/* ** texture.cpp ** The base texture class ** **--------------------------------------------------------------------------- ** Copyright 2004-2007 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** */ #include "doomtype.h" #include "files.h" #include "w_wad.h" #include "templates.h" #include "i_system.h" #include "r_data/r_translate.h" #include "bitmap.h" #include "colormatcher.h" #include "c_dispatch.h" #include "v_video.h" #include "m_fixed.h" #include "textures/textures.h" #include "v_palette.h" typedef bool (*CheckFunc)(FileReader & file); typedef FTexture * (*CreateFunc)(FileReader & file, int lumpnum); struct TexCreateInfo { CreateFunc TryCreate; int usetype; }; BYTE FTexture::GrayMap[256]; void FTexture::InitGrayMap() { for (int i = 0; i < 256; ++i) { GrayMap[i] = ColorMatcher.Pick (i, i, i); } } FTexture *IMGZTexture_TryCreate(FileReader &, int lumpnum); FTexture *PNGTexture_TryCreate(FileReader &, int lumpnum); FTexture *JPEGTexture_TryCreate(FileReader &, int lumpnum); FTexture *DDSTexture_TryCreate(FileReader &, int lumpnum); FTexture *PCXTexture_TryCreate(FileReader &, int lumpnum); FTexture *TGATexture_TryCreate(FileReader &, int lumpnum); FTexture *RawPageTexture_TryCreate(FileReader &, int lumpnum); FTexture *FlatTexture_TryCreate(FileReader &, int lumpnum); FTexture *PatchTexture_TryCreate(FileReader &, int lumpnum); FTexture *EmptyTexture_TryCreate(FileReader &, int lumpnum); FTexture *AutomapTexture_TryCreate(FileReader &, int lumpnum); // Examines the lump contents to decide what type of texture to create, // and creates the texture. FTexture * FTexture::CreateTexture (int lumpnum, int usetype) { static TexCreateInfo CreateInfo[]={ { IMGZTexture_TryCreate, TEX_Any }, { PNGTexture_TryCreate, TEX_Any }, { JPEGTexture_TryCreate, TEX_Any }, { DDSTexture_TryCreate, TEX_Any }, { PCXTexture_TryCreate, TEX_Any }, { TGATexture_TryCreate, TEX_Any }, { RawPageTexture_TryCreate, TEX_MiscPatch }, { FlatTexture_TryCreate, TEX_Flat }, { PatchTexture_TryCreate, TEX_Any }, { EmptyTexture_TryCreate, TEX_Any }, { AutomapTexture_TryCreate, TEX_MiscPatch }, }; if (lumpnum == -1) return NULL; FWadLump data = Wads.OpenLumpNum (lumpnum); for(size_t i = 0; i < countof(CreateInfo); i++) { if ((CreateInfo[i].usetype == usetype || CreateInfo[i].usetype == TEX_Any)) { FTexture * tex = CreateInfo[i].TryCreate(data, lumpnum); if (tex != NULL) { tex->UseType = usetype; if (usetype == FTexture::TEX_Flat) { int w = tex->GetWidth(); int h = tex->GetHeight(); // Auto-scale flats with dimensions 128x128 and 256x256. // In hindsight, a bad idea, but RandomLag made it sound better than it really is. // Now we're stuck with this stupid behaviour. if (w==128 && h==128) { tex->Scale.X = tex->Scale.Y = 2; tex->bWorldPanning = true; } else if (w==256 && h==256) { tex->Scale.X = tex->Scale.Y = 4; tex->bWorldPanning = true; } } return tex; } } } return NULL; } FTexture * FTexture::CreateTexture (const char *name, int lumpnum, int usetype) { FTexture *tex = CreateTexture(lumpnum, usetype); if (tex != NULL && name != NULL) { tex->Name = name; tex->Name.ToUpper(); } return tex; } FTexture::FTexture (const char *name, int lumpnum) : LeftOffset(0), TopOffset(0), WidthBits(0), HeightBits(0), Scale(1,1), SourceLump(lumpnum), UseType(TEX_Any), bNoDecals(false), bNoRemap0(false), bWorldPanning(false), bMasked(true), bAlphaTexture(false), bHasCanvas(false), bWarped(0), bComplex(false), bMultiPatch(false), bKeepAround(false), Rotations(0xFFFF), SkyOffset(0), Width(0), Height(0), WidthMask(0), Native(NULL) { id.SetInvalid(); if (name != NULL) { Name = name; Name.ToUpper(); } else if (lumpnum < 0) { Name = FString(); } else { Wads.GetLumpName (Name, lumpnum); } } FTexture::~FTexture () { FTexture *link = Wads.GetLinkedTexture(SourceLump); if (link == this) Wads.SetLinkedTexture(SourceLump, NULL); KillNative(); } void FTexture::Unload() { PixelsBgra = std::vector(); } const uint32_t *FTexture::GetColumnBgra(unsigned int column, const Span **spans_out) { const uint32_t *pixels = GetPixelsBgra(); column %= Width; if (spans_out != nullptr) GetColumn(column, spans_out); return pixels + column * Height; } const uint32_t *FTexture::GetPixelsBgra() { if (PixelsBgra.empty() || CheckModified()) { if (!GetColumn(0, nullptr)) return nullptr; FBitmap bitmap; bitmap.Create(GetWidth(), GetHeight()); CopyTrueColorPixels(&bitmap, 0, 0); GenerateBgraFromBitmap(bitmap); } return PixelsBgra.data(); } bool FTexture::CheckModified () { return false; } FTextureFormat FTexture::GetFormat() { return TEX_Pal; } void FTexture::SetFrontSkyLayer () { bNoRemap0 = true; } void FTexture::CalcBitSize () { // WidthBits is rounded down, and HeightBits is rounded up int i; for (i = 0; (1 << i) < Width; ++i) { } WidthBits = i; // Having WidthBits that would allow for columns past the end of the // texture is not allowed, even if it means the entire texture is // not drawn. if (Width < (1 << WidthBits)) { WidthBits--; } WidthMask = (1 << WidthBits) - 1; // The minimum height is 2, because we cannot shift right 32 bits. for (i = 1; (1 << i) < Height; ++i) { } HeightBits = i; } void FTexture::HackHack (int newheight) { } FTexture::Span **FTexture::CreateSpans (const BYTE *pixels) const { Span **spans, *span; if (!bMasked) { // Texture does not have holes, so it can use a simpler span structure spans = (Span **)M_Malloc (sizeof(Span*)*Width + sizeof(Span)*2); span = (Span *)&spans[Width]; for (int x = 0; x < Width; ++x) { spans[x] = span; } span[0].Length = Height; span[0].TopOffset = 0; span[1].Length = 0; span[1].TopOffset = 0; } else { // Texture might have holes, so build a complete span structure int numcols = Width; int numrows = Height; int numspans = numcols; // One span to terminate each column const BYTE *data_p; bool newspan; int x, y; data_p = pixels; // Count the number of spans in this texture for (x = numcols; x > 0; --x) { newspan = true; for (y = numrows; y > 0; --y) { if (*data_p++ == 0) { if (!newspan) { newspan = true; } } else if (newspan) { newspan = false; numspans++; } } } // Allocate space for the spans spans = (Span **)M_Malloc (sizeof(Span*)*numcols + sizeof(Span)*numspans); // Fill in the spans for (x = 0, span = (Span *)&spans[numcols], data_p = pixels; x < numcols; ++x) { newspan = true; spans[x] = span; for (y = 0; y < numrows; ++y) { if (*data_p++ == 0) { if (!newspan) { newspan = true; span++; } } else { if (newspan) { newspan = false; span->TopOffset = y; span->Length = 1; } else { span->Length++; } } } if (!newspan) { span++; } span->TopOffset = 0; span->Length = 0; span++; } } return spans; } void FTexture::FreeSpans (Span **spans) const { M_Free (spans); } void FTexture::GenerateBgraFromBitmap(const FBitmap &bitmap) { CreatePixelsBgraWithMipmaps(); // Transpose and premultiply alpha const uint32_t *src = (const uint32_t *)bitmap.GetPixels(); uint32_t *dest = PixelsBgra.data(); for (int x = 0; x < Width; x++) { for (int y = 0; y < Height; y++) { uint32_t p = src[x + y * Width]; uint32_t red = RPART(p); uint32_t green = GPART(p); uint32_t blue = BPART(p); uint32_t alpha = APART(p); red = (red * alpha + 127) / 255; green = (green * alpha + 127) / 255; blue = (blue * alpha + 127) / 255; dest[y + x * Height] = (alpha << 24) | (red << 16) | (green << 8) | blue; } } GenerateBgraMipmaps(); } void FTexture::CreatePixelsBgraWithMipmaps() { int levels = MipmapLevels(); int buffersize = 0; for (int i = 0; i < levels; i++) { int w = MAX(Width >> i, 1); int h = MAX(Height >> i, 1); buffersize += w * h; } PixelsBgra.resize(buffersize, 0xffff0000); } int FTexture::MipmapLevels() const { int widthbits = 0; while ((Width >> widthbits) != 0) widthbits++; int heightbits = 0; while ((Height >> heightbits) != 0) heightbits++; return MAX(widthbits, heightbits); } void FTexture::GenerateBgraMipmaps() { struct Color4f { float a, r, g, b; Color4f operator*(const Color4f &v) const { return Color4f{ a * v.a, r * v.r, g * v.g, b * v.b }; } Color4f operator/(const Color4f &v) const { return Color4f{ a / v.a, r / v.r, g / v.g, b / v.b }; } Color4f operator+(const Color4f &v) const { return Color4f{ a + v.a, r + v.r, g + v.g, b + v.b }; } Color4f operator-(const Color4f &v) const { return Color4f{ a - v.a, r - v.r, g - v.g, b - v.b }; } Color4f operator*(float s) const { return Color4f{ a * s, r * s, g * s, b * s }; } Color4f operator/(float s) const { return Color4f{ a / s, r / s, g / s, b / s }; } Color4f operator+(float s) const { return Color4f{ a + s, r + s, g + s, b + s }; } Color4f operator-(float s) const { return Color4f{ a - s, r - s, g - s, b - s }; } }; int levels = MipmapLevels(); std::vector image(PixelsBgra.size()); // Convert to normalized linear colorspace { for (int x = 0; x < Width; x++) { for (int y = 0; y < Height; y++) { uint32_t c8 = PixelsBgra[x * Height + y]; Color4f c; c.a = powf(APART(c8) * (1.0f / 255.0f), 2.2f); c.r = powf(RPART(c8) * (1.0f / 255.0f), 2.2f); c.g = powf(GPART(c8) * (1.0f / 255.0f), 2.2f); c.b = powf(BPART(c8) * (1.0f / 255.0f), 2.2f); image[x * Height + y] = c; } } } // Generate mipmaps { std::vector smoothed(Width * Height); Color4f *src = image.data(); Color4f *dest = src + Width * Height; for (int i = 1; i < levels; i++) { int srcw = MAX(Width >> (i - 1), 1); int srch = MAX(Height >> (i - 1), 1); int w = MAX(Width >> i, 1); int h = MAX(Height >> i, 1); // Downscale for (int x = 0; x < w; x++) { int sx0 = x * 2; int sx1 = MIN((x + 1) * 2, srcw - 1); for (int y = 0; y < h; y++) { int sy0 = y * 2; int sy1 = MIN((y + 1) * 2, srch - 1); Color4f src00 = src[sy0 + sx0 * srch]; Color4f src01 = src[sy1 + sx0 * srch]; Color4f src10 = src[sy0 + sx1 * srch]; Color4f src11 = src[sy1 + sx1 * srch]; Color4f c = (src00 + src01 + src10 + src11) * 0.25f; dest[y + x * h] = src00; } } // Sharpen filter with a 3x3 kernel: for (int x = 0; x < w; x++) { for (int y = 0; y < h; y++) { Color4f c = { 0.0f, 0.0f, 0.0f, 0.0f }; for (int kx = -1; kx < 2; kx++) { for (int ky = -1; ky < 2; ky++) { int a = y + ky; int b = x + kx; if (a < 0) a = h - 1; if (a == h) a = 0; if (b < 0) b = w - 1; if (b == w) b = 0; c = c + dest[a + b * h]; } } c = c * (1.0f / 9.0f); smoothed[y + x * h] = c; } } float k = 0.04f; for (int j = 0; j < w * h; j++) dest[j] = dest[j] + (dest[j] - smoothed[j]) * k; src = dest; dest += w * h; } } // Convert to bgra8 sRGB colorspace { Color4f *src = image.data() + Width * Height; uint32_t *dest = PixelsBgra.data() + Width * Height; for (int i = 1; i < levels; i++) { int w = MAX(Width >> i, 1); int h = MAX(Height >> i, 1); for (int j = 0; j < w * h; j++) { uint32_t a = (uint32_t)clamp(powf(src[j].a, 1.0f / 2.2f) * 255.0f + 0.5f, 0.0f, 255.0f); uint32_t r = (uint32_t)clamp(powf(src[j].r, 1.0f / 2.2f) * 255.0f + 0.5f, 0.0f, 255.0f); uint32_t g = (uint32_t)clamp(powf(src[j].g, 1.0f / 2.2f) * 255.0f + 0.5f, 0.0f, 255.0f); uint32_t b = (uint32_t)clamp(powf(src[j].b, 1.0f / 2.2f) * 255.0f + 0.5f, 0.0f, 255.0f); dest[j] = (a << 24) | (r << 16) | (g << 8) | b; } src += w * h; dest += w * h; } } } void FTexture::GenerateBgraMipmapsFast() { uint32_t *src = PixelsBgra.data(); uint32_t *dest = src + Width * Height; int levels = MipmapLevels(); for (int i = 1; i < levels; i++) { int srcw = MAX(Width >> (i - 1), 1); int srch = MAX(Height >> (i - 1), 1); int w = MAX(Width >> i, 1); int h = MAX(Height >> i, 1); for (int x = 0; x < w; x++) { int sx0 = x * 2; int sx1 = MIN((x + 1) * 2, srcw - 1); for (int y = 0; y < h; y++) { int sy0 = y * 2; int sy1 = MIN((y + 1) * 2, srch - 1); uint32_t src00 = src[sy0 + sx0 * srch]; uint32_t src01 = src[sy1 + sx0 * srch]; uint32_t src10 = src[sy0 + sx1 * srch]; uint32_t src11 = src[sy1 + sx1 * srch]; uint32_t alpha = (APART(src00) + APART(src01) + APART(src10) + APART(src11) + 2) / 4; uint32_t red = (RPART(src00) + RPART(src01) + RPART(src10) + RPART(src11) + 2) / 4; uint32_t green = (GPART(src00) + GPART(src01) + GPART(src10) + GPART(src11) + 2) / 4; uint32_t blue = (BPART(src00) + BPART(src01) + BPART(src10) + BPART(src11) + 2) / 4; dest[y + x * h] = (alpha << 24) | (red << 16) | (green << 8) | blue; } } src = dest; dest += w * h; } } void FTexture::CopyToBlock (BYTE *dest, int dwidth, int dheight, int xpos, int ypos, int rotate, const BYTE *translation) { const BYTE *pixels = GetPixels(); int srcwidth = Width; int srcheight = Height; int step_x = Height; int step_y = 1; FClipRect cr = {0, 0, dwidth, dheight}; if (ClipCopyPixelRect(&cr, xpos, ypos, pixels, srcwidth, srcheight, step_x, step_y, rotate)) { dest += ypos + dheight * xpos; if (translation == NULL) { for (int x = 0; x < srcwidth; x++) { int pos = x * dheight; for (int y = 0; y < srcheight; y++, pos++) { // the optimizer is doing a good enough job here so there's no need to optimize this by hand BYTE v = pixels[y * step_y + x * step_x]; if (v != 0) dest[pos] = v; } } } else { for (int x = 0; x < srcwidth; x++) { int pos = x * dheight; for (int y = 0; y < srcheight; y++, pos++) { BYTE v = pixels[y * step_y + x * step_x]; if (v != 0) dest[pos] = translation[v]; } } } } } // Converts a texture between row-major and column-major format // by flipping it about the X=Y axis. void FTexture::FlipSquareBlock (BYTE *block, int x, int y) { int i, j; if (x != y) return; for (i = 0; i < x; ++i) { BYTE *corner = block + x*i + i; int count = x - i; if (count & 1) { count--; swapvalues (corner[count], corner[count*x]); } for (j = 0; j < count; j += 2) { swapvalues (corner[j], corner[j*x]); swapvalues (corner[j+1], corner[(j+1)*x]); } } } void FTexture::FlipSquareBlockBgra(uint32_t *block, int x, int y) { int i, j; if (x != y) return; for (i = 0; i < x; ++i) { uint32_t *corner = block + x*i + i; int count = x - i; if (count & 1) { count--; swapvalues(corner[count], corner[count*x]); } for (j = 0; j < count; j += 2) { swapvalues(corner[j], corner[j*x]); swapvalues(corner[j + 1], corner[(j + 1)*x]); } } } void FTexture::FlipSquareBlockRemap (BYTE *block, int x, int y, const BYTE *remap) { int i, j; BYTE t; if (x != y) return; for (i = 0; i < x; ++i) { BYTE *corner = block + x*i + i; int count = x - i; if (count & 1) { count--; t = remap[corner[count]]; corner[count] = remap[corner[count*x]]; corner[count*x] = t; } for (j = 0; j < count; j += 2) { t = remap[corner[j]]; corner[j] = remap[corner[j*x]]; corner[j*x] = t; t = remap[corner[j+1]]; corner[j+1] = remap[corner[(j+1)*x]]; corner[(j+1)*x] = t; } } } void FTexture::FlipNonSquareBlock (BYTE *dst, const BYTE *src, int x, int y, int srcpitch) { int i, j; for (i = 0; i < x; ++i) { for (j = 0; j < y; ++j) { dst[i*y+j] = src[i+j*srcpitch]; } } } void FTexture::FlipNonSquareBlockBgra(uint32_t *dst, const uint32_t *src, int x, int y, int srcpitch) { int i, j; for (i = 0; i < x; ++i) { for (j = 0; j < y; ++j) { dst[i*y + j] = src[i + j*srcpitch]; } } } void FTexture::FlipNonSquareBlockRemap (BYTE *dst, const BYTE *src, int x, int y, int srcpitch, const BYTE *remap) { int i, j; for (i = 0; i < x; ++i) { for (j = 0; j < y; ++j) { dst[i*y+j] = remap[src[i+j*srcpitch]]; } } } FNativeTexture *FTexture::GetNative(bool wrapping) { if (Native != NULL) { if (!Native->CheckWrapping(wrapping)) { // Texture's wrapping mode is not compatible. // Destroy it and get a new one. delete Native; } else { if (CheckModified()) { Native->Update(); } return Native; } } Native = screen->CreateTexture(this, wrapping); return Native; } void FTexture::KillNative() { if (Native != NULL) { delete Native; Native = NULL; } } // For this generic implementation, we just call GetPixels and copy that data // to the buffer. Texture formats that can do better than paletted images // should provide their own implementation that may preserve the original // color data. Note that the buffer expects row-major data, since that's // generally more convenient for any non-Doom image formats, and it doesn't // need to be used by any of Doom's column drawing routines. void FTexture::FillBuffer(BYTE *buff, int pitch, int height, FTextureFormat fmt) { const BYTE *pix; int x, y, w, h, stride; w = GetWidth(); h = GetHeight(); switch (fmt) { case TEX_Pal: case TEX_Gray: pix = GetPixels(); stride = pitch - w; for (y = 0; y < h; ++y) { const BYTE *pix2 = pix; for (x = 0; x < w; ++x) { *buff++ = *pix2; pix2 += h; } pix++; buff += stride; } break; case TEX_RGB: { FCopyInfo inf = {OP_OVERWRITE, BLEND_NONE, {0}, 0, 0}; FBitmap bmp(buff, pitch, pitch/4, height); CopyTrueColorPixels(&bmp, 0, 0, 0, &inf); break; } default: I_Error("FTexture::FillBuffer: Unsupported format %d", fmt); } } //=========================================================================== // // FTexture::CopyTrueColorPixels // // this is the generic case that can handle // any properly implemented texture for software rendering. // Its drawback is that it is limited to the base palette which is // why all classes that handle different palettes should subclass this // method // //=========================================================================== int FTexture::CopyTrueColorPixels(FBitmap *bmp, int x, int y, int rotate, FCopyInfo *inf) { PalEntry *palette = screen->GetPalette(); for(int i=1;i<256;i++) palette[i].a = 255; // set proper alpha values bmp->CopyPixelData(x, y, GetPixels(), Width, Height, Height, 1, rotate, palette, inf); for(int i=1;i<256;i++) palette[i].a = 0; return 0; } int FTexture::CopyTrueColorTranslated(FBitmap *bmp, int x, int y, int rotate, FRemapTable *remap, FCopyInfo *inf) { PalEntry *palette = remap->Palette; bmp->CopyPixelData(x, y, GetPixels(), Width, Height, Height, 1, rotate, palette, inf); return 0; } bool FTexture::UseBasePalette() { return true; } FTexture *FTexture::GetRedirect(bool wantwarped) { return this; } FTexture *FTexture::GetRawTexture() { return this; } void FTexture::SetScaledSize(int fitwidth, int fitheight) { Scale.X = double(Width) / fitwidth; Scale.Y =double(Height) / fitheight; // compensate for roundoff errors if (int(Scale.X * fitwidth) != Width) Scale.X += (1 / 65536.); if (int(Scale.Y * fitheight) != Height) Scale.Y += (1 / 65536.); } FDummyTexture::FDummyTexture () { Width = 64; Height = 64; HeightBits = 6; WidthBits = 6; WidthMask = 63; UseType = TEX_Null; } void FDummyTexture::SetSize (int width, int height) { Width = width; Height = height; CalcBitSize (); } // This must never be called const BYTE *FDummyTexture::GetColumn (unsigned int column, const Span **spans_out) { return NULL; } // And this also must never be called const BYTE *FDummyTexture::GetPixels () { return NULL; } //========================================================================== // // Debug stuff // //========================================================================== #ifdef _DEBUG // Prints the spans generated for a texture. Only needed for debugging. CCMD (printspans) { if (argv.argc() != 2) return; FTextureID picnum = TexMan.CheckForTexture (argv[1], FTexture::TEX_Any); if (!picnum.Exists()) { Printf ("Unknown texture %s\n", argv[1]); return; } FTexture *tex = TexMan[picnum]; for (int x = 0; x < tex->GetWidth(); ++x) { const FTexture::Span *spans; Printf ("%4d:", x); tex->GetColumn (x, &spans); while (spans->Length != 0) { Printf (" (%4d,%4d)", spans->TopOffset, spans->TopOffset+spans->Length-1); spans++; } Printf ("\n"); } } #endif