/* TiMidity -- Experimental MIDI to WAVE converter Copyright (C) 1995 Tuukka Toivonen This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA instrum.c Code to load and unload GUS-compatible instrument patches. */ #include #include #include #include #include #include #include "timidity.h" #include "gf1patch.h" #include "timidity_file.h" #include "t_swap.h" #include "common.h" #include "instrum.h" #include "playmidi.h" namespace Timidity { Instrument *load_instrument_dls(Renderer *song, int drum, int bank, int instrument); Instrument::Instrument() : samples(0), sample(NULL) { } Instrument::~Instrument() { Sample *sp; int i; for (i = samples, sp = &(sample[0]); i != 0; i--, sp++) { if (sp->type == INST_GUS && sp->data != NULL) { free(sp->data); } } free(sample); } ToneBank::ToneBank() { tone = new ToneBankElement[128];; for (int i = 0; i < MAXPROG; ++i) { instrument[i] = 0; } } ToneBank::~ToneBank() { delete[] tone; for (int i = 0; i < MAXPROG; i++) { if (instrument[i] != NULL && instrument[i] != MAGIC_LOAD_INSTRUMENT) { delete instrument[i]; instrument[i] = NULL; } } } int Renderer::convert_tremolo_sweep(uint8_t sweep) { if (sweep == 0) return 0; return int(((control_ratio * SWEEP_TUNING) << SWEEP_SHIFT) / (rate * sweep)); } int Renderer::convert_vibrato_sweep(uint8_t sweep, int vib_control_ratio) { if (sweep == 0) return 0; return (int)(FSCALE((double)(vib_control_ratio)* SWEEP_TUNING, SWEEP_SHIFT) / (rate * sweep)); /* this was overflowing with seashore.pat ((vib_control_ratio * SWEEP_TUNING) << SWEEP_SHIFT) / (song->rate * sweep); */ } int Renderer::convert_tremolo_rate(uint8_t rate) { return int(((control_ratio * rate) << RATE_SHIFT) / (TREMOLO_RATE_TUNING * rate)); } int Renderer::convert_vibrato_rate(uint8_t rate) { /* Return a suitable vibrato_control_ratio value */ return int((VIBRATO_RATE_TUNING * rate) / (rate * 2 * VIBRATO_SAMPLE_INCREMENTS)); } static void reverse_data(sample_t *sp, int ls, int le) { sample_t s, *ep = sp + le; sp += ls; le -= ls; le /= 2; while (le--) { s = *sp; *sp++ = *ep; *ep-- = s; } } /* If panning or note_to_use != -1, it will be used for all samples, instead of the sample-specific values in the instrument file. For note_to_use, any value <0 or >127 will be forced to 0. For other parameters, 1 means yes, 0 means no, other values are undefined. TODO: do reverse loops right */ Instrument *Renderer::load_instrument(const char *name, int percussion, int panning, int note_to_use, int strip_loop, int strip_envelope, int strip_tail) { Instrument *ip; Sample *sp; GF1PatchHeader header; GF1InstrumentData idata; GF1LayerData layer_data; GF1PatchData patch_data; int i, j; bool noluck = false; auto reader = instruments->sfreader; if (!name || reader == nullptr) return nullptr; /* Open patch file */ auto fp = reader->open_timidity_file(name); if (!fp) { /* Try with various extensions */ std::string tmp = name; tmp += ".pat"; fp = reader->open_timidity_file(tmp.c_str()); if (!fp) { #ifndef _WIN32 // Windows isn't case-sensitive. std::transform(tmp.begin(), tmp.end(), tmp.begin(), [](unsigned char c){ return toupper(c); } ); fp = reader->open_timidity_file(tmp.c_str()); if (!fp) #endif { noluck = true; } } } if (noluck) { printMessage(CMSG_ERROR, VERB_DEBUG, "Instrument `%s' can't be found.\n", name); return 0; } printMessage(CMSG_INFO, VERB_NOISY, "Loading instrument %s\n", name); /* Read some headers and do cursory sanity checks. */ if (sizeof(header) != fp->read(&header, sizeof(header))) { failread: printMessage(CMSG_ERROR, VERB_NORMAL, "%s: Error reading instrument.\n", name); fp->close(); return 0; } if (strncmp(header.Header, GF1_HEADER_TEXT, HEADER_SIZE - 4) != 0) { printMessage(CMSG_ERROR, VERB_NORMAL, "%s: Not an instrument.\n", name); fp->close(); return 0; } if (strcmp(header.Header + 8, "110") < 0) { printMessage(CMSG_ERROR, VERB_NORMAL, "%s: Is an old and unsupported patch version.\n", name); fp->close(); return 0; } if (sizeof(idata) != fp->read(&idata, sizeof(idata))) { goto failread; } header.WaveForms = LittleShort(header.WaveForms); header.MasterVolume = LittleShort(header.MasterVolume); header.DataSize = LittleLong(header.DataSize); idata.Instrument = LittleShort(idata.Instrument); if (header.Instruments != 1 && header.Instruments != 0) /* instruments. To some patch makers, 0 means 1 */ { printMessage(CMSG_ERROR, VERB_NORMAL, "Can't handle patches with %d instruments.\n", header.Instruments); fp->close(); return 0; } if (idata.Layers != 1 && idata.Layers != 0) /* layers. What's a layer? */ { printMessage(CMSG_ERROR, VERB_NORMAL, "Can't handle instruments with %d layers.\n", idata.Layers); fp->close(); return 0; } if (sizeof(layer_data) != fp->read(&layer_data, sizeof(layer_data))) { goto failread; } if (layer_data.Samples == 0) { printMessage(CMSG_ERROR, VERB_NORMAL, "Instrument has 0 samples.\n"); fp->close(); return 0; } ip = new Instrument; ip->samples = layer_data.Samples; ip->sample = (Sample *)safe_malloc(sizeof(Sample) * layer_data.Samples); memset(ip->sample, 0, sizeof(Sample) * layer_data.Samples); for (i = 0; i < layer_data.Samples; ++i) { if (sizeof(patch_data) != fp->read(&patch_data, sizeof(patch_data))) { fail: printMessage(CMSG_ERROR, VERB_NORMAL, "Error reading sample %d.\n", i); delete ip; fp->close(); return 0; } sp = &(ip->sample[i]); sp->data_length = LittleLong(patch_data.WaveSize); sp->loop_start = LittleLong(patch_data.StartLoop); sp->loop_end = LittleLong(patch_data.EndLoop); sp->sample_rate = LittleShort(patch_data.SampleRate); sp->low_freq = float(LittleLong(patch_data.LowFrequency)); sp->high_freq = float(LittleLong(patch_data.HighFrequency)) + 0.9999f; sp->root_freq = float(LittleLong(patch_data.RootFrequency)); sp->high_vel = 127; sp->velocity = -1; sp->type = INST_GUS; // Expand to SF2 range. if (panning == -1) { sp->panning = (patch_data.Balance & 0x0F) * 1000 / 15 - 500; } else { sp->panning = (panning & 0x7f) * 1000 / 127 - 500; } compute_pan((sp->panning + 500) / 1000.0, INST_GUS, sp->left_offset, sp->right_offset); /* tremolo */ if (patch_data.TremoloRate == 0 || patch_data.TremoloDepth == 0) { sp->tremolo_sweep_increment = 0; sp->tremolo_phase_increment = 0; sp->tremolo_depth = 0; printMessage(CMSG_INFO, VERB_DEBUG, " * no tremolo\n"); } else { sp->tremolo_sweep_increment = convert_tremolo_sweep(patch_data.TremoloSweep); sp->tremolo_phase_increment = convert_tremolo_rate(patch_data.TremoloRate); sp->tremolo_depth = patch_data.TremoloDepth; printMessage(CMSG_INFO, VERB_DEBUG, " * tremolo: sweep %d, phase %d, depth %d\n", sp->tremolo_sweep_increment, sp->tremolo_phase_increment, sp->tremolo_depth); } /* vibrato */ if (patch_data.VibratoRate == 0 || patch_data.VibratoDepth == 0) { sp->vibrato_sweep_increment = 0; sp->vibrato_control_ratio = 0; sp->vibrato_depth = 0; printMessage(CMSG_INFO, VERB_DEBUG, " * no vibrato\n"); } else { sp->vibrato_control_ratio = convert_vibrato_rate(patch_data.VibratoRate); sp->vibrato_sweep_increment = convert_vibrato_sweep(patch_data.VibratoSweep, sp->vibrato_control_ratio); sp->vibrato_depth = patch_data.VibratoDepth; printMessage(CMSG_INFO, VERB_DEBUG, " * vibrato: sweep %d, ctl %d, depth %d\n", sp->vibrato_sweep_increment, sp->vibrato_control_ratio, sp->vibrato_depth); } sp->modes = patch_data.Modes; /* Mark this as a fixed-pitch instrument if such a deed is desired. */ if (note_to_use != -1) { sp->scale_note = note_to_use; sp->scale_factor = 0; } else { sp->scale_note = LittleShort(patch_data.ScaleFrequency); sp->scale_factor = LittleShort(patch_data.ScaleFactor); if (sp->scale_factor <= 2) { sp->scale_factor *= 1024; } else if (sp->scale_factor > 2048) { sp->scale_factor = 1024; } if (sp->scale_factor != 1024) { printMessage(CMSG_INFO, VERB_DEBUG, " * Scale: note %d, factor %d\n", sp->scale_note, sp->scale_factor); } } #if 0 /* seashore.pat in the Midia patch set has no Sustain. I don't understand why, and fixing it by adding the Sustain flag to all looped patches probably breaks something else. We do it anyway. */ if (sp->modes & PATCH_LOOPEN) { sp->modes |= PATCH_SUSTAIN; } #endif /* [RH] Alas, eawpats has percussion instruments with bad envelopes. :( * (See cymchina.pat for one example of this sadness.) * Do this logic for instruments without a description, only. Hopefully that * catches all the patches that need it without including any extra. */ for (j = 0; j < DESC_SIZE; ++j) { if (header.Description[j] != 0) break; } /* Strip any loops and envelopes we're permitted to */ /* [RH] (But PATCH_BACKWARD isn't a loop flag at all!) */ if ((strip_loop == 1) && (sp->modes & (PATCH_SUSTAIN | PATCH_LOOPEN | PATCH_BIDIR | PATCH_BACKWARD))) { printMessage(CMSG_INFO, VERB_DEBUG, " - Removing loop and/or sustain\n"); if (j == DESC_SIZE) { sp->modes &= ~(PATCH_SUSTAIN | PATCH_LOOPEN | PATCH_BIDIR | PATCH_BACKWARD); } } if (strip_envelope == 1) { printMessage(CMSG_INFO, VERB_DEBUG, " - Removing envelope\n"); /* [RH] The envelope isn't really removed, but this is the way the standard * Gravis patches get that effect: All rates at maximum, and all offsets at * a constant level. */ if (j == DESC_SIZE) { int k; for (k = 1; k < ENVELOPES; ++k) { /* Find highest offset. */ if (patch_data.EnvelopeOffset[k] > patch_data.EnvelopeOffset[0]) { patch_data.EnvelopeOffset[0] = patch_data.EnvelopeOffset[k]; } } for (k = 0; k < ENVELOPES; ++k) { patch_data.EnvelopeRate[k] = 63; patch_data.EnvelopeOffset[k] = patch_data.EnvelopeOffset[0]; } } } for (j = 0; j < 6; j++) { sp->envelope.gf1.rate[j] = patch_data.EnvelopeRate[j]; /* [RH] GF1NEW clamps the offsets to the range [5,251], so we do too. */ sp->envelope.gf1.offset[j] = std::max(5, std::min(251, patch_data.EnvelopeOffset[j])); } /* Then read the sample data */ if (((sp->modes & PATCH_16) && sp->data_length/2 > MAX_SAMPLE_SIZE) || (!(sp->modes & PATCH_16) && sp->data_length > MAX_SAMPLE_SIZE)) { goto fail; } sp->data = (sample_t *)safe_malloc(sp->data_length); if (sp->data_length != fp->read(sp->data, sp->data_length)) goto fail; convert_sample_data(sp, sp->data); /* Reverse reverse loops and pass them off as normal loops */ if (sp->modes & PATCH_BACKWARD) { int t; /* The GUS apparently plays reverse loops by reversing the whole sample. We do the same because the GUS does not SUCK. */ printMessage(CMSG_WARNING, VERB_NORMAL, "Reverse loop in %s\n", name); reverse_data((sample_t *)sp->data, 0, sp->data_length); sp->data[sp->data_length] = sp->data[sp->data_length - 1]; t = sp->loop_start; sp->loop_start = sp->data_length - sp->loop_end; sp->loop_end = sp->data_length - t; sp->modes &= ~PATCH_BACKWARD; sp->modes |= PATCH_LOOPEN; /* just in case */ } /* Then fractional samples */ sp->data_length <<= FRACTION_BITS; sp->loop_start <<= FRACTION_BITS; sp->loop_end <<= FRACTION_BITS; /* Adjust for fractional loop points. */ sp->loop_start |= (patch_data.Fractions & 0x0F) << (FRACTION_BITS-4); sp->loop_end |= (patch_data.Fractions & 0xF0) << (FRACTION_BITS-4-4); /* If this instrument will always be played on the same note, and it's not looped, we can resample it now. */ if (sp->scale_factor == 0 && !(sp->modes & PATCH_LOOPEN)) { pre_resample(this, sp); } if (strip_tail == 1) { /* Let's not really, just say we did. */ printMessage(CMSG_INFO, VERB_DEBUG, " - Stripping tail\n"); sp->data_length = sp->loop_end; } } fp->close(); return ip; } void convert_sample_data(Sample *sp, const void *data) { /* convert everything to 32-bit floating point data */ sample_t *newdata = NULL; switch (sp->modes & (PATCH_16 | PATCH_UNSIGNED)) { case 0: { /* 8-bit, signed */ int8_t *cp = (int8_t *)data; newdata = (sample_t *)safe_malloc((sp->data_length + 1) * sizeof(sample_t)); for (int i = 0; i < sp->data_length; ++i) { if (cp[i] < 0) { newdata[i] = float(cp[i]) / 128.f; } else { newdata[i] = float(cp[i]) / 127.f; } } break; } case PATCH_UNSIGNED: { /* 8-bit, unsigned */ uint8_t *cp = (uint8_t *)data; newdata = (sample_t *)safe_malloc((sp->data_length + 1) * sizeof(sample_t)); for (int i = 0; i < sp->data_length; ++i) { int c = cp[i] - 128; if (c < 0) { newdata[i] = float(c) / 128.f; } else { newdata[i] = float(c) / 127.f; } } break; } case PATCH_16: { /* 16-bit, signed */ int16_t *cp = (int16_t *)data; /* Convert these to samples */ sp->data_length >>= 1; sp->loop_start >>= 1; sp->loop_end >>= 1; newdata = (sample_t *)safe_malloc((sp->data_length + 1) * sizeof(sample_t)); for (int i = 0; i < sp->data_length; ++i) { int c = LittleShort(cp[i]); if (c < 0) { newdata[i] = float(c) / 32768.f; } else { newdata[i] = float(c) / 32767.f; } } break; } case PATCH_16 | PATCH_UNSIGNED: { /* 16-bit, unsigned */ auto *cp = (uint16_t *)data; /* Convert these to samples */ sp->data_length >>= 1; sp->loop_start >>= 1; sp->loop_end >>= 1; newdata = (sample_t *)safe_malloc((sp->data_length + 1) * sizeof(sample_t)); for (int i = 0; i < sp->data_length; ++i) { int c = LittleShort(cp[i]) - 32768; if (c < 0) { newdata[i] = float(c) / 32768.f; } else { newdata[i] = float(c) / 32767.f; } } break; } } /* Duplicate the final sample for linear interpolation. */ newdata[sp->data_length] = newdata[sp->data_length - 1]; if (sp->data != NULL) { free(sp->data); } sp->data = newdata; } int Renderer::fill_bank(int dr, int b) { int i, errors = 0; ToneBank *bank = ((dr) ? instruments->drumset[b] : instruments->tonebank[b]); if (bank == NULL) { printMessage(CMSG_ERROR, VERB_NORMAL, "Tried to load instruments in non-existent %s %d\n", (dr) ? "drumset" : "tone bank", b); return 0; } for (i = 0; i < MAXPROG; i++) { if (bank->instrument[i] == MAGIC_LOAD_INSTRUMENT) { bank->instrument[i] = NULL; bank->instrument[i] = load_instrument_dls(this, dr, b, i); if (bank->instrument[i] != NULL) { continue; } Instrument *ip; ip = load_instrument_font_order(0, dr, b, i); if (ip == NULL) { if (bank->tone[i].fontbank >= 0) { ip = load_instrument_font(bank->tone[i].name.c_str(), dr, b, i); } else { ip = load_instrument(bank->tone[i].name.c_str(), (dr) ? 1 : 0, bank->tone[i].pan, (bank->tone[i].note != -1) ? bank->tone[i].note : ((dr) ? i : -1), (bank->tone[i].strip_loop != -1) ? bank->tone[i].strip_loop : ((dr) ? 1 : -1), (bank->tone[i].strip_envelope != -1) ? bank->tone[i].strip_envelope : ((dr) ? 1 : -1), bank->tone[i].strip_tail); } if (ip == NULL) { ip = load_instrument_font_order(1, dr, b, i); } } bank->instrument[i] = ip; if (ip == NULL) { if (bank->tone[i].name.length() == 0) { printMessage(CMSG_WARNING, (b != 0) ? VERB_VERBOSE : VERB_DEBUG, "No instrument mapped to %s %d, program %d%s\n", (dr) ? "drum set" : "tone bank", b, i, (b != 0) ? "" : " - this instrument will not be heard"); } else { printMessage(CMSG_ERROR, VERB_DEBUG, "Couldn't load instrument %s (%s %d, program %d)\n", bank->tone[i].name.c_str(), (dr) ? "drum set" : "tone bank", b, i); } if (b != 0) { /* Mark the corresponding instrument in the default bank / drumset for loading (if it isn't already) */ if (((dr) ? instruments->drumset[0] : instruments->tonebank[0])->instrument[i] != NULL) { ((dr) ? instruments->drumset[0] : instruments->tonebank[0])->instrument[i] = MAGIC_LOAD_INSTRUMENT; } } errors++; } } } return errors; } int Renderer::load_missing_instruments() { int i = MAXBANK, errors = 0; while (i--) { if (instruments->tonebank[i] != NULL) errors += fill_bank(0, i); if (instruments->drumset[i] != NULL) errors += fill_bank(1, i); } return errors; } void Instruments::free_instruments() { int i = MAXBANK; while (i--) { if (tonebank[i] != NULL) { delete tonebank[i]; tonebank[i] = NULL; } if (drumset[i] != NULL) { delete drumset[i]; drumset[i] = NULL; } } } Instruments::Instruments(SoundFontReaderInterface *reader) { sfreader = reader; tonebank[0] = new ToneBank; drumset[0] = new ToneBank; } Instruments::~Instruments() { free_instruments(); font_freeall(); for (int i = 0; i < MAXBANK; ++i) { if (tonebank[i] != NULL) { delete tonebank[i]; tonebank[i] = NULL; } if (drumset[i] != NULL) { delete drumset[i]; drumset[i] = NULL; } } if (sfreader != nullptr) delete sfreader; sfreader = nullptr; } int Renderer::set_default_instrument(const char *name) { Instrument *ip; if ((ip = load_instrument(name, 0, -1, -1, 0, 0, 0)) == NULL) { return -1; } if (default_instrument != NULL) { delete default_instrument; } default_instrument = ip; default_program = SPECIAL_PROGRAM; return 0; } }