// Game_Music_Emu 0.6.0. http://www.slack.net/~ant/ // Based on Gens 2.10 ym2612.c #include "Ym2612_ChipEmu.h" #include #include #include #include #include #include /* Copyright (C) 2002 Stéphane Dallongeville (gens AT consolemul.com) */ /* Copyright (C) 2004-2006 Shay Green. This module is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This module is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this module; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */ // This is mostly the original source in its C style and all. // // Somewhat optimized and simplified. Uses a template to generate the many // variants of Update_Chan. Rewrote header file. In need of full rewrite by // someone more familiar with FM sound and the YM2612. Has some inaccuracies // compared to the Sega Genesis sound, particularly being mixed at such a // high sample accuracy (the Genesis sounds like it has only 8 bit samples). // - Shay #ifdef BLARGG_ENABLE_OPTIMIZER #include BLARGG_ENABLE_OPTIMIZER #endif const int output_bits = 14; struct slot_t { const int *DT; // parametre detune int MUL; // parametre "multiple de frequence" int TL; // Total Level = volume lorsque l'enveloppe est au plus haut int TLL; // Total Level ajusted int SLL; // Sustin Level (ajusted) = volume oů l'enveloppe termine sa premiere phase de regression int KSR_S; // Key Scale Rate Shift = facteur de prise en compte du KSL dans la variations de l'enveloppe int KSR; // Key Scale Rate = cette valeur est calculee par rapport ŕ la frequence actuelle, elle va influer // sur les differents parametres de l'enveloppe comme l'attaque, le decay ... comme dans la realite ! int SEG; // Type enveloppe SSG int env_xor; int env_max; const int *AR; // Attack Rate (table pointeur) = Taux d'attaque (AR[KSR]) const int *DR; // Decay Rate (table pointeur) = Taux pour la regression (DR[KSR]) const int *SR; // Sustin Rate (table pointeur) = Taux pour le maintien (SR[KSR]) const int *RR; // Release Rate (table pointeur) = Taux pour le rel'chement (RR[KSR]) int Fcnt; // Frequency Count = compteur-frequence pour determiner l'amplitude actuelle (SIN[Finc >> 16]) int Finc; // frequency step = pas d'incrementation du compteur-frequence // plus le pas est grand, plus la frequence est aďgu (ou haute) int Ecurp; // Envelope current phase = cette variable permet de savoir dans quelle phase // de l'enveloppe on se trouve, par exemple phase d'attaque ou phase de maintenue ... // en fonction de la valeur de cette variable, on va appeler une fonction permettant // de mettre ŕ jour l'enveloppe courante. int Ecnt; // Envelope counter = le compteur-enveloppe permet de savoir oů l'on se trouve dans l'enveloppe int Einc; // Envelope step courant int Ecmp; // Envelope counter limite pour la prochaine phase int EincA; // Envelope step for Attack = pas d'incrementation du compteur durant la phase d'attaque // cette valeur est egal ŕ AR[KSR] int EincD; // Envelope step for Decay = pas d'incrementation du compteur durant la phase de regression // cette valeur est egal ŕ DR[KSR] int EincS; // Envelope step for Sustain = pas d'incrementation du compteur durant la phase de maintenue // cette valeur est egal ŕ SR[KSR] int EincR; // Envelope step for Release = pas d'incrementation du compteur durant la phase de rel'chement // cette valeur est egal ŕ RR[KSR] int *OUTp; // pointeur of SLOT output = pointeur permettant de connecter la sortie de ce slot ŕ l'entree // d'un autre ou carrement ŕ la sortie de la voie int INd; // input data of the slot = donnees en entree du slot int ChgEnM; // Change envelop mask. int AMS; // AMS depth level of this SLOT = degre de modulation de l'amplitude par le LFO int AMSon; // AMS enable flag = drapeau d'activation de l'AMS }; struct channel_t { int S0_OUT[4]; // anciennes sorties slot 0 (pour le feed back) int LEFT; // LEFT enable flag int RIGHT; // RIGHT enable flag int ALGO; // Algorythm = determine les connections entre les operateurs int FB; // shift count of self feed back = degre de "Feed-Back" du SLOT 1 (il est son unique entree) int FMS; // Frequency Modulation Sensitivity of channel = degre de modulation de la frequence sur la voie par le LFO int AMS; // Amplitude Modulation Sensitivity of channel = degre de modulation de l'amplitude sur la voie par le LFO int FNUM[4]; // hauteur frequence de la voie (+ 3 pour le mode special) int FOCT[4]; // octave de la voie (+ 3 pour le mode special) int KC[4]; // Key Code = valeur fonction de la frequence (voir KSR pour les slots, KSR = KC >> KSR_S) slot_t SLOT[4]; // four slot.operators = les 4 slots de la voie int FFlag; // Frequency step recalculation flag }; struct state_t { int TimerBase; // TimerBase calculation int Status; // YM2612 Status (timer overflow) int TimerA; // timerA limit = valeur jusqu'ŕ laquelle le timer A doit compter int TimerAL; int TimerAcnt; // timerA counter = valeur courante du Timer A int TimerB; // timerB limit = valeur jusqu'ŕ laquelle le timer B doit compter int TimerBL; int TimerBcnt; // timerB counter = valeur courante du Timer B int Mode; // Mode actuel des voie 3 et 6 (normal / special) int DAC; // DAC enabled flag channel_t CHANNEL[OPNMIDI_Ym2612_Emu::channel_count]; // Les 6 voies du YM2612 int REG[2][0x100]; // Sauvegardes des valeurs de tout les registres, c'est facultatif // cela nous rend le debuggage plus facile }; #ifndef PI #define PI 3.14159265358979323846 #endif #define ATTACK 0 #define DECAY 1 #define SUBSTAIN 2 #define RELEASE 3 // SIN_LBITS <= 16 // LFO_HBITS <= 16 // (SIN_LBITS + SIN_HBITS) <= 26 // (ENV_LBITS + ENV_HBITS) <= 28 // (LFO_LBITS + LFO_HBITS) <= 28 #define SIN_HBITS 12 // Sinus phase counter int part #define SIN_LBITS (26 - SIN_HBITS) // Sinus phase counter float part (best setting) #if (SIN_LBITS > 16) #define SIN_LBITS 16 // Can't be greater than 16 bits #endif #define ENV_HBITS 12 // Env phase counter int part #define ENV_LBITS (28 - ENV_HBITS) // Env phase counter float part (best setting) #define LFO_HBITS 10 // LFO phase counter int part #define LFO_LBITS (28 - LFO_HBITS) // LFO phase counter float part (best setting) #define SIN_LENGHT (1 << SIN_HBITS) #define ENV_LENGHT (1 << ENV_HBITS) #define LFO_LENGHT (1 << LFO_HBITS) #define TL_LENGHT (ENV_LENGHT * 3) // Env + TL scaling + LFO #define SIN_MASK (SIN_LENGHT - 1) #define ENV_MASK (ENV_LENGHT - 1) #define LFO_MASK (LFO_LENGHT - 1) #define ENV_STEP (96.0 / ENV_LENGHT) // ENV_MAX = 96 dB #define ENV_ATTACK ((ENV_LENGHT * 0) << ENV_LBITS) #define ENV_DECAY ((ENV_LENGHT * 1) << ENV_LBITS) #define ENV_END ((ENV_LENGHT * 2) << ENV_LBITS) #define MAX_OUT_BITS (SIN_HBITS + SIN_LBITS + 2) // Modulation = -4 <--> +4 #define MAX_OUT ((1 << MAX_OUT_BITS) - 1) #define PG_CUT_OFF ((int) (78.0 / ENV_STEP)) #define ENV_CUT_OFF ((int) (68.0 / ENV_STEP)) #define AR_RATE 399128 #define DR_RATE 5514396 //#define AR_RATE 426136 //#define DR_RATE (AR_RATE * 12) #define LFO_FMS_LBITS 9 // FIXED (LFO_FMS_BASE gives somethink as 1) #define LFO_FMS_BASE ((int) (0.05946309436 * 0.0338 * (double) (1 << LFO_FMS_LBITS))) #define S0 0 // Stupid typo of the YM2612 #define S1 2 #define S2 1 #define S3 3 inline void set_seg( slot_t& s, int seg ) { s.env_xor = 0; s.env_max = INT_MAX; s.SEG = seg; if ( seg & 4 ) { s.env_xor = ENV_MASK; s.env_max = ENV_MASK; } } struct tables_t { short SIN_TAB [SIN_LENGHT]; // SINUS TABLE (offset into TL TABLE) int LFOcnt; // LFO counter = compteur-frequence pour le LFO int LFOinc; // LFO step counter = pas d'incrementation du compteur-frequence du LFO // plus le pas est grand, plus la frequence est grande unsigned int AR_TAB [128]; // Attack rate table unsigned int DR_TAB [96]; // Decay rate table unsigned int DT_TAB [8] [32]; // Detune table unsigned int SL_TAB [16]; // Substain level table unsigned int NULL_RATE [32]; // Table for NULL rate int LFO_INC_TAB [8]; // LFO step table short ENV_TAB [2 * ENV_LENGHT + 8]; // ENV CURVE TABLE (attack & decay) short LFO_ENV_TAB [LFO_LENGHT]; // LFO AMS TABLE (adjusted for 11.8 dB) short LFO_FREQ_TAB [LFO_LENGHT]; // LFO FMS TABLE int TL_TAB [TL_LENGHT * 2]; // TOTAL LEVEL TABLE (positif and minus) unsigned int DECAY_TO_ATTACK [ENV_LENGHT]; // Conversion from decay to attack phase unsigned int FINC_TAB [2048]; // Frequency step table }; static const unsigned char DT_DEF_TAB [4 * 32] = { // FD = 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // FD = 1 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8, // FD = 2 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 9, 10, 11, 12, 13, 14, 16, 16, 16, 16, // FD = 3 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8 , 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 20, 22, 22, 22, 22 }; static const unsigned char FKEY_TAB [16] = { 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3 }; static const unsigned char LFO_AMS_TAB [4] = { 31, 4, 1, 0 }; static const unsigned char LFO_FMS_TAB [8] = { LFO_FMS_BASE * 0, LFO_FMS_BASE * 1, LFO_FMS_BASE * 2, LFO_FMS_BASE * 3, LFO_FMS_BASE * 4, LFO_FMS_BASE * 6, LFO_FMS_BASE * 12, LFO_FMS_BASE * 24 }; inline void YM2612_Special_Update() { } struct OPNMIDI_Ym2612_Impl { enum { channel_count = OPNMIDI_Ym2612_Emu::channel_count }; state_t YM2612; int mute_mask; tables_t g; void KEY_ON( channel_t&, int ); void KEY_OFF( channel_t&, int ); int SLOT_SET( int, int ); int CHANNEL_SET( int, int ); int YM_SET( int, int ); void set_rate( double sample_rate, double clock_factor ); void reset(); void write0( int addr, int data ); void write1( int addr, int data ); void run_timer( int ); void run( int pair_count, OPNMIDI_Ym2612_Emu::sample_t* ); }; void OPNMIDI_Ym2612_Impl::KEY_ON( channel_t& ch, int nsl) { slot_t *SL = &(ch.SLOT [nsl]); // on recupere le bon pointeur de slot if (SL->Ecurp == RELEASE) // la touche est-elle rel'chee ? { SL->Fcnt = 0; // Fix Ecco 2 splash sound SL->Ecnt = (g.DECAY_TO_ATTACK [g.ENV_TAB [SL->Ecnt >> ENV_LBITS]] + ENV_ATTACK) & SL->ChgEnM; SL->ChgEnM = ~0; // SL->Ecnt = g.DECAY_TO_ATTACK [g.ENV_TAB [SL->Ecnt >> ENV_LBITS]] + ENV_ATTACK; // SL->Ecnt = 0; SL->Einc = SL->EincA; SL->Ecmp = ENV_DECAY; SL->Ecurp = ATTACK; } } void OPNMIDI_Ym2612_Impl::KEY_OFF(channel_t& ch, int nsl) { slot_t *SL = &(ch.SLOT [nsl]); // on recupere le bon pointeur de slot if (SL->Ecurp != RELEASE) // la touche est-elle appuyee ? { if (SL->Ecnt < ENV_DECAY) // attack phase ? { SL->Ecnt = (g.ENV_TAB [SL->Ecnt >> ENV_LBITS] << ENV_LBITS) + ENV_DECAY; } SL->Einc = SL->EincR; SL->Ecmp = ENV_END; SL->Ecurp = RELEASE; } } int OPNMIDI_Ym2612_Impl::SLOT_SET( int Adr, int data ) { int nch = Adr & 3; if ( nch == 3 ) return 1; channel_t& ch = YM2612.CHANNEL [nch + (Adr & 0x100 ? 3 : 0)]; slot_t& sl = ch.SLOT [(Adr >> 2) & 3]; switch ( Adr & 0xF0 ) { case 0x30: if ( (sl.MUL = (data & 0x0F)) != 0 ) sl.MUL <<= 1; else sl.MUL = 1; sl.DT = (int*) g.DT_TAB [(data >> 4) & 7]; ch.SLOT [0].Finc = -1; break; case 0x40: sl.TL = data & 0x7F; // SOR2 do a lot of TL adjustement and this fix R.Shinobi jump sound... YM2612_Special_Update(); #if ((ENV_HBITS - 7) < 0) sl.TLL = sl.TL >> (7 - ENV_HBITS); #else sl.TLL = sl.TL << (ENV_HBITS - 7); #endif break; case 0x50: sl.KSR_S = 3 - (data >> 6); ch.SLOT [0].Finc = -1; if (data &= 0x1F) sl.AR = (int*) &g.AR_TAB [data << 1]; else sl.AR = (int*) &g.NULL_RATE [0]; sl.EincA = sl.AR [sl.KSR]; if (sl.Ecurp == ATTACK) sl.Einc = sl.EincA; break; case 0x60: if ( (sl.AMSon = (data & 0x80)) != 0 ) sl.AMS = ch.AMS; else sl.AMS = 31; if (data &= 0x1F) sl.DR = (int*) &g.DR_TAB [data << 1]; else sl.DR = (int*) &g.NULL_RATE [0]; sl.EincD = sl.DR [sl.KSR]; if (sl.Ecurp == DECAY) sl.Einc = sl.EincD; break; case 0x70: if (data &= 0x1F) sl.SR = (int*) &g.DR_TAB [data << 1]; else sl.SR = (int*) &g.NULL_RATE [0]; sl.EincS = sl.SR [sl.KSR]; if ((sl.Ecurp == SUBSTAIN) && (sl.Ecnt < ENV_END)) sl.Einc = sl.EincS; break; case 0x80: sl.SLL = g.SL_TAB [data >> 4]; sl.RR = (int*) &g.DR_TAB [((data & 0xF) << 2) + 2]; sl.EincR = sl.RR [sl.KSR]; if ((sl.Ecurp == RELEASE) && (sl.Ecnt < ENV_END)) sl.Einc = sl.EincR; break; case 0x90: // SSG-EG envelope shapes : /* E At Al H 1 0 0 0 \\\\ 1 0 0 1 \___ 1 0 1 0 \/\/ 1 0 1 1 \ 1 1 0 0 //// 1 1 0 1 / 1 1 1 0 /\/\ 1 1 1 1 /___ E = SSG-EG enable At = Start negate Al = Altern H = Hold */ set_seg( sl, (data & 8) ? (data & 0x0F) : 0 ); break; } return 0; } int OPNMIDI_Ym2612_Impl::CHANNEL_SET( int Adr, int data ) { int num = Adr & 3; if ( num == 3 ) return 1; channel_t& ch = YM2612.CHANNEL [num + (Adr & 0x100 ? 3 : 0)]; switch ( Adr & 0xFC ) { case 0xA0: YM2612_Special_Update(); ch.FNUM [0] = (ch.FNUM [0] & 0x700) + data; ch.KC [0] = (ch.FOCT [0] << 2) | FKEY_TAB [ch.FNUM [0] >> 7]; ch.SLOT [0].Finc = -1; break; case 0xA4: YM2612_Special_Update(); ch.FNUM [0] = (ch.FNUM [0] & 0x0FF) + ((data & 0x07) << 8); ch.FOCT [0] = (data & 0x38) >> 3; ch.KC [0] = (ch.FOCT [0] << 2) | FKEY_TAB [ch.FNUM [0] >> 7]; ch.SLOT [0].Finc = -1; break; case 0xA8: if ( Adr < 0x100 ) { num++; YM2612_Special_Update(); YM2612.CHANNEL [2].FNUM [num] = (YM2612.CHANNEL [2].FNUM [num] & 0x700) + data; YM2612.CHANNEL [2].KC [num] = (YM2612.CHANNEL [2].FOCT [num] << 2) | FKEY_TAB [YM2612.CHANNEL [2].FNUM [num] >> 7]; YM2612.CHANNEL [2].SLOT [0].Finc = -1; } break; case 0xAC: if ( Adr < 0x100 ) { num++; YM2612_Special_Update(); YM2612.CHANNEL [2].FNUM [num] = (YM2612.CHANNEL [2].FNUM [num] & 0x0FF) + ((data & 0x07) << 8); YM2612.CHANNEL [2].FOCT [num] = (data & 0x38) >> 3; YM2612.CHANNEL [2].KC [num] = (YM2612.CHANNEL [2].FOCT [num] << 2) | FKEY_TAB [YM2612.CHANNEL [2].FNUM [num] >> 7]; YM2612.CHANNEL [2].SLOT [0].Finc = -1; } break; case 0xB0: if ( ch.ALGO != (data & 7) ) { // Fix VectorMan 2 heli sound (level 1) YM2612_Special_Update(); ch.ALGO = data & 7; ch.SLOT [0].ChgEnM = 0; ch.SLOT [1].ChgEnM = 0; ch.SLOT [2].ChgEnM = 0; ch.SLOT [3].ChgEnM = 0; } ch.FB = 9 - ((data >> 3) & 7); // Real thing ? // if (ch.FB = ((data >> 3) & 7)) ch.FB = 9 - ch.FB; // Thunder force 4 (music stage 8), Gynoug, Aladdin bug sound... // else ch.FB = 31; break; case 0xB4: { YM2612_Special_Update(); ch.LEFT = 0 - ((data >> 7) & 1); ch.RIGHT = 0 - ((data >> 6) & 1); ch.AMS = LFO_AMS_TAB [(data >> 4) & 3]; ch.FMS = LFO_FMS_TAB [data & 7]; for ( int i = 0; i < 4; i++ ) { slot_t& sl = ch.SLOT [i]; sl.AMS = (sl.AMSon ? ch.AMS : 31); } break; } } return 0; } int OPNMIDI_Ym2612_Impl::YM_SET(int Adr, int data) { switch ( Adr ) { case 0x22: if (data & 8) // LFO enable { // Cool Spot music 1, LFO modified severals time which // distord the sound, have to check that on a real genesis... g.LFOinc = g.LFO_INC_TAB [data & 7]; } else { g.LFOinc = g.LFOcnt = 0; } break; case 0x24: YM2612.TimerA = (YM2612.TimerA & 0x003) | (((int) data) << 2); if (YM2612.TimerAL != (1024 - YM2612.TimerA) << 12) { YM2612.TimerAcnt = YM2612.TimerAL = (1024 - YM2612.TimerA) << 12; } break; case 0x25: YM2612.TimerA = (YM2612.TimerA & 0x3FC) | (data & 3); if (YM2612.TimerAL != (1024 - YM2612.TimerA) << 12) { YM2612.TimerAcnt = YM2612.TimerAL = (1024 - YM2612.TimerA) << 12; } break; case 0x26: YM2612.TimerB = data; if (YM2612.TimerBL != (256 - YM2612.TimerB) << (4 + 12)) { YM2612.TimerBcnt = YM2612.TimerBL = (256 - YM2612.TimerB) << (4 + 12); } break; case 0x27: // Parametre divers // b7 = CSM MODE // b6 = 3 slot mode // b5 = reset b // b4 = reset a // b3 = timer enable b // b2 = timer enable a // b1 = load b // b0 = load a if ((data ^ YM2612.Mode) & 0x40) { // We changed the channel 2 mode, so recalculate phase step // This fix the punch sound in Street of Rage 2 YM2612_Special_Update(); YM2612.CHANNEL [2].SLOT [0].Finc = -1; // recalculate phase step } // if ((data & 2) && (YM2612.Status & 2)) YM2612.TimerBcnt = YM2612.TimerBL; // if ((data & 1) && (YM2612.Status & 1)) YM2612.TimerAcnt = YM2612.TimerAL; // YM2612.Status &= (~data >> 4); // Reset du Status au cas ou c'est demande YM2612.Status &= (~data >> 4) & (data >> 2); // Reset Status YM2612.Mode = data; break; case 0x28: { int nch = data & 3; if ( nch == 3 ) return 1; if ( data & 4 ) nch += 3; channel_t& ch = YM2612.CHANNEL [nch]; YM2612_Special_Update(); if (data & 0x10) KEY_ON(ch, S0); // On appuie sur la touche pour le slot 1 else KEY_OFF(ch, S0); // On rel'che la touche pour le slot 1 if (data & 0x20) KEY_ON(ch, S1); // On appuie sur la touche pour le slot 3 else KEY_OFF(ch, S1); // On rel'che la touche pour le slot 3 if (data & 0x40) KEY_ON(ch, S2); // On appuie sur la touche pour le slot 2 else KEY_OFF(ch, S2); // On rel'che la touche pour le slot 2 if (data & 0x80) KEY_ON(ch, S3); // On appuie sur la touche pour le slot 4 else KEY_OFF(ch, S3); // On rel'che la touche pour le slot 4 break; } case 0x2B: if (YM2612.DAC ^ (data & 0x80)) YM2612_Special_Update(); YM2612.DAC = data & 0x80; // activation/desactivation du DAC break; } return 0; } void OPNMIDI_Ym2612_Impl::set_rate( double sample_rate, double clock_rate ) { assert( sample_rate ); assert( clock_rate > sample_rate ); int i; // 144 = 12 * (prescale * 2) = 12 * 6 * 2 // prescale set to 6 by default double Frequence = clock_rate / sample_rate / 144.0; if ( fabs( Frequence - 1.0 ) < 0.0000001 ) Frequence = 1.0; YM2612.TimerBase = int (Frequence * 4096.0); // Tableau TL : // [0 - 4095] = +output [4095 - ...] = +output overflow (fill with 0) // [12288 - 16383] = -output [16384 - ...] = -output overflow (fill with 0) for(i = 0; i < TL_LENGHT; i++) { if (i >= PG_CUT_OFF) // YM2612 cut off sound after 78 dB (14 bits output ?) { g.TL_TAB [TL_LENGHT + i] = g.TL_TAB [i] = 0; } else { double x = MAX_OUT; // Max output x /= pow( 10.0, (ENV_STEP * i) / 20.0 ); // Decibel -> Voltage g.TL_TAB [i] = (int) x; g.TL_TAB [TL_LENGHT + i] = -g.TL_TAB [i]; } } // Tableau SIN : // g.SIN_TAB [x] [y] = sin(x) * y; // x = phase and y = volume g.SIN_TAB [0] = g.SIN_TAB [SIN_LENGHT / 2] = PG_CUT_OFF; for(i = 1; i <= SIN_LENGHT / 4; i++) { double x = sin(2.0 * PI * (double) (i) / (double) (SIN_LENGHT)); // Sinus x = 20 * log10(1 / x); // convert to dB int j = (int) (x / ENV_STEP); // Get TL range if (j > PG_CUT_OFF) j = (int) PG_CUT_OFF; g.SIN_TAB [i] = g.SIN_TAB [(SIN_LENGHT / 2) - i] = j; g.SIN_TAB [(SIN_LENGHT / 2) + i] = g.SIN_TAB [SIN_LENGHT - i] = TL_LENGHT + j; } // Tableau LFO (LFO wav) : for(i = 0; i < LFO_LENGHT; i++) { double x = sin(2.0 * PI * (double) (i) / (double) (LFO_LENGHT)); // Sinus x += 1.0; x /= 2.0; // positive only x *= 11.8 / ENV_STEP; // ajusted to MAX enveloppe modulation g.LFO_ENV_TAB [i] = (int) x; x = sin(2.0 * PI * (double) (i) / (double) (LFO_LENGHT)); // Sinus x *= (double) ((1 << (LFO_HBITS - 1)) - 1); g.LFO_FREQ_TAB [i] = (int) x; } // Tableau Enveloppe : // g.ENV_TAB [0] -> g.ENV_TAB [ENV_LENGHT - 1] = attack curve // g.ENV_TAB [ENV_LENGHT] -> g.ENV_TAB [2 * ENV_LENGHT - 1] = decay curve for(i = 0; i < ENV_LENGHT; i++) { // Attack curve (x^8 - music level 2 Vectorman 2) double x = pow(((double) ((ENV_LENGHT - 1) - i) / (double) (ENV_LENGHT)), 8); x *= ENV_LENGHT; g.ENV_TAB [i] = (int) x; // Decay curve (just linear) x = pow(((double) (i) / (double) (ENV_LENGHT)), 1); x *= ENV_LENGHT; g.ENV_TAB [ENV_LENGHT + i] = (int) x; } for ( i = 0; i < 8; i++ ) g.ENV_TAB [i + ENV_LENGHT * 2] = 0; g.ENV_TAB [ENV_END >> ENV_LBITS] = ENV_LENGHT - 1; // for the stopped state // Tableau pour la conversion Attack -> Decay and Decay -> Attack int j = ENV_LENGHT - 1; for ( i = 0; i < ENV_LENGHT; i++ ) { while ( j && g.ENV_TAB [j] < i ) j--; g.DECAY_TO_ATTACK [i] = j << ENV_LBITS; } // Tableau pour le Substain Level for(i = 0; i < 15; i++) { double x = i * 3; // 3 and not 6 (Mickey Mania first music for test) x /= ENV_STEP; g.SL_TAB [i] = ((int) x << ENV_LBITS) + ENV_DECAY; } g.SL_TAB [15] = ((ENV_LENGHT - 1) << ENV_LBITS) + ENV_DECAY; // special case : volume off // Tableau Frequency Step for(i = 0; i < 2048; i++) { double x = (double) (i) * Frequence; #if ((SIN_LBITS + SIN_HBITS - (21 - 7)) < 0) x /= (double) (1 << ((21 - 7) - SIN_LBITS - SIN_HBITS)); #else x *= (double) (1 << (SIN_LBITS + SIN_HBITS - (21 - 7))); #endif x /= 2.0; // because MUL = value * 2 g.FINC_TAB [i] = (unsigned int) x; } // Tableaux Attack & Decay Rate for(i = 0; i < 4; i++) { g.AR_TAB [i] = 0; g.DR_TAB [i] = 0; } for(i = 0; i < 60; i++) { double x = Frequence; x *= 1.0 + ((i & 3) * 0.25); // bits 0-1 : x1.00, x1.25, x1.50, x1.75 x *= (double) (1 << ((i >> 2))); // bits 2-5 : shift bits (x2^0 - x2^15) x *= (double) (ENV_LENGHT << ENV_LBITS); // on ajuste pour le tableau g.ENV_TAB g.AR_TAB [i + 4] = (unsigned int) (x / AR_RATE); g.DR_TAB [i + 4] = (unsigned int) (x / DR_RATE); } for(i = 64; i < 96; i++) { g.AR_TAB [i] = g.AR_TAB [63]; g.DR_TAB [i] = g.DR_TAB [63]; g.NULL_RATE [i - 64] = 0; } for ( i = 96; i < 128; i++ ) g.AR_TAB [i] = 0; // Tableau Detune for(i = 0; i < 4; i++) { for (int j = 0; j < 32; j++) { #if ((SIN_LBITS + SIN_HBITS - 21) < 0) double y = (double) DT_DEF_TAB [(i << 5) + j] * Frequence / (double) (1 << (21 - SIN_LBITS - SIN_HBITS)); #else double y = (double) DT_DEF_TAB [(i << 5) + j] * Frequence * (double) (1 << (SIN_LBITS + SIN_HBITS - 21)); #endif g.DT_TAB [i + 0] [j] = (int) y; g.DT_TAB [i + 4] [j] = (int) -y; } } // Tableau LFO g.LFO_INC_TAB [0] = (unsigned int) (3.98 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate); g.LFO_INC_TAB [1] = (unsigned int) (5.56 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate); g.LFO_INC_TAB [2] = (unsigned int) (6.02 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate); g.LFO_INC_TAB [3] = (unsigned int) (6.37 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate); g.LFO_INC_TAB [4] = (unsigned int) (6.88 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate); g.LFO_INC_TAB [5] = (unsigned int) (9.63 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate); g.LFO_INC_TAB [6] = (unsigned int) (48.1 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate); g.LFO_INC_TAB [7] = (unsigned int) (72.2 * (double) (1 << (LFO_HBITS + LFO_LBITS)) / sample_rate); reset(); } const char* OPNMIDI_Ym2612_Emu::set_rate( double sample_rate, double clock_rate ) { if ( !impl ) { impl = (OPNMIDI_Ym2612_Impl*) malloc( sizeof *impl ); if ( !impl ) return "Out of memory"; impl->mute_mask = 0; } memset( &impl->YM2612, 0, sizeof impl->YM2612 ); impl->set_rate( sample_rate, clock_rate ); return 0; } OPNMIDI_Ym2612_Emu::~OPNMIDI_Ym2612_Emu() { free( impl ); } inline void OPNMIDI_Ym2612_Impl::write0( int opn_addr, int data ) { assert( (unsigned) data <= 0xFF ); if ( opn_addr < 0x30 ) { YM2612.REG [0] [opn_addr] = data; YM_SET( opn_addr, data ); } else if ( YM2612.REG [0] [opn_addr] != data ) { YM2612.REG [0] [opn_addr] = data; if ( opn_addr < 0xA0 ) SLOT_SET( opn_addr, data ); else CHANNEL_SET( opn_addr, data ); } } inline void OPNMIDI_Ym2612_Impl::write1( int opn_addr, int data ) { assert( (unsigned) data <= 0xFF ); if ( opn_addr >= 0x30 && YM2612.REG [1] [opn_addr] != data ) { YM2612.REG [1] [opn_addr] = data; if ( opn_addr < 0xA0 ) SLOT_SET( opn_addr + 0x100, data ); else CHANNEL_SET( opn_addr + 0x100, data ); } } void OPNMIDI_Ym2612_Emu::reset() { impl->reset(); } void OPNMIDI_Ym2612_Impl::reset() { g.LFOcnt = 0; YM2612.TimerA = 0; YM2612.TimerAL = 0; YM2612.TimerAcnt = 0; YM2612.TimerB = 0; YM2612.TimerBL = 0; YM2612.TimerBcnt = 0; YM2612.DAC = 0; YM2612.Status = 0; int i; for ( i = 0; i < channel_count; i++ ) { channel_t& ch = YM2612.CHANNEL [i]; ch.LEFT = ~0; ch.RIGHT = ~0; ch.ALGO = 0; ch.FB = 31; ch.FMS = 0; ch.AMS = 0; for ( int j = 0 ;j < 4 ; j++ ) { ch.S0_OUT [j] = 0; ch.FNUM [j] = 0; ch.FOCT [j] = 0; ch.KC [j] = 0; ch.SLOT [j].Fcnt = 0; ch.SLOT [j].Finc = 0; ch.SLOT [j].Ecnt = ENV_END; // Put it at the end of Decay phase... ch.SLOT [j].Einc = 0; ch.SLOT [j].Ecmp = 0; ch.SLOT [j].Ecurp = RELEASE; ch.SLOT [j].ChgEnM = 0; } } for ( i = 0; i < 0x100; i++ ) { YM2612.REG [0] [i] = -1; YM2612.REG [1] [i] = -1; } for ( i = 0xB6; i >= 0xB4; i-- ) { write0( i, 0xC0 ); write1( i, 0xC0 ); } for ( i = 0xB2; i >= 0x22; i-- ) { write0( i, 0 ); write1( i, 0 ); } write0( 0x2A, 0x80 ); } void OPNMIDI_Ym2612_Emu::write0( int addr, int data ) { impl->write0( addr, data ); } void OPNMIDI_Ym2612_Emu::write1( int addr, int data ) { impl->write1( addr, data ); } void OPNMIDI_Ym2612_Emu::mute_voices( int mask ) { impl->mute_mask = mask; } static void update_envelope_( slot_t* sl ) { switch ( sl->Ecurp ) { case 0: // Env_Attack_Next // Verified with Gynoug even in HQ (explode SFX) sl->Ecnt = ENV_DECAY; sl->Einc = sl->EincD; sl->Ecmp = sl->SLL; sl->Ecurp = DECAY; break; case 1: // Env_Decay_Next // Verified with Gynoug even in HQ (explode SFX) sl->Ecnt = sl->SLL; sl->Einc = sl->EincS; sl->Ecmp = ENV_END; sl->Ecurp = SUBSTAIN; break; case 2: // Env_Substain_Next(slot_t *SL) if (sl->SEG & 8) // SSG envelope type { int release = sl->SEG & 1; if ( !release ) { // re KEY ON // sl->Fcnt = 0; // sl->ChgEnM = ~0; sl->Ecnt = 0; sl->Einc = sl->EincA; sl->Ecmp = ENV_DECAY; sl->Ecurp = ATTACK; } set_seg( *sl, (sl->SEG << 1) & 4 ); if ( !release ) break; } // fall through case 3: // Env_Release_Next sl->Ecnt = ENV_END; sl->Einc = 0; sl->Ecmp = ENV_END + 1; break; // default: no op } } inline void update_envelope( slot_t& sl ) { int ecmp = sl.Ecmp; if ( (sl.Ecnt += sl.Einc) >= ecmp ) update_envelope_( &sl ); } template struct ym2612_update_chan { static void func( tables_t&, channel_t&, OPNMIDI_Ym2612_Emu::sample_t*, int ); }; typedef void (*ym2612_update_chan_t)( tables_t&, channel_t&, OPNMIDI_Ym2612_Emu::sample_t*, int ); template void ym2612_update_chan::func( tables_t& g, channel_t& ch, OPNMIDI_Ym2612_Emu::sample_t* buf, int length ) { int not_end = ch.SLOT [S3].Ecnt - ENV_END; // algo is a compile-time constant, so all conditions based on it are resolved // during compilation // special cases if ( algo == 7 ) not_end |= ch.SLOT [S0].Ecnt - ENV_END; if ( algo >= 5 ) not_end |= ch.SLOT [S2].Ecnt - ENV_END; if ( algo >= 4 ) not_end |= ch.SLOT [S1].Ecnt - ENV_END; int CH_S0_OUT_1 = ch.S0_OUT [1]; int in0 = ch.SLOT [S0].Fcnt; int in1 = ch.SLOT [S1].Fcnt; int in2 = ch.SLOT [S2].Fcnt; int in3 = ch.SLOT [S3].Fcnt; int YM2612_LFOinc = g.LFOinc; int YM2612_LFOcnt = g.LFOcnt + YM2612_LFOinc; if ( !not_end ) return; do { // envelope int const env_LFO = g.LFO_ENV_TAB [YM2612_LFOcnt >> LFO_LBITS & LFO_MASK]; short const* const ENV_TAB = g.ENV_TAB; #define CALC_EN( x ) \ int temp##x = ENV_TAB [ch.SLOT [S##x].Ecnt >> ENV_LBITS] + ch.SLOT [S##x].TLL; \ int en##x = ((temp##x ^ ch.SLOT [S##x].env_xor) + (env_LFO >> ch.SLOT [S##x].AMS)) & \ ((temp##x - ch.SLOT [S##x].env_max) >> 31); CALC_EN( 0 ) CALC_EN( 1 ) CALC_EN( 2 ) CALC_EN( 3 ) int const* const TL_TAB = g.TL_TAB; #define SINT( i, o ) (TL_TAB [g.SIN_TAB [(i)] + (o)]) // feedback int CH_S0_OUT_0 = ch.S0_OUT [0]; { int temp = in0 + ((CH_S0_OUT_0 + CH_S0_OUT_1) >> ch.FB); CH_S0_OUT_1 = CH_S0_OUT_0; CH_S0_OUT_0 = SINT( (temp >> SIN_LBITS) & SIN_MASK, en0 ); } int CH_OUTd; if ( algo == 0 ) { int temp = in1 + CH_S0_OUT_1; temp = in2 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en1 ); temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ); } else if ( algo == 1 ) { int temp = in2 + CH_S0_OUT_1 + SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 ); temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ); } else if ( algo == 2 ) { int temp = in2 + SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 ); temp = in3 + CH_S0_OUT_1 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ); } else if ( algo == 3 ) { int temp = in1 + CH_S0_OUT_1; temp = in3 + SINT( (temp >> SIN_LBITS) & SIN_MASK, en1 ) + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ); } else if ( algo == 4 ) { int temp = in3 + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ); CH_OUTd = SINT( (temp >> SIN_LBITS) & SIN_MASK, en3 ) + SINT( ((in1 + CH_S0_OUT_1) >> SIN_LBITS) & SIN_MASK, en1 ); //DO_LIMIT } else if ( algo == 5 ) { int temp = CH_S0_OUT_1; CH_OUTd = SINT( ((in3 + temp) >> SIN_LBITS) & SIN_MASK, en3 ) + SINT( ((in1 + temp) >> SIN_LBITS) & SIN_MASK, en1 ) + SINT( ((in2 + temp) >> SIN_LBITS) & SIN_MASK, en2 ); //DO_LIMIT } else if ( algo == 6 ) { CH_OUTd = SINT( (in3 >> SIN_LBITS) & SIN_MASK, en3 ) + SINT( ((in1 + CH_S0_OUT_1) >> SIN_LBITS) & SIN_MASK, en1 ) + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ); //DO_LIMIT } else if ( algo == 7 ) { CH_OUTd = SINT( (in3 >> SIN_LBITS) & SIN_MASK, en3 ) + SINT( (in1 >> SIN_LBITS) & SIN_MASK, en1 ) + SINT( (in2 >> SIN_LBITS) & SIN_MASK, en2 ) + CH_S0_OUT_1; //DO_LIMIT } CH_OUTd >>= MAX_OUT_BITS - output_bits + 2; // update phase unsigned freq_LFO = ((g.LFO_FREQ_TAB [YM2612_LFOcnt >> LFO_LBITS & LFO_MASK] * ch.FMS) >> (LFO_HBITS - 1 + 1)) + (1L << (LFO_FMS_LBITS - 1)); YM2612_LFOcnt += YM2612_LFOinc; in0 += (ch.SLOT [S0].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1); in1 += (ch.SLOT [S1].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1); in2 += (ch.SLOT [S2].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1); in3 += (ch.SLOT [S3].Finc * freq_LFO) >> (LFO_FMS_LBITS - 1); int t0 = buf [0] + (CH_OUTd & ch.LEFT); int t1 = buf [1] + (CH_OUTd & ch.RIGHT); update_envelope( ch.SLOT [0] ); update_envelope( ch.SLOT [1] ); update_envelope( ch.SLOT [2] ); update_envelope( ch.SLOT [3] ); ch.S0_OUT [0] = CH_S0_OUT_0; buf [0] = t0; buf [1] = t1; buf += 2; } while ( --length ); ch.S0_OUT [1] = CH_S0_OUT_1; ch.SLOT [S0].Fcnt = in0; ch.SLOT [S1].Fcnt = in1; ch.SLOT [S2].Fcnt = in2; ch.SLOT [S3].Fcnt = in3; } static const ym2612_update_chan_t UPDATE_CHAN [8] = { &ym2612_update_chan<0>::func, &ym2612_update_chan<1>::func, &ym2612_update_chan<2>::func, &ym2612_update_chan<3>::func, &ym2612_update_chan<4>::func, &ym2612_update_chan<5>::func, &ym2612_update_chan<6>::func, &ym2612_update_chan<7>::func }; void OPNMIDI_Ym2612_Impl::run_timer( int length ) { int const step = 6; int remain = length; do { int n = step; if ( n > remain ) n = remain; remain -= n; long i = n * YM2612.TimerBase; if (YM2612.Mode & 1) // Timer A ON ? { // if ((YM2612.TimerAcnt -= 14073) <= 0) // 13879=NTSC (old: 14475=NTSC 14586=PAL) if ((YM2612.TimerAcnt -= i) <= 0) { // timer a overflow YM2612.Status |= (YM2612.Mode & 0x04) >> 2; YM2612.TimerAcnt += YM2612.TimerAL; if (YM2612.Mode & 0x80) { KEY_ON( YM2612.CHANNEL [2], 0 ); KEY_ON( YM2612.CHANNEL [2], 1 ); KEY_ON( YM2612.CHANNEL [2], 2 ); KEY_ON( YM2612.CHANNEL [2], 3 ); } } } if (YM2612.Mode & 2) // Timer B ON ? { // if ((YM2612.TimerBcnt -= 14073) <= 0) // 13879=NTSC (old: 14475=NTSC 14586=PAL) if ((YM2612.TimerBcnt -= i) <= 0) { // timer b overflow YM2612.Status |= (YM2612.Mode & 0x08) >> 2; YM2612.TimerBcnt += YM2612.TimerBL; } } } while ( remain > 0 ); } void OPNMIDI_Ym2612_Impl::run( int pair_count, OPNMIDI_Ym2612_Emu::sample_t* out ) { if ( pair_count <= 0 ) return; if ( YM2612.Mode & 3 ) run_timer( pair_count ); // Mise ŕ jour des pas des compteurs-frequences s'ils ont ete modifies for ( int chi = 0; chi < channel_count; chi++ ) { channel_t& ch = YM2612.CHANNEL [chi]; if ( ch.SLOT [0].Finc != -1 ) continue; int i2 = 0; if ( chi == 2 && (YM2612.Mode & 0x40) ) i2 = 2; for ( int i = 0; i < 4; i++ ) { // static int seq [4] = { 2, 1, 3, 0 }; // if ( i2 ) i2 = seq [i]; slot_t& sl = ch.SLOT [i]; int finc = g.FINC_TAB [ch.FNUM [i2]] >> (7 - ch.FOCT [i2]); int ksr = ch.KC [i2] >> sl.KSR_S; // keycode attenuation sl.Finc = (finc + sl.DT [ch.KC [i2]]) * sl.MUL; if (sl.KSR != ksr) // si le KSR a change alors { // les differents taux pour l'enveloppe sont mis ŕ jour sl.KSR = ksr; sl.EincA = sl.AR [ksr]; sl.EincD = sl.DR [ksr]; sl.EincS = sl.SR [ksr]; sl.EincR = sl.RR [ksr]; if (sl.Ecurp == ATTACK) { sl.Einc = sl.EincA; } else if (sl.Ecurp == DECAY) { sl.Einc = sl.EincD; } else if (sl.Ecnt < ENV_END) { if (sl.Ecurp == SUBSTAIN) sl.Einc = sl.EincS; else if (sl.Ecurp == RELEASE) sl.Einc = sl.EincR; } } if ( i2 ) i2 = (i2 ^ 2) ^ (i2 >> 1); } } for ( int i = 0; i < channel_count; i++ ) { if ( !(mute_mask & (1 << i)) && (i != 5 || !YM2612.DAC) ) UPDATE_CHAN [YM2612.CHANNEL [i].ALGO]( g, YM2612.CHANNEL [i], out, pair_count ); } g.LFOcnt += g.LFOinc * pair_count; } void OPNMIDI_Ym2612_Emu::run( int pair_count, sample_t* out ) { impl->run( pair_count, out ); }