/* ** Triangle drawers ** Copyright (c) 2016 Magnus Norddahl ** ** This software is provided 'as-is', without any express or implied ** warranty. In no event will the authors be held liable for any damages ** arising from the use of this software. ** ** Permission is granted to anyone to use this software for any purpose, ** including commercial applications, and to alter it and redistribute it ** freely, subject to the following restrictions: ** ** 1. The origin of this software must not be misrepresented; you must not ** claim that you wrote the original software. If you use this software ** in a product, an acknowledgment in the product documentation would be ** appreciated but is not required. ** 2. Altered source versions must be plainly marked as such, and must not be ** misrepresented as being the original software. ** 3. This notice may not be removed or altered from any source distribution. ** */ #include #include "templates.h" #include "doomdef.h" #include "i_system.h" #include "w_wad.h" #include "v_video.h" #include "doomstat.h" #include "st_stuff.h" #include "g_game.h" #include "g_level.h" #include "r_data/r_translate.h" #include "v_palette.h" #include "r_data/colormaps.h" #include "poly_triangle.h" #include "swrenderer/drawers/r_draw_rgba.h" #include "screen_triangle.h" void ScreenTriangle::SetupNormal(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { const TriVertex &v1 = *args->v1; const TriVertex &v2 = *args->v2; const TriVertex &v3 = *args->v3; int clipright = args->clipright; int clipbottom = args->clipbottom; int stencilPitch = args->stencilPitch; uint8_t * RESTRICT stencilValues = args->stencilValues; uint32_t * RESTRICT stencilMasks = args->stencilMasks; uint8_t stencilTestValue = args->stencilTestValue; TriFullSpan * RESTRICT span = thread->FullSpans; TriPartialBlock * RESTRICT partial = thread->PartialBlocks; // 28.4 fixed-point coordinates const int Y1 = (int)round(16.0f * v1.y); const int Y2 = (int)round(16.0f * v2.y); const int Y3 = (int)round(16.0f * v3.y); const int X1 = (int)round(16.0f * v1.x); const int X2 = (int)round(16.0f * v2.x); const int X3 = (int)round(16.0f * v3.x); // Deltas const int DX12 = X1 - X2; const int DX23 = X2 - X3; const int DX31 = X3 - X1; const int DY12 = Y1 - Y2; const int DY23 = Y2 - Y3; const int DY31 = Y3 - Y1; // Fixed-point deltas const int FDX12 = DX12 << 4; const int FDX23 = DX23 << 4; const int FDX31 = DX31 << 4; const int FDY12 = DY12 << 4; const int FDY23 = DY23 << 4; const int FDY31 = DY31 << 4; // Bounding rectangle int minx = MAX((MIN(MIN(X1, X2), X3) + 0xF) >> 4, 0); int maxx = MIN((MAX(MAX(X1, X2), X3) + 0xF) >> 4, clipright - 1); int miny = MAX((MIN(MIN(Y1, Y2), Y3) + 0xF) >> 4, 0); int maxy = MIN((MAX(MAX(Y1, Y2), Y3) + 0xF) >> 4, clipbottom - 1); if (minx >= maxx || miny >= maxy) { thread->NumFullSpans = 0; thread->NumPartialBlocks = 0; return; } // Block size, standard 8x8 (must be power of two) const int q = 8; // Start in corner of 8x8 block minx &= ~(q - 1); miny &= ~(q - 1); // Half-edge constants int C1 = DY12 * X1 - DX12 * Y1; int C2 = DY23 * X2 - DX23 * Y2; int C3 = DY31 * X3 - DX31 * Y3; // Correct for fill convention if (DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++; if (DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++; if (DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++; // First block line for this thread int core = thread->core; int num_cores = thread->num_cores; int core_skip = (num_cores - ((miny / q) - core) % num_cores) % num_cores; miny += core_skip * q; thread->StartX = minx; thread->StartY = miny; span->Length = 0; // Loop through blocks for (int y = miny; y < maxy; y += q * num_cores) { for (int x = minx; x < maxx; x += q) { // Corners of block int x0 = x << 4; int x1 = (x + q - 1) << 4; int y0 = y << 4; int y1 = (y + q - 1) << 4; // Evaluate half-space functions bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0; bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0; bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0; bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0; int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3); bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0; bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0; bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0; bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0; int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3); bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0; bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0; bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0; bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0; int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3); // Stencil test the whole block, if possible int block = x / 8 + y / 8 * stencilPitch; uint8_t *stencilBlock = &stencilValues[block * 64]; uint32_t *stencilBlockMask = &stencilMasks[block]; bool blockIsSingleStencil = ((*stencilBlockMask) & 0xffffff00) == 0xffffff00; bool skipBlock = blockIsSingleStencil && ((*stencilBlockMask) & 0xff) != stencilTestValue; // Skip block when outside an edge if (a == 0 || b == 0 || c == 0 || skipBlock) { if (span->Length != 0) { span++; span->Length = 0; } continue; } // Accept whole block when totally covered if (a == 0xf && b == 0xf && c == 0xf && x + q <= clipright && y + q <= clipbottom && blockIsSingleStencil) { if (span->Length != 0) { span->Length++; } else { span->X = x; span->Y = y; span->Length = 1; } } else // Partially covered block { x0 = x << 4; x1 = (x + q - 1) << 4; int CY1 = C1 + DX12 * y0 - DY12 * x0; int CY2 = C2 + DX23 * y0 - DY23 * x0; int CY3 = C3 + DX31 * y0 - DY31 * x0; uint32_t mask0 = 0; uint32_t mask1 = 0; for (int iy = 0; iy < 4; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; for (int ix = 0; ix < q; ix++) { bool passStencilTest = blockIsSingleStencil || stencilBlock[ix + iy * q] == stencilTestValue; bool covered = (CX1 > 0 && CX2 > 0 && CX3 > 0 && (x + ix) < clipright && (y + iy) < clipbottom && passStencilTest); mask0 <<= 1; mask0 |= (uint32_t)covered; CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; } for (int iy = 4; iy < q; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; for (int ix = 0; ix < q; ix++) { bool passStencilTest = blockIsSingleStencil || stencilBlock[ix + iy * q] == stencilTestValue; bool covered = (CX1 > 0 && CX2 > 0 && CX3 > 0 && (x + ix) < clipright && (y + iy) < clipbottom && passStencilTest); mask1 <<= 1; mask1 |= (uint32_t)covered; CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; } if (mask0 != 0xffffffff || mask1 != 0xffffffff) { if (span->Length > 0) { span++; span->Length = 0; } if (mask0 == 0 && mask1 == 0) continue; partial->X = x; partial->Y = y; partial->Mask0 = mask0; partial->Mask1 = mask1; partial++; } else if (span->Length != 0) { span->Length++; } else { span->X = x; span->Y = y; span->Length = 1; } } } if (span->Length != 0) { span++; span->Length = 0; } } thread->NumFullSpans = (int)(span - thread->FullSpans); thread->NumPartialBlocks = (int)(partial - thread->PartialBlocks); } void ScreenTriangle::SetupSubsector(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { const TriVertex &v1 = *args->v1; const TriVertex &v2 = *args->v2; const TriVertex &v3 = *args->v3; int clipright = args->clipright; int clipbottom = args->clipbottom; int stencilPitch = args->stencilPitch; uint8_t * RESTRICT stencilValues = args->stencilValues; uint32_t * RESTRICT stencilMasks = args->stencilMasks; uint8_t stencilTestValue = args->stencilTestValue; uint32_t * RESTRICT subsectorGBuffer = args->subsectorGBuffer; uint32_t subsectorDepth = args->uniforms->subsectorDepth; int32_t pitch = args->pitch; TriFullSpan * RESTRICT span = thread->FullSpans; TriPartialBlock * RESTRICT partial = thread->PartialBlocks; // 28.4 fixed-point coordinates const int Y1 = (int)round(16.0f * v1.y); const int Y2 = (int)round(16.0f * v2.y); const int Y3 = (int)round(16.0f * v3.y); const int X1 = (int)round(16.0f * v1.x); const int X2 = (int)round(16.0f * v2.x); const int X3 = (int)round(16.0f * v3.x); // Deltas const int DX12 = X1 - X2; const int DX23 = X2 - X3; const int DX31 = X3 - X1; const int DY12 = Y1 - Y2; const int DY23 = Y2 - Y3; const int DY31 = Y3 - Y1; // Fixed-point deltas const int FDX12 = DX12 << 4; const int FDX23 = DX23 << 4; const int FDX31 = DX31 << 4; const int FDY12 = DY12 << 4; const int FDY23 = DY23 << 4; const int FDY31 = DY31 << 4; // Bounding rectangle int minx = MAX((MIN(MIN(X1, X2), X3) + 0xF) >> 4, 0); int maxx = MIN((MAX(MAX(X1, X2), X3) + 0xF) >> 4, clipright - 1); int miny = MAX((MIN(MIN(Y1, Y2), Y3) + 0xF) >> 4, 0); int maxy = MIN((MAX(MAX(Y1, Y2), Y3) + 0xF) >> 4, clipbottom - 1); if (minx >= maxx || miny >= maxy) { thread->NumFullSpans = 0; thread->NumPartialBlocks = 0; return; } // Block size, standard 8x8 (must be power of two) const int q = 8; // Start in corner of 8x8 block minx &= ~(q - 1); miny &= ~(q - 1); // Half-edge constants int C1 = DY12 * X1 - DX12 * Y1; int C2 = DY23 * X2 - DX23 * Y2; int C3 = DY31 * X3 - DX31 * Y3; // Correct for fill convention if (DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++; if (DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++; if (DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++; // First block line for this thread int core = thread->core; int num_cores = thread->num_cores; int core_skip = (num_cores - ((miny / q) - core) % num_cores) % num_cores; miny += core_skip * q; thread->StartX = minx; thread->StartY = miny; span->Length = 0; // Loop through blocks for (int y = miny; y < maxy; y += q * num_cores) { for (int x = minx; x < maxx; x += q) { // Corners of block int x0 = x << 4; int x1 = (x + q - 1) << 4; int y0 = y << 4; int y1 = (y + q - 1) << 4; // Evaluate half-space functions bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0; bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0; bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0; bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0; int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3); bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0; bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0; bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0; bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0; int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3); bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0; bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0; bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0; bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0; int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3); // Stencil test the whole block, if possible int block = x / 8 + y / 8 * stencilPitch; uint8_t *stencilBlock = &stencilValues[block * 64]; uint32_t *stencilBlockMask = &stencilMasks[block]; bool blockIsSingleStencil = ((*stencilBlockMask) & 0xffffff00) == 0xffffff00; bool skipBlock = blockIsSingleStencil && ((*stencilBlockMask) & 0xff) < stencilTestValue; // Skip block when outside an edge if (a == 0 || b == 0 || c == 0 || skipBlock) { if (span->Length != 0) { span++; span->Length = 0; } continue; } // Accept whole block when totally covered if (a == 0xf && b == 0xf && c == 0xf && x + q <= clipright && y + q <= clipbottom && blockIsSingleStencil) { // Totally covered block still needs a subsector coverage test: uint32_t *subsector = subsectorGBuffer + x + y * pitch; uint32_t mask0 = 0; uint32_t mask1 = 0; for (int iy = 0; iy < 4; iy++) { for (int ix = 0; ix < q; ix++) { bool covered = subsector[ix] >= subsectorDepth; mask0 <<= 1; mask0 |= (uint32_t)covered; } subsector += pitch; } for (int iy = 4; iy < q; iy++) { for (int ix = 0; ix < q; ix++) { bool covered = subsector[ix] >= subsectorDepth; mask1 <<= 1; mask1 |= (uint32_t)covered; } subsector += pitch; } if (mask0 != 0xffffffff || mask1 != 0xffffffff) { if (span->Length > 0) { span++; span->Length = 0; } if (mask0 == 0 && mask1 == 0) continue; partial->X = x; partial->Y = y; partial->Mask0 = mask0; partial->Mask1 = mask1; partial++; } else if (span->Length != 0) { span->Length++; } else { span->X = x; span->Y = y; span->Length = 1; } } else // Partially covered block { x0 = x << 4; x1 = (x + q - 1) << 4; int CY1 = C1 + DX12 * y0 - DY12 * x0; int CY2 = C2 + DX23 * y0 - DY23 * x0; int CY3 = C3 + DX31 * y0 - DY31 * x0; uint32_t *subsector = subsectorGBuffer + x + y * pitch; uint32_t mask0 = 0; uint32_t mask1 = 0; for (int iy = 0; iy < 4; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; for (int ix = 0; ix < q; ix++) { bool passStencilTest = blockIsSingleStencil || stencilBlock[ix + iy * q] >= stencilTestValue; bool covered = (CX1 > 0 && CX2 > 0 && CX3 > 0 && (x + ix) < clipright && (y + iy) < clipbottom && passStencilTest && subsector[ix] >= subsectorDepth); mask0 <<= 1; mask0 |= (uint32_t)covered; CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; subsector += pitch; } for (int iy = 4; iy < q; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; for (int ix = 0; ix < q; ix++) { bool passStencilTest = blockIsSingleStencil || stencilBlock[ix + iy * q] >= stencilTestValue; bool covered = (CX1 > 0 && CX2 > 0 && CX3 > 0 && (x + ix) < clipright && (y + iy) < clipbottom && passStencilTest && subsector[ix] >= subsectorDepth); mask1 <<= 1; mask1 |= (uint32_t)covered; CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; subsector += pitch; } if (mask0 != 0xffffffff || mask1 != 0xffffffff) { if (span->Length > 0) { span++; span->Length = 0; } if (mask0 == 0 && mask1 == 0) continue; partial->X = x; partial->Y = y; partial->Mask0 = mask0; partial->Mask1 = mask1; partial++; } else if (span->Length != 0) { span->Length++; } else { span->X = x; span->Y = y; span->Length = 1; } } } if (span->Length != 0) { span++; span->Length = 0; } } thread->NumFullSpans = (int)(span - thread->FullSpans); thread->NumPartialBlocks = (int)(partial - thread->PartialBlocks); } void ScreenTriangle::StencilWrite(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { uint8_t * RESTRICT stencilValues = args->stencilValues; uint32_t * RESTRICT stencilMasks = args->stencilMasks; uint32_t stencilWriteValue = args->stencilWriteValue; uint32_t stencilPitch = args->stencilPitch; int numSpans = thread->NumFullSpans; auto fullSpans = thread->FullSpans; int numBlocks = thread->NumPartialBlocks; auto partialBlocks = thread->PartialBlocks; for (int i = 0; i < numSpans; i++) { const auto &span = fullSpans[i]; int block = span.X / 8 + span.Y / 8 * stencilPitch; uint8_t *stencilBlock = &stencilValues[block * 64]; uint32_t *stencilBlockMask = &stencilMasks[block]; int width = span.Length; for (int x = 0; x < width; x++) stencilBlockMask[x] = 0xffffff00 | stencilWriteValue; } for (int i = 0; i < numBlocks; i++) { const auto &block = partialBlocks[i]; uint32_t mask0 = block.Mask0; uint32_t mask1 = block.Mask1; int sblock = block.X / 8 + block.Y / 8 * stencilPitch; uint8_t *stencilBlock = &stencilValues[sblock * 64]; uint32_t *stencilBlockMask = &stencilMasks[sblock]; bool isSingleValue = ((*stencilBlockMask) & 0xffffff00) == 0xffffff00; if (isSingleValue) { uint8_t value = (*stencilBlockMask) & 0xff; for (int v = 0; v < 64; v++) stencilBlock[v] = value; *stencilBlockMask = 0; } int count = 0; for (int v = 0; v < 32; v++) { if ((mask0 & (1 << 31)) || stencilBlock[v] == stencilWriteValue) { stencilBlock[v] = stencilWriteValue; count++; } mask0 <<= 1; } for (int v = 32; v < 64; v++) { if ((mask1 & (1 << 31)) || stencilBlock[v] == stencilWriteValue) { stencilBlock[v] = stencilWriteValue; count++; } mask1 <<= 1; } if (count == 64) *stencilBlockMask = 0xffffff00 | stencilWriteValue; } } void ScreenTriangle::SubsectorWrite(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { uint32_t * RESTRICT subsectorGBuffer = args->subsectorGBuffer; uint32_t subsectorDepth = args->uniforms->subsectorDepth; int pitch = args->pitch; int numSpans = thread->NumFullSpans; auto fullSpans = thread->FullSpans; int numBlocks = thread->NumPartialBlocks; auto partialBlocks = thread->PartialBlocks; for (int i = 0; i < numSpans; i++) { const auto &span = fullSpans[i]; uint32_t *subsector = subsectorGBuffer + span.X + span.Y * pitch; int width = span.Length * 8; int height = 8; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) subsector[x] = subsectorDepth; subsector += pitch; } } for (int i = 0; i < numBlocks; i++) { const auto &block = partialBlocks[i]; uint32_t *subsector = subsectorGBuffer + block.X + block.Y * pitch; uint32_t mask0 = block.Mask0; uint32_t mask1 = block.Mask1; for (int y = 0; y < 4; y++) { for (int x = 0; x < 8; x++) { if (mask0 & (1 << 31)) subsector[x] = subsectorDepth; mask0 <<= 1; } subsector += pitch; } for (int y = 4; y < 8; y++) { for (int x = 0; x < 8; x++) { if (mask1 & (1 << 31)) subsector[x] = subsectorDepth; mask1 <<= 1; } subsector += pitch; } } } #if 0 float ScreenTriangle::FindGradientX(float x0, float y0, float x1, float y1, float x2, float y2, float c0, float c1, float c2) { float top = (c1 - c2) * (y0 - y2) - (c0 - c2) * (y1 - y2); float bottom = (x1 - x2) * (y0 - y2) - (x0 - x2) * (y1 - y2); return top / bottom; } float ScreenTriangle::FindGradientY(float x0, float y0, float x1, float y1, float x2, float y2, float c0, float c1, float c2) { float top = (c1 - c2) * (x0 - x2) - (c0 - c2) * (x1 - x2); float bottom = (x0 - x2) * (y1 - y2) - (x1 - x2) * (y0 - y2); return top / bottom; } void ScreenTriangle::Draw(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { int numSpans = thread->NumFullSpans; auto fullSpans = thread->FullSpans; int numBlocks = thread->NumPartialBlocks; auto partialBlocks = thread->PartialBlocks; int startX = thread->StartX; int startY = thread->StartY; // Calculate gradients const TriVertex &v1 = *args->v1; const TriVertex &v2 = *args->v2; const TriVertex &v3 = *args->v3; ScreenTriangleStepVariables gradientX; ScreenTriangleStepVariables gradientY; ScreenTriangleStepVariables start; gradientX.W = FindGradientX(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.w, v2.w, v3.w); gradientY.W = FindGradientY(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.w, v2.w, v3.w); start.W = v1.w + gradientX.W * (startX - v1.x) + gradientY.W * (startY - v1.y); for (int i = 0; i < TriVertex::NumVarying; i++) { gradientX.Varying[i] = FindGradientX(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.varying[i] * v1.w, v2.varying[i] * v2.w, v3.varying[i] * v3.w); gradientY.Varying[i] = FindGradientY(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.varying[i] * v1.w, v2.varying[i] * v2.w, v3.varying[i] * v3.w); start.Varying[i] = v1.varying[i] * v1.w + gradientX.Varying[i] * (startX - v1.x) + gradientY.Varying[i] * (startY - v1.y); } const uint32_t * RESTRICT texPixels = (const uint32_t *)args->texturePixels; uint32_t texWidth = args->textureWidth; uint32_t texHeight = args->textureHeight; uint32_t * RESTRICT destOrg = (uint32_t*)args->dest; uint32_t * RESTRICT subsectorGBuffer = (uint32_t*)args->subsectorGBuffer; int pitch = args->pitch; uint32_t subsectorDepth = args->uniforms->subsectorDepth; uint32_t light = args->uniforms->light; float shade = (64.0f - (light * 255 / 256 + 12.0f) * 32.0f / 128.0f) / 32.0f; float globVis = 1706.0f; for (int i = 0; i < numSpans; i++) { const auto &span = fullSpans[i]; uint32_t *dest = destOrg + span.X + span.Y * pitch; uint32_t *subsector = subsectorGBuffer + span.X + span.Y * pitch; int width = span.Length; int height = 8; ScreenTriangleStepVariables blockPosY; blockPosY.W = start.W + gradientX.W * (span.X - startX) + gradientY.W * (span.Y - startY); for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] = start.Varying[j] + gradientX.Varying[j] * (span.X - startX) + gradientY.Varying[j] * (span.Y - startY); for (int y = 0; y < height; y++) { ScreenTriangleStepVariables blockPosX = blockPosY; float rcpW = 0x01000000 / blockPosX.W; int32_t varyingPos[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW); int lightpos = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); for (int x = 0; x < width; x++) { blockPosX.W += gradientX.W * 8; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosX.Varying[j] += gradientX.Varying[j] * 8; rcpW = 0x01000000 / blockPosX.W; int32_t varyingStep[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) { int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW); varyingStep[j] = (nextPos - varyingPos[j]) / 8; } int lightnext = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); int lightstep = (lightnext - lightpos) / 8; for (int ix = 0; ix < 8; ix++) { int texelX = ((((uint32_t)varyingPos[0] << 8) >> 16) * texWidth) >> 16; int texelY = ((((uint32_t)varyingPos[1] << 8) >> 16) * texHeight) >> 16; uint32_t fg = texPixels[texelX * texHeight + texelY]; uint32_t r = RPART(fg); uint32_t g = GPART(fg); uint32_t b = BPART(fg); r = r * lightpos / 256; g = g * lightpos / 256; b = b * lightpos / 256; fg = 0xff000000 | (r << 16) | (g << 8) | b; dest[x * 8 + ix] = fg; subsector[x * 8 + ix] = subsectorDepth; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] += varyingStep[j]; lightpos += lightstep; } } blockPosY.W += gradientY.W; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] += gradientY.Varying[j]; dest += pitch; subsector += pitch; } } for (int i = 0; i < numBlocks; i++) { const auto &block = partialBlocks[i]; ScreenTriangleStepVariables blockPosY; blockPosY.W = start.W + gradientX.W * (block.X - startX) + gradientY.W * (block.Y - startY); for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] = start.Varying[j] + gradientX.Varying[j] * (block.X - startX) + gradientY.Varying[j] * (block.Y - startY); uint32_t *dest = destOrg + block.X + block.Y * pitch; uint32_t *subsector = subsectorGBuffer + block.X + block.Y * pitch; uint32_t mask0 = block.Mask0; uint32_t mask1 = block.Mask1; for (int y = 0; y < 4; y++) { ScreenTriangleStepVariables blockPosX = blockPosY; float rcpW = 0x01000000 / blockPosX.W; int32_t varyingPos[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW); int lightpos = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); blockPosX.W += gradientX.W * 8; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosX.Varying[j] += gradientX.Varying[j] * 8; rcpW = 0x01000000 / blockPosX.W; int32_t varyingStep[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) { int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW); varyingStep[j] = (nextPos - varyingPos[j]) / 8; } int lightnext = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); int lightstep = (lightnext - lightpos) / 8; for (int x = 0; x < 8; x++) { if (mask0 & (1 << 31)) { int texelX = ((((uint32_t)varyingPos[0] << 8) >> 16) * texWidth) >> 16; int texelY = ((((uint32_t)varyingPos[1] << 8) >> 16) * texHeight) >> 16; uint32_t fg = texPixels[texelX * texHeight + texelY]; uint32_t r = RPART(fg); uint32_t g = GPART(fg); uint32_t b = BPART(fg); r = r * lightpos / 256; g = g * lightpos / 256; b = b * lightpos / 256; fg = 0xff000000 | (r << 16) | (g << 8) | b; dest[x] = fg; subsector[x] = subsectorDepth; } mask0 <<= 1; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] += varyingStep[j]; lightpos += lightstep; } blockPosY.W += gradientY.W; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] += gradientY.Varying[j]; dest += pitch; subsector += pitch; } for (int y = 4; y < 8; y++) { ScreenTriangleStepVariables blockPosX = blockPosY; float rcpW = 0x01000000 / blockPosX.W; int32_t varyingPos[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW); int lightpos = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); blockPosX.W += gradientX.W * 8; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosX.Varying[j] += gradientX.Varying[j] * 8; rcpW = 0x01000000 / blockPosX.W; int32_t varyingStep[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) { int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW); varyingStep[j] = (nextPos - varyingPos[j]) / 8; } int lightnext = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); int lightstep = (lightnext - lightpos) / 8; for (int x = 0; x < 8; x++) { if (mask1 & (1 << 31)) { int texelX = ((((uint32_t)varyingPos[0] << 8) >> 16) * texWidth) >> 16; int texelY = ((((uint32_t)varyingPos[1] << 8) >> 16) * texHeight) >> 16; uint32_t fg = texPixels[texelX * texHeight + texelY]; uint32_t r = RPART(fg); uint32_t g = GPART(fg); uint32_t b = BPART(fg); r = r * lightpos / 256; g = g * lightpos / 256; b = b * lightpos / 256; fg = 0xff000000 | (r << 16) | (g << 8) | b; dest[x] = fg; subsector[x] = subsectorDepth; } mask1 <<= 1; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] += varyingStep[j]; lightpos += lightstep; } blockPosY.W += gradientY.W; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] += gradientY.Varying[j]; dest += pitch; subsector += pitch; } } } #endif