n[1] = normal[1] * inv_denom;
|
|
n[2] = normal[2] * inv_denom;
|
|
|
|
dst[0] = p[0] - d * n[0];
|
|
dst[1] = p[1] - d * n[1];
|
|
dst[2] = p[2] - d * n[2];
|
|
}
|
|
|
|
/*
|
|
** assumes "src" is normalized
|
|
*/
|
|
void PerpendicularVector (vec3_t dst, const vec3_t src)
|
|
{
|
|
int pos;
|
|
int i;
|
|
float minelem = 1.0F;
|
|
vec3_t tempvec;
|
|
|
|
/*
|
|
** find the smallest magnitude axially aligned vector
|
|
*/
|
|
for ( pos = 0, i = 0; i < 3; i++ )
|
|
{
|
|
if ( fabs( src[i] ) < minelem )
|
|
{
|
|
pos = i;
|
|
minelem = (float)fabs( src[i] );
|
|
}
|
|
}
|
|
tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
|
|
tempvec[pos] = 1.0F;
|
|
|
|
/*
|
|
** project the point onto the plane defined by src
|
|
*/
|
|
ProjectPointOnPlane( dst, tempvec, src );
|
|
|
|
/*
|
|
** normalize the result
|
|
*/
|
|
VectorNormalize( dst );
|
|
}
|
|
|
|
/*
|
|
================
|
|
R_ConcatRotations
|
|
================
|
|
*/
|
|
void R_ConcatRotations (const float in1[3][3], const float in2[3][3], float out[3][3])
|
|
{
|
|
out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
|
|
in1[0][2] * in2[2][0];
|
|
out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
|
|
in1[0][2] * in2[2][1];
|
|
out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
|
|
in1[0][2] * in2[2][2];
|
|
out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
|
|
in1[1][2] * in2[2][0];
|
|
out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
|
|
in1[1][2] * in2[2][1];
|
|
out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
|
|
in1[1][2] * in2[2][2];
|
|
out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
|
|
in1[2][2] * in2[2][0];
|
|
out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
|
|
in1[2][2] * in2[2][1];
|
|
out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
|
|
in1[2][2] * in2[2][2];
|
|
}
|
|
|