/* * Copyright (C) 2002-2018 The DOSBox Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* DOSBox implementation of a combined Yamaha YMF262 and Yamaha YM3812 emulator. Enabling the opl3 bit will switch the emulator to stereo opl3 output instead of regular mono opl2 Except for the table generation it's all integer math Can choose different types of generators, using muls and bigger tables, try different ones for slower platforms The generation was based on the MAME implementation but tried to have it use less memory and be faster in general MAME uses much bigger envelope tables and this will be the biggest cause of it sounding different at times //TODO Don't delay first operator 1 sample in opl3 mode //TODO Maybe not use class method pointers but a regular function pointers with operator as first parameter //TODO Fix panning for the Percussion channels, would any opl3 player use it and actually really change it though? //TODO Check if having the same accuracy in all frequency multipliers sounds better or not //DUNNO Keyon in 4op, switch to 2op without keyoff. */ #include #include #include #include #include #include "dbopl.h" #if defined(__GNUC__) && __GNUC__ > 3 #define INLINE inline __attribute__((__always_inline__)) #elif defined(_MSC_VER) #define INLINE __forceinline #else #define INLINE inline #endif #if defined(__GNUC__) #if !defined(__clang__) #define GCC_LIKELY(x) __builtin_expect(x, 1) #define GCC_UNLIKELY(x) __builtin_expect(x, 0) #else // !defined(__clang__) #if !defined (__c2__) && defined(__has_builtin) #if __has_builtin(__builtin_expect) #define GCC_LIKELY(x) __builtin_expect(x, 1) #define GCC_UNLIKELY(x) __builtin_expect(x, 0) #endif // __has_builtin(__builtin_expect) #endif // !defined (__c2__) && defined(__has_builtin) #endif // !defined(__clang__) #endif // defined(__GNUC__) #if !defined(GCC_LIKELY) #define GCC_LIKELY(x) (x) #define GCC_UNLIKELY(x) (x) #endif #ifndef PI #define PI 3.14159265358979323846 #endif struct NoCopy { NoCopy() {} private: NoCopy(const NoCopy &); NoCopy &operator=(const NoCopy &); }; #if !defined(_WIN32) #include struct Mutex : NoCopy { Mutex() { pthread_mutex_init(&m, NULL);} ~Mutex() { pthread_mutex_destroy(&m); } void lock() { pthread_mutex_lock(&m); } void unlock() { pthread_mutex_unlock(&m); } pthread_mutex_t m; }; #else #include struct Mutex : NoCopy { Mutex() { InitializeCriticalSection(&m); } ~Mutex() { DeleteCriticalSection(&m); } void lock() { EnterCriticalSection(&m); } void unlock() { LeaveCriticalSection(&m); } CRITICAL_SECTION m; }; #endif struct MutexHolder : NoCopy { explicit MutexHolder(Mutex &m) : m(m) { m.lock(); } ~MutexHolder() { m.unlock(); } Mutex &m; }; namespace DBOPL { #define OPLRATE ((double)(14318180.0 / 288.0)) #define TREMOLO_TABLE 52 //Try to use most precision for frequencies //Else try to keep different waves in synch //#define WAVE_PRECISION 1 #ifndef WAVE_PRECISION //Wave bits available in the top of the 32bit range //Original adlib uses 10.10, we use 10.22 #define WAVE_BITS 10 #else //Need some extra bits at the top to have room for octaves and frequency multiplier //We support to 8 times lower rate //128 * 15 * 8 = 15350, 2^13.9, so need 14 bits #define WAVE_BITS 14 #endif #define WAVE_SH ( 32 - WAVE_BITS ) #define WAVE_MASK ( ( 1 << WAVE_SH ) - 1 ) //Use the same accuracy as the waves #define LFO_SH ( WAVE_SH - 10 ) //LFO is controlled by our tremolo 256 sample limit #define LFO_MAX ( 256 << ( LFO_SH ) ) //Maximum amount of attenuation bits //Envelope goes to 511, 9 bits #if (DBOPL_WAVE == WAVE_TABLEMUL ) //Uses the value directly #define ENV_BITS ( 9 ) #else //Add 3 bits here for more accuracy and would have to be shifted up either way #define ENV_BITS ( 9 ) #endif //Limits of the envelope with those bits and when the envelope goes silent #define ENV_MIN 0 #define ENV_EXTRA ( ENV_BITS - 9 ) #define ENV_MAX ( 511 << ENV_EXTRA ) #define ENV_LIMIT ( ( 12 * 256) >> ( 3 - ENV_EXTRA ) ) #define ENV_SILENT( _X_ ) ( (_X_) >= ENV_LIMIT ) //Attack/decay/release rate counter shift #define RATE_SH 24 #define RATE_MASK ( ( 1 << RATE_SH ) - 1 ) //Has to fit within 16bit lookuptable #define MUL_SH 16 //Check some ranges #if ENV_EXTRA > 3 #error Too many envelope bits #endif //How much to substract from the base value for the final attenuation static const Bit8u KslCreateTable[16] = { //0 will always be be lower than 7 * 8 64, 32, 24, 19, 16, 12, 11, 10, 8, 6, 5, 4, 3, 2, 1, 0, }; #define M(_X_) ((Bit8u)( (_X_) * 2)) static const Bit8u FreqCreateTable[16] = { M(0.5), M(1 ), M(2 ), M(3 ), M(4 ), M(5 ), M(6 ), M(7 ), M(8 ), M(9 ), M(10), M(10), M(12), M(12), M(15), M(15) }; #undef M //We're not including the highest attack rate, that gets a special value static const Bit8u AttackSamplesTable[13] = { 69, 55, 46, 40, 35, 29, 23, 20, 19, 15, 11, 10, 9 }; //On a real opl these values take 8 samples to reach and are based upon larger tables static const Bit8u EnvelopeIncreaseTable[13] = { 4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, }; #if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG ) static Bit16u ExpTable[ 256 ]; #endif #if ( DBOPL_WAVE == WAVE_HANDLER ) //PI table used by WAVEHANDLER static Bit16u SinTable[ 512 ]; #endif #if ( DBOPL_WAVE > WAVE_HANDLER ) //Layout of the waveform table in 512 entry intervals //With overlapping waves we reduce the table to half it's size // | |//\\|____|WAV7|//__|/\ |____|/\/\| // |\\//| | |WAV7| | \/| | | // |06 |0126|17 |7 |3 |4 |4 5 |5 | //6 is just 0 shifted and masked static Bit16s WaveTable[ 8 * 512 ]; //Distance into WaveTable the wave starts static const Bit16u WaveBaseTable[8] = { 0x000, 0x200, 0x200, 0x800, 0xa00, 0xc00, 0x100, 0x400, }; //Mask the counter with this static const Bit16u WaveMaskTable[8] = { 1023, 1023, 511, 511, 1023, 1023, 512, 1023, }; //Where to start the counter on at keyon static const Bit16u WaveStartTable[8] = { 512, 0, 0, 0, 0, 512, 512, 256, }; #endif #if ( DBOPL_WAVE == WAVE_TABLEMUL ) static Bit16u MulTable[ 384 ]; #endif static Bit8u KslTable[ 8 * 16 ]; static Bit8u TremoloTable[ TREMOLO_TABLE ]; //Start of a channel behind the chip struct start static Bit16u ChanOffsetTable[32]; //Start of an operator behind the chip struct start static Bit16u OpOffsetTable[64]; //The lower bits are the shift of the operator vibrato value //The highest bit is right shifted to generate -1 or 0 for negation //So taking the highest input value of 7 this gives 3, 7, 3, 0, -3, -7, -3, 0 static const Bit8s VibratoTable[ 8 ] = { 1 - 0x00, 0 - 0x00, 1 - 0x00, 30 - 0x00, 1 - 0x80, 0 - 0x80, 1 - 0x80, 30 - 0x80 }; //Shift strength for the ksl value determined by ksl strength static const Bit8u KslShiftTable[4] = { 31,1,2,0 }; // Pan law table static const Bit16u PanLawTable[] = { 65535, 65529, 65514, 65489, 65454, 65409, 65354, 65289, 65214, 65129, 65034, 64929, 64814, 64689, 64554, 64410, 64255, 64091, 63917, 63733, 63540, 63336, 63123, 62901, 62668, 62426, 62175, 61914, 61644, 61364, 61075, 60776, 60468, 60151, 59825, 59489, 59145, 58791, 58428, 58057, 57676, 57287, 56889, 56482, 56067, 55643, 55211, 54770, 54320, 53863, 53397, 52923, 52441, 51951, 51453, 50947, 50433, 49912, 49383, 48846, 48302, 47750, 47191, 46340, /* Center left */ 46340, /* Center right */ 45472, 44885, 44291, 43690, 43083, 42469, 41848, 41221, 40588, 39948, 39303, 38651, 37994, 37330, 36661, 35986, 35306, 34621, 33930, 33234, 32533, 31827, 31116, 30400, 29680, 28955, 28225, 27492, 26754, 26012, 25266, 24516, 23762, 23005, 22244, 21480, 20713, 19942, 19169, 18392, 17613, 16831, 16046, 15259, 14469, 13678, 12884, 12088, 11291, 10492, 9691, 8888, 8085, 7280, 6473, 5666, 4858, 4050, 3240, 2431, 1620, 810, 0 }; //Generate a table index and table shift value using input value from a selected rate static void EnvelopeSelect( Bit8u val, Bit8u& index, Bit8u& shift ) { if ( val < 13 * 4 ) { //Rate 0 - 12 shift = 12 - ( val >> 2 ); index = val & 3; } else if ( val < 15 * 4 ) { //rate 13 - 14 shift = 0; index = val - 12 * 4; } else { //rate 15 and up shift = 0; index = 12; } } #if ( DBOPL_WAVE == WAVE_HANDLER ) /* Generate the different waveforms out of the sine/exponetial table using handlers */ static inline Bits MakeVolume( Bitu wave, Bitu volume ) { Bitu total = wave + volume; Bitu index = total & 0xff; Bitu sig = ExpTable[ index ]; Bitu exp = total >> 8; #if 0 //Check if we overflow the 31 shift limit if ( exp >= 32 ) { LOG_MSG( "WTF %d %d", total, exp ); } #endif return (sig >> exp); }; static Bits DB_FASTCALL WaveForm0( Bitu i, Bitu volume ) { Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 Bitu wave = SinTable[i & 511]; return (MakeVolume( wave, volume ) ^ neg) - neg; } static Bits DB_FASTCALL WaveForm1( Bitu i, Bitu volume ) { Bit32u wave = SinTable[i & 511]; wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); return MakeVolume( wave, volume ); } static Bits DB_FASTCALL WaveForm2( Bitu i, Bitu volume ) { Bitu wave = SinTable[i & 511]; return MakeVolume( wave, volume ); } static Bits DB_FASTCALL WaveForm3( Bitu i, Bitu volume ) { Bitu wave = SinTable[i & 255]; wave |= ( ( (i ^ 256 ) & 256) - 1) >> ( 32 - 12 ); return MakeVolume( wave, volume ); } static Bits DB_FASTCALL WaveForm4( Bitu i, Bitu volume ) { //Twice as fast i <<= 1; Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 Bitu wave = SinTable[i & 511]; wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); return (MakeVolume( wave, volume ) ^ neg) - neg; } static Bits DB_FASTCALL WaveForm5( Bitu i, Bitu volume ) { //Twice as fast i <<= 1; Bitu wave = SinTable[i & 511]; wave |= ( ( (i ^ 512 ) & 512) - 1) >> ( 32 - 12 ); return MakeVolume( wave, volume ); } static Bits DB_FASTCALL WaveForm6( Bitu i, Bitu volume ) { Bits neg = 0 - (( i >> 9) & 1);//Create ~0 or 0 return (MakeVolume( 0, volume ) ^ neg) - neg; } static Bits DB_FASTCALL WaveForm7( Bitu i, Bitu volume ) { //Negative is reversed here Bits neg = (( i >> 9) & 1) - 1; Bitu wave = (i << 3); //When negative the volume also runs backwards wave = ((wave ^ neg) - neg) & 4095; return (MakeVolume( wave, volume ) ^ neg) - neg; } static const WaveHandler WaveHandlerTable[8] = { WaveForm0, WaveForm1, WaveForm2, WaveForm3, WaveForm4, WaveForm5, WaveForm6, WaveForm7 }; #endif /* Operator */ //We zero out when rate == 0 inline void Operator::UpdateAttack( const Chip* chip ) { Bit8u rate = reg60 >> 4; if ( rate ) { Bit8u val = (rate << 2) + ksr; attackAdd = chip->attackRates[ val ]; rateZero &= ~(1 << ATTACK); } else { attackAdd = 0; rateZero |= (1 << ATTACK); } } inline void Operator::UpdateDecay( const Chip* chip ) { Bit8u rate = reg60 & 0xf; if ( rate ) { Bit8u val = (rate << 2) + ksr; decayAdd = chip->linearRates[ val ]; rateZero &= ~(1 << DECAY); } else { decayAdd = 0; rateZero |= (1 << DECAY); } } inline void Operator::UpdateRelease( const Chip* chip ) { Bit8u rate = reg80 & 0xf; if ( rate ) { Bit8u val = (rate << 2) + ksr; releaseAdd = chip->linearRates[ val ]; rateZero &= ~(1 << RELEASE); if ( !(reg20 & MASK_SUSTAIN ) ) { rateZero &= ~( 1 << SUSTAIN ); } } else { rateZero |= (1 << RELEASE); releaseAdd = 0; if ( !(reg20 & MASK_SUSTAIN ) ) { rateZero |= ( 1 << SUSTAIN ); } } } inline void Operator::UpdateAttenuation( ) { Bit8u kslBase = (Bit8u)((chanData >> SHIFT_KSLBASE) & 0xff); Bit32u tl = reg40 & 0x3f; Bit8u kslShift = KslShiftTable[ reg40 >> 6 ]; //Make sure the attenuation goes to the right bits totalLevel = tl << ( ENV_BITS - 7 ); //Total level goes 2 bits below max totalLevel += ( kslBase << ENV_EXTRA ) >> kslShift; } void Operator::UpdateFrequency( ) { Bit32u freq = chanData & (( 1 << 10 ) - 1); Bit32u block = (chanData >> 10) & 0xff; #ifdef WAVE_PRECISION block = 7 - block; waveAdd = ( freq * freqMul ) >> block; #else waveAdd = ( freq << block ) * freqMul; #endif if ( reg20 & MASK_VIBRATO ) { vibStrength = (Bit8u)(freq >> 7); #ifdef WAVE_PRECISION vibrato = ( vibStrength * freqMul ) >> block; #else vibrato = ( vibStrength << block ) * freqMul; #endif } else { vibStrength = 0; vibrato = 0; } } void Operator::UpdateRates( const Chip* chip ) { //Mame seems to reverse this where enabling ksr actually lowers //the rate, but pdf manuals says otherwise? Bit8u newKsr = (Bit8u)((chanData >> SHIFT_KEYCODE) & 0xff); if ( !( reg20 & MASK_KSR ) ) { newKsr >>= 2; } if ( ksr == newKsr ) return; ksr = newKsr; UpdateAttack( chip ); UpdateDecay( chip ); UpdateRelease( chip ); } INLINE Bit32s Operator::RateForward( Bit32u add ) { rateIndex += add; Bit32s ret = rateIndex >> RATE_SH; rateIndex = rateIndex & RATE_MASK; return ret; } template< Operator::State yes> Bits Operator::TemplateVolume( ) { Bit32s vol = volume; Bit32s change; switch ( yes ) { case OFF: return ENV_MAX; case ATTACK: change = RateForward( attackAdd ); if ( !change ) return vol; vol += ( (~vol) * change ) >> 3; if ( vol < ENV_MIN ) { volume = ENV_MIN; rateIndex = 0; SetState( DECAY ); return ENV_MIN; } break; case DECAY: vol += RateForward( decayAdd ); if ( GCC_UNLIKELY(vol >= sustainLevel) ) { //Check if we didn't overshoot max attenuation, then just go off if ( GCC_UNLIKELY(vol >= ENV_MAX) ) { volume = ENV_MAX; SetState( OFF ); return ENV_MAX; } //Continue as sustain rateIndex = 0; SetState( SUSTAIN ); } break; case SUSTAIN: if ( reg20 & MASK_SUSTAIN ) { return vol; } //In sustain phase, but not sustaining, do regular release /* fall through */ case RELEASE: vol += RateForward( releaseAdd );; if ( GCC_UNLIKELY(vol >= ENV_MAX) ) { volume = ENV_MAX; SetState( OFF ); return ENV_MAX; } break; } volume = vol; return vol; } static const VolumeHandler VolumeHandlerTable[5] = { &Operator::TemplateVolume< Operator::OFF >, &Operator::TemplateVolume< Operator::RELEASE >, &Operator::TemplateVolume< Operator::SUSTAIN >, &Operator::TemplateVolume< Operator::DECAY >, &Operator::TemplateVolume< Operator::ATTACK > }; INLINE Bitu Operator::ForwardVolume() { return currentLevel + (this->*volHandler)(); } INLINE Bitu Operator::ForwardWave() { waveIndex += waveCurrent; return waveIndex >> WAVE_SH; } void Operator::Write20( const Chip* chip, Bit8u val ) { Bit8u change = (reg20 ^ val ); if ( !change ) return; reg20 = val; //Shift the tremolo bit over the entire register, saved a branch, YES! tremoloMask = (Bit8s)(val) >> 7; tremoloMask &= ~(( 1 << ENV_EXTRA ) -1); //Update specific features based on changes if ( change & MASK_KSR ) { UpdateRates( chip ); } //With sustain enable the volume doesn't change if ( reg20 & MASK_SUSTAIN || ( !releaseAdd ) ) { rateZero |= ( 1 << SUSTAIN ); } else { rateZero &= ~( 1 << SUSTAIN ); } //Frequency multiplier or vibrato changed if ( change & (0xf | MASK_VIBRATO) ) { freqMul = chip->freqMul[ val & 0xf ]; UpdateFrequency(); } } void Operator::Write40( const Chip* /*chip*/, Bit8u val ) { if (!(reg40 ^ val )) return; reg40 = val; UpdateAttenuation( ); } void Operator::Write60( const Chip* chip, Bit8u val ) { Bit8u change = reg60 ^ val; reg60 = val; if ( change & 0x0f ) { UpdateDecay( chip ); } if ( change & 0xf0 ) { UpdateAttack( chip ); } } void Operator::Write80( const Chip* chip, Bit8u val ) { Bit8u change = (reg80 ^ val ); if ( !change ) return; reg80 = val; Bit8u sustain = val >> 4; //Turn 0xf into 0x1f sustain |= ( sustain + 1) & 0x10; sustainLevel = sustain << ( ENV_BITS - 5 ); if ( change & 0x0f ) { UpdateRelease( chip ); } } void Operator::WriteE0( const Chip* chip, Bit8u val ) { if ( !(regE0 ^ val) ) return; //in opl3 mode you can always selet 7 waveforms regardless of waveformselect Bit8u waveForm = val & ( ( 0x3 & chip->waveFormMask ) | (0x7 & chip->opl3Active ) ); regE0 = val; #if ( DBOPL_WAVE == WAVE_HANDLER ) waveHandler = WaveHandlerTable[ waveForm ]; #else waveBase = WaveTable + WaveBaseTable[ waveForm ]; waveStart = WaveStartTable[ waveForm ] << WAVE_SH; waveMask = WaveMaskTable[ waveForm ]; #endif } INLINE void Operator::SetState( Bit8u s ) { state = s; volHandler = VolumeHandlerTable[ s ]; } INLINE bool Operator::Silent() const { if ( !ENV_SILENT( totalLevel + volume ) ) return false; if ( !(rateZero & ( 1 << state ) ) ) return false; return true; } INLINE void Operator::Prepare( const Chip* chip ) { currentLevel = totalLevel + (chip->tremoloValue & tremoloMask); waveCurrent = waveAdd; if ( vibStrength >> chip->vibratoShift ) { Bit32s add = vibrato >> chip->vibratoShift; //Sign extend over the shift value Bit32s neg = chip->vibratoSign; //Negate the add with -1 or 0 add = ( add ^ neg ) - neg; waveCurrent += add; } } void Operator::KeyOn( Bit8u mask ) { if ( !keyOn ) { //Restart the frequency generator #if ( DBOPL_WAVE > WAVE_HANDLER ) waveIndex = waveStart; #else waveIndex = 0; #endif rateIndex = 0; SetState( ATTACK ); } keyOn |= mask; } void Operator::KeyOff( Bit8u mask ) { keyOn &= ~mask; if ( !keyOn ) { if ( state != OFF ) { SetState( RELEASE ); } } } INLINE Bits Operator::GetWave( Bitu index, Bitu vol ) { #if ( DBOPL_WAVE == WAVE_HANDLER ) return waveHandler( index, vol << ( 3 - ENV_EXTRA ) ); #elif ( DBOPL_WAVE == WAVE_TABLEMUL ) return (waveBase[ index & waveMask ] * MulTable[ vol >> ENV_EXTRA ]) >> MUL_SH; #elif ( DBOPL_WAVE == WAVE_TABLELOG ) Bit32s wave = waveBase[ index & waveMask ]; Bit32u total = ( wave & 0x7fff ) + vol << ( 3 - ENV_EXTRA ); Bit32s sig = ExpTable[ total & 0xff ]; Bit32u exp = total >> 8; Bit32s neg = wave >> 16; return ((sig ^ neg) - neg) >> exp; #else #error "No valid wave routine" #endif } Bits INLINE Operator::GetSample( Bits modulation ) { Bitu vol = ForwardVolume(); if ( ENV_SILENT( vol ) ) { //Simply forward the wave waveIndex += waveCurrent; return 0; } else { Bitu index = ForwardWave(); index += modulation; return GetWave( index, vol ); } } Operator::Operator() { chanData = 0; freqMul = 0; waveIndex = 0; waveAdd = 0; waveCurrent = 0; keyOn = 0; ksr = 0; reg20 = 0; reg40 = 0; reg60 = 0; reg80 = 0; regE0 = 0; SetState( OFF ); rateZero = (1 << OFF); sustainLevel = ENV_MAX; currentLevel = ENV_MAX; totalLevel = ENV_MAX; volume = ENV_MAX; releaseAdd = 0; } /* Channel */ Channel::Channel() { old[0] = old[1] = 0; chanData = 0; regB0 = 0; regC0 = 0; maskLeft = -1; maskRight = -1; feedback = 31; fourMask = 0; synthHandler = &Channel::BlockTemplate< sm2FM >; } void Channel::SetChanData( const Chip* chip, Bit32u data ) { Bit32u change = chanData ^ data; chanData = data; Op( 0 )->chanData = data; Op( 1 )->chanData = data; //Since a frequency update triggered this, always update frequency Op( 0 )->UpdateFrequency(); Op( 1 )->UpdateFrequency(); if ( change & ( 0xff << SHIFT_KSLBASE ) ) { Op( 0 )->UpdateAttenuation(); Op( 1 )->UpdateAttenuation(); } if ( change & ( 0xff << SHIFT_KEYCODE ) ) { Op( 0 )->UpdateRates( chip ); Op( 1 )->UpdateRates( chip ); } } void Channel::UpdateFrequency( const Chip* chip, Bit8u fourOp ) { //Extrace the frequency bits Bit32u data = chanData & 0xffff; Bit32u kslBase = KslTable[ data >> 6 ]; Bit32u keyCode = ( data & 0x1c00) >> 9; if ( chip->reg08 & 0x40 ) { keyCode |= ( data & 0x100)>>8; /* notesel == 1 */ } else { keyCode |= ( data & 0x200)>>9; /* notesel == 0 */ } //Add the keycode and ksl into the highest bits of chanData data |= (keyCode << SHIFT_KEYCODE) | ( kslBase << SHIFT_KSLBASE ); ( this + 0 )->SetChanData( chip, data ); if ( fourOp & 0x3f ) { ( this + 1 )->SetChanData( chip, data ); } } void Channel::WriteA0( const Chip* chip, Bit8u val ) { Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask; //Don't handle writes to silent fourop channels if ( fourOp > 0x80 ) return; Bit32u change = (chanData ^ val ) & 0xff; if ( change ) { chanData ^= change; UpdateFrequency( chip, fourOp ); } } void Channel::WriteB0( const Chip* chip, Bit8u val ) { Bit8u fourOp = chip->reg104 & chip->opl3Active & fourMask; //Don't handle writes to silent fourop channels if ( fourOp > 0x80 ) return; Bitu change = (chanData ^ ( val << 8 ) ) & 0x1f00; if ( change ) { chanData ^= change; UpdateFrequency( chip, fourOp ); } //Check for a change in the keyon/off state if ( !(( val ^ regB0) & 0x20)) return; regB0 = val; if ( val & 0x20 ) { Op(0)->KeyOn( 0x1 ); Op(1)->KeyOn( 0x1 ); if ( fourOp & 0x3f ) { ( this + 1 )->Op(0)->KeyOn( 1 ); ( this + 1 )->Op(1)->KeyOn( 1 ); } } else { Op(0)->KeyOff( 0x1 ); Op(1)->KeyOff( 0x1 ); if ( fourOp & 0x3f ) { ( this + 1 )->Op(0)->KeyOff( 1 ); ( this + 1 )->Op(1)->KeyOff( 1 ); } } } void Channel::WriteC0(const Chip* chip, Bit8u val) { Bit8u change = val ^ regC0; if (!change) return; regC0 = val; feedback = (regC0 >> 1) & 7; if (feedback) { //We shift the input to the right 10 bit wave index value feedback = 9 - feedback; } else { feedback = 31; } UpdateSynth(chip); } void Channel::WritePan(Bit8u val) { panLeft = PanLawTable[val & 0x7F]; panRight = PanLawTable[0x7F - (val & 0x7F)]; } void Channel::UpdateSynth( const Chip* chip ) { //Select the new synth mode if ( chip->opl3Active ) { //4-op mode enabled for this channel if ( (chip->reg104 & fourMask) & 0x3f ) { Channel* chan0, *chan1; //Check if it's the 2nd channel in a 4-op if ( !(fourMask & 0x80 ) ) { chan0 = this; chan1 = this + 1; } else { chan0 = this - 1; chan1 = this; } Bit8u synth = ( (chan0->regC0 & 1) << 0 )| (( chan1->regC0 & 1) << 1 ); switch ( synth ) { case 0: chan0->synthHandler = &Channel::BlockTemplate< sm3FMFM >; break; case 1: chan0->synthHandler = &Channel::BlockTemplate< sm3AMFM >; break; case 2: chan0->synthHandler = &Channel::BlockTemplate< sm3FMAM >; break; case 3: chan0->synthHandler = &Channel::BlockTemplate< sm3AMAM >; break; } //Disable updating percussion channels } else if ((fourMask & 0x40) && ( chip->regBD & 0x20) ) { //Regular dual op, am or fm } else if (regC0 & 1 ) { synthHandler = &Channel::BlockTemplate< sm3AM >; } else { synthHandler = &Channel::BlockTemplate< sm3FM >; } maskLeft = (regC0 & 0x10 ) ? -1 : 0; maskRight = (regC0 & 0x20 ) ? -1 : 0; //opl2 active } else { //Disable updating percussion channels if ( (fourMask & 0x40) && ( chip->regBD & 0x20 ) ) { //Regular dual op, am or fm } else if (regC0 & 1 ) { synthHandler = &Channel::BlockTemplate< sm2AM >; } else { synthHandler = &Channel::BlockTemplate< sm2FM >; } } } template< bool opl3Mode> INLINE void Channel::GeneratePercussion( Chip* chip, Bit32s* output ) { Channel* chan = this; //BassDrum Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback; old[0] = old[1]; old[1] = static_cast(Op(0)->GetSample( mod )); //When bassdrum is in AM mode first operator is ignoed if ( chan->regC0 & 1 ) { mod = 0; } else { mod = old[0]; } Bit32s sample = static_cast(Op(1)->GetSample( mod )); //Precalculate stuff used by other outputs Bit32u noiseBit = chip->ForwardNoise() & 0x1; Bit32u c2 = static_cast(Op(2)->ForwardWave()); Bit32u c5 = static_cast(Op(5)->ForwardWave()); Bit32u phaseBit = (((c2 & 0x88) ^ ((c2<<5) & 0x80)) | ((c5 ^ (c5<<2)) & 0x20)) ? 0x02 : 0x00; //Hi-Hat Bit32u hhVol = static_cast(Op(2)->ForwardVolume()); if ( !ENV_SILENT( hhVol ) ) { Bit32u hhIndex = (phaseBit<<8) | (0x34 << ( phaseBit ^ (noiseBit << 1 ))); sample += static_cast(Op(2)->GetWave( hhIndex, hhVol )); } //Snare Drum Bit32u sdVol = static_cast(Op(3)->ForwardVolume()); if ( !ENV_SILENT( sdVol ) ) { Bit32u sdIndex = ( 0x100 + (c2 & 0x100) ) ^ ( noiseBit << 8 ); sample += static_cast(Op(3)->GetWave( sdIndex, sdVol )); } //Tom-tom sample += static_cast(Op(4)->GetSample( 0 )); //Top-Cymbal Bit32u tcVol = static_cast(Op(5)->ForwardVolume()); if ( !ENV_SILENT( tcVol ) ) { Bit32u tcIndex = (1 + phaseBit) << 8; sample += static_cast(Op(5)->GetWave( tcIndex, tcVol )); } sample <<= 1; if ( opl3Mode ) { output[0] += sample; output[1] += sample; } else { output[0] += sample; } } template Channel* Channel::BlockTemplate( Chip* chip, Bit32u samples, Bit32s* output ) { switch( mode ) { case sm2AM: case sm3AM: if ( Op(0)->Silent() && Op(1)->Silent() ) { old[0] = old[1] = 0; return (this + 1); } break; case sm2FM: case sm3FM: if ( Op(1)->Silent() ) { old[0] = old[1] = 0; return (this + 1); } break; case sm3FMFM: if ( Op(3)->Silent() ) { old[0] = old[1] = 0; return (this + 2); } break; case sm3AMFM: if ( Op(0)->Silent() && Op(3)->Silent() ) { old[0] = old[1] = 0; return (this + 2); } break; case sm3FMAM: if ( Op(1)->Silent() && Op(3)->Silent() ) { old[0] = old[1] = 0; return (this + 2); } break; case sm3AMAM: if ( Op(0)->Silent() && Op(2)->Silent() && Op(3)->Silent() ) { old[0] = old[1] = 0; return (this + 2); } break; default: break; } //Init the operators with the the current vibrato and tremolo values Op( 0 )->Prepare( chip ); Op( 1 )->Prepare( chip ); if ( mode > sm4Start ) { Op( 2 )->Prepare( chip ); Op( 3 )->Prepare( chip ); } if ( mode > sm6Start ) { Op( 4 )->Prepare( chip ); Op( 5 )->Prepare( chip ); } for ( Bitu i = 0; i < samples; i++ ) { //Early out for percussion handlers if ( mode == sm2Percussion ) { GeneratePercussion( chip, output + i ); continue; //Prevent some unitialized value bitching } else if ( mode == sm3Percussion ) { GeneratePercussion( chip, output + i * 2 ); continue; //Prevent some unitialized value bitching } //Do unsigned shift so we can shift out all bits but still stay in 10 bit range otherwise Bit32s mod = (Bit32u)((old[0] + old[1])) >> feedback; old[0] = old[1]; old[1] = static_cast(Op(0)->GetSample( mod )); Bit32s sample; Bit32s out0 = old[0]; if ( mode == sm2AM || mode == sm3AM ) { sample = static_cast(out0 + Op(1)->GetSample( 0 )); } else if ( mode == sm2FM || mode == sm3FM ) { sample = static_cast(Op(1)->GetSample( out0 )); } else if ( mode == sm3FMFM ) { Bits next = Op(1)->GetSample( out0 ); next = Op(2)->GetSample( next ); sample = static_cast(Op(3)->GetSample( next )); } else if ( mode == sm3AMFM ) { sample = out0; Bits next = Op(1)->GetSample( 0 ); next = Op(2)->GetSample( next ); sample += static_cast(Op(3)->GetSample( next )); } else if ( mode == sm3FMAM ) { sample = static_cast(Op(1)->GetSample( out0 )); Bits next = Op(2)->GetSample( 0 ); sample += static_cast(Op(3)->GetSample( next )); } else if ( mode == sm3AMAM ) { sample = out0; Bits next = Op(1)->GetSample( 0 ); sample += static_cast(Op(2)->GetSample( next )); sample += static_cast(Op(3)->GetSample( 0 )); } switch( mode ) { case sm2AM: case sm2FM: output[ i ] += sample; break; case sm3AM: case sm3FM: case sm3FMFM: case sm3AMFM: case sm3FMAM: case sm3AMAM: output[ i * 2 + 0 ] += (sample * panLeft / 65535) & maskLeft; output[ i * 2 + 1 ] += (sample * panRight / 65535) & maskRight; break; default: break; } } switch( mode ) { case sm2AM: case sm2FM: case sm3AM: case sm3FM: return ( this + 1 ); case sm3FMFM: case sm3AMFM: case sm3FMAM: case sm3AMAM: return( this + 2 ); case sm2Percussion: case sm3Percussion: return( this + 3 ); } return 0; } /* Chip */ Chip::Chip() { reg08 = 0; reg04 = 0; regBD = 0; reg104 = 0; opl3Active = 0; } INLINE Bit32u Chip::ForwardNoise() { noiseCounter += noiseAdd; Bitu count = noiseCounter >> LFO_SH; noiseCounter &= WAVE_MASK; for ( ; count > 0; --count ) { //Noise calculation from mame noiseValue ^= ( 0x800302 ) & ( 0 - (noiseValue & 1 ) ); noiseValue >>= 1; } return noiseValue; } INLINE Bit32u Chip::ForwardLFO( Bit32u samples ) { //Current vibrato value, runs 4x slower than tremolo vibratoSign = ( VibratoTable[ vibratoIndex >> 2] ) >> 7; vibratoShift = ( VibratoTable[ vibratoIndex >> 2] & 7) + vibratoStrength; tremoloValue = TremoloTable[ tremoloIndex ] >> tremoloStrength; //Check hom many samples there can be done before the value changes Bit32u todo = LFO_MAX - lfoCounter; Bit32u count = (todo + lfoAdd - 1) / lfoAdd; if ( count > samples ) { count = samples; lfoCounter += count * lfoAdd; } else { lfoCounter += count * lfoAdd; lfoCounter &= (LFO_MAX - 1); //Maximum of 7 vibrato value * 4 vibratoIndex = ( vibratoIndex + 1 ) & 31; //Clip tremolo to the the table size if ( tremoloIndex + 1 < TREMOLO_TABLE ) ++tremoloIndex; else tremoloIndex = 0; } return count; } void Chip::WriteBD( Bit8u val ) { Bit8u change = regBD ^ val; if ( !change ) return; regBD = val; //TODO could do this with shift and xor? vibratoStrength = (val & 0x40) ? 0x00 : 0x01; tremoloStrength = (val & 0x80) ? 0x00 : 0x02; if ( val & 0x20 ) { //Drum was just enabled, make sure channel 6 has the right synth if ( change & 0x20 ) { if ( opl3Active ) { chan[6].synthHandler = &Channel::BlockTemplate< sm3Percussion >; } else { chan[6].synthHandler = &Channel::BlockTemplate< sm2Percussion >; } } //Bass Drum if ( val & 0x10 ) { chan[6].op[0].KeyOn( 0x2 ); chan[6].op[1].KeyOn( 0x2 ); } else { chan[6].op[0].KeyOff( 0x2 ); chan[6].op[1].KeyOff( 0x2 ); } //Hi-Hat if ( val & 0x1 ) { chan[7].op[0].KeyOn( 0x2 ); } else { chan[7].op[0].KeyOff( 0x2 ); } //Snare if ( val & 0x8 ) { chan[7].op[1].KeyOn( 0x2 ); } else { chan[7].op[1].KeyOff( 0x2 ); } //Tom-Tom if ( val & 0x4 ) { chan[8].op[0].KeyOn( 0x2 ); } else { chan[8].op[0].KeyOff( 0x2 ); } //Top Cymbal if ( val & 0x2 ) { chan[8].op[1].KeyOn( 0x2 ); } else { chan[8].op[1].KeyOff( 0x2 ); } //Toggle keyoffs when we turn off the percussion } else if ( change & 0x20 ) { //Trigger a reset to setup the original synth handler //This makes it call chan[6].UpdateSynth( this ); chan[6].op[0].KeyOff( 0x2 ); chan[6].op[1].KeyOff( 0x2 ); chan[7].op[0].KeyOff( 0x2 ); chan[7].op[1].KeyOff( 0x2 ); chan[8].op[0].KeyOff( 0x2 ); chan[8].op[1].KeyOff( 0x2 ); } } #define REGOP( _FUNC_ ) \ index = ( ( reg >> 3) & 0x20 ) | ( reg & 0x1f ); \ if ( OpOffsetTable[ index ] ) { \ Operator* regOp = (Operator*)( ((char *)this ) + OpOffsetTable[ index ] ); \ regOp->_FUNC_( this, val ); \ } #define REGCHAN( _FUNC_ ) \ index = ( ( reg >> 4) & 0x10 ) | ( reg & 0xf ); \ if ( ChanOffsetTable[ index ] ) { \ Channel* regChan = (Channel*)( ((char *)this ) + ChanOffsetTable[ index ] ); \ regChan->_FUNC_( this, val ); \ } //Update the 0xc0 register for all channels to signal the switch to mono/stereo handlers void Chip::UpdateSynths() { for (int i = 0; i < 18; i++) { chan[i].UpdateSynth(this); } } void Chip::WriteReg( Bit32u reg, Bit8u val ) { Bitu index; switch ( (reg & 0xf0) >> 4 ) { case 0x00 >> 4: if ( reg == 0x01 ) { waveFormMask = ( val & 0x20 ) ? 0x7 : 0x0; } else if ( reg == 0x104 ) { //Only detect changes in lowest 6 bits if ( !((reg104 ^ val) & 0x3f) ) return; //Always keep the highest bit enabled, for checking > 0x80 reg104 = 0x80 | ( val & 0x3f ); //Switch synths when changing the 4op combinations UpdateSynths(); } else if ( reg == 0x105 ) { //MAME says the real opl3 doesn't reset anything on opl3 disable/enable till the next write in another register if ( !((opl3Active ^ val) & 1 ) ) return; opl3Active = ( val & 1 ) ? 0xff : 0; //Just tupdate the synths now that opl3 most have been enabled //This isn't how the real card handles it but need to switch to stereo generating handlers UpdateSynths(); } else if ( reg == 0x08 ) { reg08 = val; } case 0x10 >> 4: break; case 0x20 >> 4: case 0x30 >> 4: REGOP( Write20 ); break; case 0x40 >> 4: case 0x50 >> 4: REGOP( Write40 ); break; case 0x60 >> 4: case 0x70 >> 4: REGOP( Write60 ); break; case 0x80 >> 4: case 0x90 >> 4: REGOP( Write80 ); break; case 0xa0 >> 4: REGCHAN( WriteA0 ); break; case 0xb0 >> 4: if ( reg == 0xbd ) { WriteBD( val ); } else { REGCHAN( WriteB0 ); } break; case 0xc0 >> 4: REGCHAN( WriteC0 ); case 0xd0 >> 4: break; case 0xe0 >> 4: case 0xf0 >> 4: REGOP( WriteE0 ); break; } } Bit32u Chip::WriteAddr( Bit32u port, Bit8u val ) { switch ( port & 3 ) { case 0: return val; case 2: if ( opl3Active || (val == 0x05) ) return 0x100 | val; else return val; } return 0; } void Chip::GenerateBlock2( Bitu total, Bit32s* output ) { while ( total > 0 ) { Bit32u samples = ForwardLFO( static_cast(total) ); memset(output, 0, sizeof(Bit32s) * samples); // int count = 0; for( Channel* ch = chan; ch < chan + 9; ) { // count++; ch = (ch->*(ch->synthHandler))( this, samples, output ); } total -= samples; output += samples; } } void Chip::GenerateBlock2_Mix( Bitu total, Bit32s* output ) { while ( total > 0 ) { Bit32u samples = ForwardLFO( static_cast(total) ); // int count = 0; for( Channel* ch = chan; ch < chan + 9; ) { // count++; ch = (ch->*(ch->synthHandler))( this, samples, output ); } total -= samples; output += samples; } } void Chip::GenerateBlock3( Bitu total, Bit32s* output ) { while ( total > 0 ) { Bit32u samples = ForwardLFO( static_cast(total) ); memset(output, 0, sizeof(Bit32s) * samples *2); // int count = 0; for( Channel* ch = chan; ch < chan + 18; ) { // count++; ch = (ch->*(ch->synthHandler))( this, samples, output ); } total -= samples; output += samples * 2; } } void Chip::GenerateBlock3_Mix( Bitu total, Bit32s* output ) { while ( total > 0 ) { Bit32u samples = ForwardLFO( static_cast(total) ); // int count = 0; for( Channel* ch = chan; ch < chan + 18; ) { // count++; ch = (ch->*(ch->synthHandler))( this, samples, output ); } total -= samples; output += samples * 2; } } struct CacheEntry { Bit32u rate; Bit32u freqMul[16]; Bit32u linearRates[76]; Bit32u attackRates[76]; }; struct Cache : NoCopy { ~Cache(); Mutex mutex; std::vector entries; }; static Cache cache; Cache::~Cache() { for ( size_t i = 0, n = entries.size(); i < n; ++i ) delete entries[i]; } static const CacheEntry *CacheLookupRateDependent( Bit32u rate ) { for ( size_t i = 0, n = cache.entries.size(); i < n; ++i ) { const CacheEntry *entry = cache.entries[i]; if (entry->rate == rate) return entry; } return NULL; } static const CacheEntry &ComputeRateDependent( Bit32u rate ) { { MutexHolder lock( cache.mutex ); if (const CacheEntry *entry = CacheLookupRateDependent( rate )) return *entry; } double original = OPLRATE; double scale = original / (double)rate; #if __cplusplus >= 201103L std::unique_ptr entry(new CacheEntry); #else std::auto_ptr entry(new CacheEntry); #endif entry->rate = rate; Bit32u *freqMul = entry->freqMul; Bit32u *linearRates = entry->linearRates; Bit32u *attackRates = entry->attackRates; //With higher octave this gets shifted up //-1 since the freqCreateTable = *2 #ifdef WAVE_PRECISION double freqScale = ( 1 << 7 ) * scale * ( 1 << ( WAVE_SH - 1 - 10)); for ( int i = 0; i < 16; i++ ) { freqMul[i] = (Bit32u)( 0.5 + freqScale * FreqCreateTable[ i ] ); } #else Bit32u freqScale = (Bit32u)( 0.5 + scale * ( 1 << ( WAVE_SH - 1 - 10))); for ( int i = 0; i < 16; i++ ) { freqMul[i] = freqScale * FreqCreateTable[ i ]; } #endif //-3 since the real envelope takes 8 steps to reach the single value we supply for ( Bit8u i = 0; i < 76; i++ ) { Bit8u index, shift; EnvelopeSelect( i, index, shift ); linearRates[i] = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH + ENV_EXTRA - shift - 3 ))); } // Bit32s attackDiffs[62]; //Generate the best matching attack rate for ( Bit8u i = 0; i < 62; i++ ) { Bit8u index, shift; EnvelopeSelect( i, index, shift ); //Original amount of samples the attack would take Bit32s original = (Bit32u)( (AttackSamplesTable[ index ] << shift) / scale); Bit32s guessAdd = (Bit32u)( scale * (EnvelopeIncreaseTable[ index ] << ( RATE_SH - shift - 3 ))); Bit32s bestAdd = guessAdd; Bit32u bestDiff = 1 << 30; for( Bit32u passes = 0; passes < 16; passes ++ ) { Bit32s volume = ENV_MAX; Bit32s samples = 0; Bit32u count = 0; while ( volume > 0 && samples < original * 2 ) { count += guessAdd; Bit32s change = count >> RATE_SH; count &= RATE_MASK; if ( GCC_UNLIKELY(change) ) { // less than 1 % volume += ( ~volume * change ) >> 3; } samples++; } Bit32s diff = original - samples; Bit32u lDiff = labs( diff ); //Init last on first pass if ( lDiff < bestDiff ) { bestDiff = lDiff; bestAdd = guessAdd; //We hit an exactly matching sample count if ( !bestDiff ) break; } //Linear correction factor, not exactly perfect but seems to work double correct = (original - diff) / (double)original; guessAdd = (Bit32u)(guessAdd * correct); //Below our target if ( diff < 0 ) { //Always add one here for rounding, an overshoot will get corrected by another pass decreasing guessAdd++; } } attackRates[i] = bestAdd; //Keep track of the diffs for some debugging // attackDiffs[i] = bestDiff; } for ( Bit8u i = 62; i < 76; i++ ) { //This should provide instant volume maximizing attackRates[i] = 8 << RATE_SH; } MutexHolder lock( cache.mutex ); if (const CacheEntry *entry = CacheLookupRateDependent( rate )) return *entry; cache.entries.push_back(entry.get()); return *entry.release(); } void Chip::Setup( Bit32u rate ) { double original = OPLRATE; // double original = rate; double scale = original / (double)rate; //Noise counter is run at the same precision as general waves noiseAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) ); noiseCounter = 0; noiseValue = 1; //Make sure it triggers the noise xor the first time //The low frequency oscillation counter //Every time his overflows vibrato and tremoloindex are increased lfoAdd = (Bit32u)( 0.5 + scale * ( 1 << LFO_SH ) ); lfoCounter = 0; vibratoIndex = 0; tremoloIndex = 0; const CacheEntry &entry = ComputeRateDependent( rate ); freqMul = entry.freqMul; linearRates = entry.linearRates; attackRates = entry.attackRates; //Setup the channels with the correct four op flags //Channels are accessed through a table so they appear linear here chan[ 0].fourMask = 0x00 | ( 1 << 0 ); chan[ 1].fourMask = 0x80 | ( 1 << 0 ); chan[ 2].fourMask = 0x00 | ( 1 << 1 ); chan[ 3].fourMask = 0x80 | ( 1 << 1 ); chan[ 4].fourMask = 0x00 | ( 1 << 2 ); chan[ 5].fourMask = 0x80 | ( 1 << 2 ); chan[ 9].fourMask = 0x00 | ( 1 << 3 ); chan[10].fourMask = 0x80 | ( 1 << 3 ); chan[11].fourMask = 0x00 | ( 1 << 4 ); chan[12].fourMask = 0x80 | ( 1 << 4 ); chan[13].fourMask = 0x00 | ( 1 << 5 ); chan[14].fourMask = 0x80 | ( 1 << 5 ); //mark the percussion channels chan[ 6].fourMask = 0x40; chan[ 7].fourMask = 0x40; chan[ 8].fourMask = 0x40; //Clear Everything in opl3 mode WriteReg( 0x105, 0x1 ); for ( int i = 0; i < 512; i++ ) { if ( i == 0x105 ) continue; WriteReg( i, 0xff ); WriteReg( i, 0x0 ); } WriteReg( 0x105, 0x0 ); //Clear everything in opl2 mode for ( int i = 0; i < 255; i++ ) { WriteReg( i, 0xff ); WriteReg( i, 0x0 ); } for ( int i = 0; i < 18; i++ ) { chan[i].WritePan( 0x40 ); } } static bool doneTables = false; void InitTables( void ) { if ( doneTables ) return; doneTables = true; #if ( DBOPL_WAVE == WAVE_HANDLER ) || ( DBOPL_WAVE == WAVE_TABLELOG ) //Exponential volume table, same as the real adlib for ( int i = 0; i < 256; i++ ) { //Save them in reverse ExpTable[i] = (int)( 0.5 + ( pow(2.0, ( 255 - i) * ( 1.0 /256 ) )-1) * 1024 ); ExpTable[i] += 1024; //or remove the -1 oh well :) //Preshift to the left once so the final volume can shift to the right ExpTable[i] *= 2; } #endif #if ( DBOPL_WAVE == WAVE_HANDLER ) //Add 0.5 for the trunc rounding of the integer cast //Do a PI sinetable instead of the original 0.5 PI for ( int i = 0; i < 512; i++ ) { SinTable[i] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 ); } #endif #if ( DBOPL_WAVE == WAVE_TABLEMUL ) //Multiplication based tables for ( int i = 0; i < 384; i++ ) { int s = i * 8; //TODO maybe keep some of the precision errors of the original table? double val = ( 0.5 + ( pow(2.0, -1.0 + ( 255 - s) * ( 1.0 /256 ) )) * ( 1 << MUL_SH )); MulTable[i] = (Bit16u)(val); } //Sine Wave Base for ( int i = 0; i < 512; i++ ) { WaveTable[ 0x0200 + i ] = (Bit16s)(sin( (i + 0.5) * (PI / 512.0) ) * 4084); WaveTable[ 0x0000 + i ] = -WaveTable[ 0x200 + i ]; } //Exponential wave for ( int i = 0; i < 256; i++ ) { WaveTable[ 0x700 + i ] = (Bit16s)( 0.5 + ( pow(2.0, -1.0 + ( 255 - i * 8) * ( 1.0 /256 ) ) ) * 4085 ); WaveTable[ 0x6ff - i ] = -WaveTable[ 0x700 + i ]; } #endif #if ( DBOPL_WAVE == WAVE_TABLELOG ) //Sine Wave Base for ( int i = 0; i < 512; i++ ) { WaveTable[ 0x0200 + i ] = (Bit16s)( 0.5 - log10( sin( (i + 0.5) * (PI / 512.0) ) ) / log10(2.0)*256 ); WaveTable[ 0x0000 + i ] = ((Bit16s)0x8000) | WaveTable[ 0x200 + i]; } //Exponential wave for ( int i = 0; i < 256; i++ ) { WaveTable[ 0x700 + i ] = i * 8; WaveTable[ 0x6ff - i ] = ((Bit16s)0x8000) | i * 8; } #endif // | |//\\|____|WAV7|//__|/\ |____|/\/\| // |\\//| | |WAV7| | \/| | | // |06 |0126|27 |7 |3 |4 |4 5 |5 | #if (( DBOPL_WAVE == WAVE_TABLELOG ) || ( DBOPL_WAVE == WAVE_TABLEMUL )) for ( int i = 0; i < 256; i++ ) { //Fill silence gaps WaveTable[ 0x400 + i ] = WaveTable[0]; WaveTable[ 0x500 + i ] = WaveTable[0]; WaveTable[ 0x900 + i ] = WaveTable[0]; WaveTable[ 0xc00 + i ] = WaveTable[0]; WaveTable[ 0xd00 + i ] = WaveTable[0]; //Replicate sines in other pieces WaveTable[ 0x800 + i ] = WaveTable[ 0x200 + i ]; //double speed sines WaveTable[ 0xa00 + i ] = WaveTable[ 0x200 + i * 2 ]; WaveTable[ 0xb00 + i ] = WaveTable[ 0x000 + i * 2 ]; WaveTable[ 0xe00 + i ] = WaveTable[ 0x200 + i * 2 ]; WaveTable[ 0xf00 + i ] = WaveTable[ 0x200 + i * 2 ]; } #endif //Create the ksl table for ( int oct = 0; oct < 8; oct++ ) { int base = oct * 8; for ( int i = 0; i < 16; i++ ) { int val = base - KslCreateTable[i]; if ( val < 0 ) val = 0; //*4 for the final range to match attenuation range KslTable[ oct * 16 + i ] = val * 4; } } //Create the Tremolo table, just increase and decrease a triangle wave for ( Bit8u i = 0; i < TREMOLO_TABLE / 2; i++ ) { Bit8u val = i << ENV_EXTRA; TremoloTable[i] = val; TremoloTable[TREMOLO_TABLE - 1 - i] = val; } //Create a table with offsets of the channels from the start of the chip DBOPL::Chip* chip = 0; for ( Bitu i = 0; i < 32; i++ ) { Bitu index = i & 0xf; if ( index >= 9 ) { ChanOffsetTable[i] = 0; continue; } //Make sure the four op channels follow eachother if ( index < 6 ) { index = (index % 3) * 2 + ( index / 3 ); } //Add back the bits for highest ones if ( i >= 16 ) index += 9; Bitu blah = reinterpret_cast( &(chip->chan[ index ]) ); ChanOffsetTable[i] = static_cast(blah); } //Same for operators for ( Bitu i = 0; i < 64; i++ ) { if ( i % 8 >= 6 || ( (i / 8) % 4 == 3 ) ) { OpOffsetTable[i] = 0; continue; } Bitu chNum = (i / 8) * 3 + (i % 8) % 3; //Make sure we use 16 and up for the 2nd range to match the chanoffset gap if ( chNum >= 12 ) chNum += 16 - 12; Bitu opNum = ( i % 8 ) / 3; DBOPL::Channel* chan = 0; Bitu blah = reinterpret_cast( &(chan->op[opNum]) ); OpOffsetTable[i] = static_cast(ChanOffsetTable[ chNum ] + blah); } #if 0 //Stupid checks if table's are correct for ( Bitu i = 0; i < 18; i++ ) { Bit32u find = (Bit16u)( &(chip->chan[ i ]) ); for ( Bitu c = 0; c < 32; c++ ) { if ( ChanOffsetTable[c] == find ) { find = 0; break; } } if ( find ) { find = find; } } for ( Bitu i = 0; i < 36; i++ ) { Bit32u find = (Bit16u)( &(chip->chan[ i / 2 ].op[i % 2]) ); for ( Bitu c = 0; c < 64; c++ ) { if ( OpOffsetTable[c] == find ) { find = 0; break; } } if ( find ) { find = find; } } #endif } Bit32u Handler::WriteAddr( Bit32u port, Bit8u val ) { return chip.WriteAddr( port, val ); } void Handler::WriteReg( Bit32u addr, Bit8u val ) { chip.WriteReg( addr, val ); } #define DB_MAX(x, y) ((x) > (y) ? (x) : (y)) #define DB_MIN(x, y) ((x) < (y) ? (x) : (y)) #define DBOPL_CLAMP(V, MIN, MAX) DB_MAX(DB_MIN(V, (MAX)), (MIN)) void Handler::GenerateArr(Bit32s *out, Bitu *samples) { if(GCC_UNLIKELY(*samples > 512)) *samples = 512; if(!chip.opl3Active) chip.GenerateBlock2(*samples, out); else chip.GenerateBlock3(*samples, out); } void Handler::GenerateArr(Bit16s *out, Bitu *samples) { Bit32s out32[1024]; if(GCC_UNLIKELY(*samples > 512)) *samples = 512; memset(out32, 0, sizeof(Bit32s) * 1024); if(!chip.opl3Active) chip.GenerateBlock2(*samples, out32); else chip.GenerateBlock3(*samples, out32); Bitu sz = *samples * 2; for(Bitu i = 0; i < sz; i++) out[i] = static_cast(DBOPL_CLAMP(out32[i], INT16_MIN, INT16_MAX)); } void Handler::GenerateArrMix(Bit32s *out, Bitu *samples) { if(GCC_UNLIKELY(*samples > 512)) *samples = 512; if(!chip.opl3Active) chip.GenerateBlock2_Mix(*samples, out); else chip.GenerateBlock3_Mix(*samples, out); } void Handler::GenerateArrMix(Bit16s *out, Bitu *samples) { Bit32s out32[1024]; if(GCC_UNLIKELY(*samples > 512)) *samples = 512; memset(out32, 0, sizeof(Bit32s) * 1024); if(!chip.opl3Active) chip.GenerateBlock2(*samples, out32); else chip.GenerateBlock3(*samples, out32); Bitu sz = *samples * 2; for(Bitu i = 0; i < sz; i++) out[i] += static_cast(DBOPL_CLAMP(out32[i], INT16_MIN, INT16_MAX)); } void Handler::Init( Bitu rate ) { InitTables(); chip.Setup( static_cast(rate) ); } void Handler::WritePan( Bit32u reg, Bit8u val ) { Bitu index; index = ((reg >> 4) & 0x10) | (reg & 0xf); if (ChanOffsetTable[index]) { Channel* regChan = (Channel*)(((char *)&chip) + ChanOffsetTable[index]); regChan->WritePan(val); } } } //Namespace DBOPL