#include #include #include "templates.h" #include "i_system.h" #include "w_wad.h" #include "doomdef.h" #include "doomstat.h" #include "swrenderer/r_main.h" #include "swrenderer/scene/r_things.h" #include "r_sky.h" #include "stats.h" #include "v_video.h" #include "a_sharedglobal.h" #include "c_console.h" #include "cmdlib.h" #include "d_net.h" #include "g_level.h" #include "swrenderer/scene/r_bsp.h" #include "r_flatplane.h" #include "swrenderer/scene/r_3dfloors.h" #include "v_palette.h" #include "r_data/colormaps.h" #include "swrenderer/drawers/r_draw_rgba.h" #include "gl/dynlights/gl_dynlight.h" #include "swrenderer/segments/r_clipsegment.h" #include "swrenderer/segments/r_drawsegment.h" #include "swrenderer/scene/r_portal.h" #include "swrenderer/r_memory.h" namespace swrenderer { namespace { double planeheight; bool plane_shade; int planeshade; fixed_t pviewx, pviewy; float yslope[MAXHEIGHT]; fixed_t xscale, yscale; double xstepscale, ystepscale; double basexfrac, baseyfrac; visplane_light *ds_light_list; } void R_DrawNormalPlane(visplane_t *pl, double _xscale, double _yscale, fixed_t alpha, bool additive, bool masked) { using namespace drawerargs; if (alpha <= 0) { return; } double planeang = (pl->xform.Angle + pl->xform.baseAngle).Radians(); double xstep, ystep, leftxfrac, leftyfrac, rightxfrac, rightyfrac; double x; xscale = xs_ToFixed(32 - ds_xbits, _xscale); yscale = xs_ToFixed(32 - ds_ybits, _yscale); if (planeang != 0) { double cosine = cos(planeang), sine = sin(planeang); pviewx = FLOAT2FIXED(pl->xform.xOffs + ViewPos.X * cosine - ViewPos.Y * sine); pviewy = FLOAT2FIXED(pl->xform.yOffs - ViewPos.X * sine - ViewPos.Y * cosine); } else { pviewx = FLOAT2FIXED(pl->xform.xOffs + ViewPos.X); pviewy = FLOAT2FIXED(pl->xform.yOffs - ViewPos.Y); } pviewx = FixedMul(xscale, pviewx); pviewy = FixedMul(yscale, pviewy); // left to right mapping planeang += (ViewAngle - 90).Radians(); // Scale will be unit scale at FocalLengthX (normally SCREENWIDTH/2) distance xstep = cos(planeang) / FocalLengthX; ystep = -sin(planeang) / FocalLengthX; // [RH] flip for mirrors if (MirrorFlags & RF_XFLIP) { xstep = -xstep; ystep = -ystep; } planeang += M_PI / 2; double cosine = cos(planeang), sine = -sin(planeang); x = pl->right - centerx - 0.5; rightxfrac = _xscale * (cosine + x * xstep); rightyfrac = _yscale * (sine + x * ystep); x = pl->left - centerx - 0.5; leftxfrac = _xscale * (cosine + x * xstep); leftyfrac = _yscale * (sine + x * ystep); basexfrac = rightxfrac; baseyfrac = rightyfrac; xstepscale = (rightxfrac - leftxfrac) / (pl->right - pl->left); ystepscale = (rightyfrac - leftyfrac) / (pl->right - pl->left); planeheight = fabs(pl->height.Zat0() - ViewPos.Z); GlobVis = r_FloorVisibility / planeheight; ds_light = 0; if (fixedlightlev >= 0) { R_SetDSColorMapLight(basecolormap, 0, FIXEDLIGHT2SHADE(fixedlightlev)); plane_shade = false; } else if (fixedcolormap) { R_SetDSColorMapLight(fixedcolormap, 0, 0); plane_shade = false; } else { plane_shade = true; planeshade = LIGHT2SHADE(pl->lightlevel); } if (spanfunc != &SWPixelFormatDrawers::FillSpan) { if (masked) { if (alpha < OPAQUE || additive) { if (!additive) { spanfunc = &SWPixelFormatDrawers::DrawSpanMaskedTranslucent; dc_srcblend = Col2RGB8[alpha >> 10]; dc_destblend = Col2RGB8[(OPAQUE - alpha) >> 10]; dc_srcalpha = alpha; dc_destalpha = OPAQUE - alpha; } else { spanfunc = &SWPixelFormatDrawers::DrawSpanMaskedAddClamp; dc_srcblend = Col2RGB8_LessPrecision[alpha >> 10]; dc_destblend = Col2RGB8_LessPrecision[FRACUNIT >> 10]; dc_srcalpha = alpha; dc_destalpha = FRACUNIT; } } else { spanfunc = &SWPixelFormatDrawers::DrawSpanMasked; } } else { if (alpha < OPAQUE || additive) { if (!additive) { spanfunc = &SWPixelFormatDrawers::DrawSpanTranslucent; dc_srcblend = Col2RGB8[alpha >> 10]; dc_destblend = Col2RGB8[(OPAQUE - alpha) >> 10]; dc_srcalpha = alpha; dc_destalpha = OPAQUE - alpha; } else { spanfunc = &SWPixelFormatDrawers::DrawSpanAddClamp; dc_srcblend = Col2RGB8_LessPrecision[alpha >> 10]; dc_destblend = Col2RGB8_LessPrecision[FRACUNIT >> 10]; dc_srcalpha = alpha; dc_destalpha = FRACUNIT; } } else { spanfunc = &SWPixelFormatDrawers::DrawSpan; } } } ds_light_list = pl->lights; R_MapVisPlane(pl, R_MapPlane, R_StepPlane); } void R_StepPlane() { basexfrac -= xstepscale; baseyfrac -= ystepscale; } void R_MapPlane(int y, int x1, int x2) { using namespace drawerargs; double distance; #ifdef RANGECHECK if (x2 < x1 || x1<0 || x2 >= viewwidth || (unsigned)y >= (unsigned)viewheight) { I_FatalError("R_MapPlane: %i, %i at %i", x1, x2, y); } #endif // [RH] Notice that I dumped the caching scheme used by Doom. // It did not offer any appreciable speedup. distance = planeheight * yslope[y]; if (ds_xbits != 0) { ds_xstep = xs_ToFixed(32 - ds_xbits, distance * xstepscale); ds_xfrac = xs_ToFixed(32 - ds_xbits, distance * basexfrac) + pviewx; } else { ds_xstep = 0; ds_xfrac = 0; } if (ds_ybits != 0) { ds_ystep = xs_ToFixed(32 - ds_ybits, distance * ystepscale); ds_yfrac = xs_ToFixed(32 - ds_ybits, distance * baseyfrac) + pviewy; } else { ds_ystep = 0; ds_yfrac = 0; } if (r_swtruecolor) { double distance2 = planeheight * yslope[(y + 1 < viewheight) ? y + 1 : y - 1]; double xmagnitude = fabs(ystepscale * (distance2 - distance) * FocalLengthX); double ymagnitude = fabs(xstepscale * (distance2 - distance) * FocalLengthX); double magnitude = MAX(ymagnitude, xmagnitude); double min_lod = -1000.0; ds_lod = MAX(log2(magnitude) + r_lod_bias, min_lod); } if (plane_shade) { // Determine lighting based on the span's distance from the viewer. R_SetDSColorMapLight(basecolormap, (float)(GlobVis * fabs(CenterY - y)), planeshade); } if (r_dynlights) { // Find row position in view space float zspan = (float)(planeheight / (fabs(y + 0.5 - CenterY) / InvZtoScale)); dc_viewpos.X = (float)((x1 + 0.5 - CenterX) / CenterX * zspan); dc_viewpos.Y = zspan; dc_viewpos.Z = (float)((CenterY - y - 0.5) / InvZtoScale * zspan); dc_viewpos_step.X = (float)(zspan / CenterX); static TriLight lightbuffer[64 * 1024]; static int nextlightindex = 0; // Plane normal dc_normal.X = 0.0f; dc_normal.Y = 0.0f; dc_normal.Z = (y >= CenterY) ? 1.0f : -1.0f; // Setup lights for row dc_num_lights = 0; dc_lights = lightbuffer + nextlightindex; visplane_light *cur_node = ds_light_list; while (cur_node && nextlightindex < 64 * 1024) { double lightX = cur_node->lightsource->X() - ViewPos.X; double lightY = cur_node->lightsource->Y() - ViewPos.Y; double lightZ = cur_node->lightsource->Z() - ViewPos.Z; float lx = (float)(lightX * ViewSin - lightY * ViewCos); float ly = (float)(lightX * ViewTanCos + lightY * ViewTanSin) - dc_viewpos.Y; float lz = (float)lightZ - dc_viewpos.Z; // Precalculate the constant part of the dot here so the drawer doesn't have to. bool is_point_light = (cur_node->lightsource->flags4 & MF4_ATTENUATE) != 0; float lconstant = ly * ly + lz * lz; float nlconstant = is_point_light ? lz * dc_normal.Z : 0.0f; // Include light only if it touches this row float radius = cur_node->lightsource->GetRadius(); if (radius * radius >= lconstant && nlconstant >= 0.0f) { uint32_t red = cur_node->lightsource->GetRed(); uint32_t green = cur_node->lightsource->GetGreen(); uint32_t blue = cur_node->lightsource->GetBlue(); nextlightindex++; auto &light = dc_lights[dc_num_lights++]; light.x = lx; light.y = lconstant; light.z = nlconstant; light.radius = 256.0f / radius; light.color = (red << 16) | (green << 8) | blue; } cur_node = cur_node->next; } if (nextlightindex == 64 * 1024) nextlightindex = 0; } else { dc_num_lights = 0; } ds_y = y; ds_x1 = x1; ds_x2 = x2; (R_Drawers()->*spanfunc)(); } void R_DrawColoredPlane(visplane_t *pl) { R_MapVisPlane(pl, R_MapColoredPlane, nullptr); } void R_MapColoredPlane(int y, int x1, int x2) { R_Drawers()->DrawColoredSpan(y, x1, x2); } void R_SetupPlaneSlope() { int e, i; i = 0; e = viewheight; float focus = float(FocalLengthY); float den; float cy = float(CenterY); if (i < centery) { den = cy - i - 0.5f; if (e <= centery) { do { yslope[i] = focus / den; den -= 1; } while (++i < e); } else { do { yslope[i] = focus / den; den -= 1; } while (++i < centery); den = i - cy + 0.5f; do { yslope[i] = focus / den; den += 1; } while (++i < e); } } else { den = i - cy + 0.5f; do { yslope[i] = focus / den; den += 1; } while (++i < e); } } }