/* ** Triangle drawers ** Copyright (c) 2016 Magnus Norddahl ** ** This software is provided 'as-is', without any express or implied ** warranty. In no event will the authors be held liable for any damages ** arising from the use of this software. ** ** Permission is granted to anyone to use this software for any purpose, ** including commercial applications, and to alter it and redistribute it ** freely, subject to the following restrictions: ** ** 1. The origin of this software must not be misrepresented; you must not ** claim that you wrote the original software. If you use this software ** in a product, an acknowledgment in the product documentation would be ** appreciated but is not required. ** 2. Altered source versions must be plainly marked as such, and must not be ** misrepresented as being the original software. ** 3. This notice may not be removed or altered from any source distribution. ** */ #include #include "templates.h" #include "doomdef.h" #include "i_system.h" #include "w_wad.h" #include "r_local.h" #include "v_video.h" #include "doomstat.h" #include "st_stuff.h" #include "g_game.h" #include "g_level.h" #include "r_data/r_translate.h" #include "v_palette.h" #include "r_data/colormaps.h" #include "r_poly_triangle.h" #include "r_draw_rgba.h" int PolyTriangleDrawer::viewport_x; int PolyTriangleDrawer::viewport_y; int PolyTriangleDrawer::viewport_width; int PolyTriangleDrawer::viewport_height; int PolyTriangleDrawer::dest_pitch; int PolyTriangleDrawer::dest_width; int PolyTriangleDrawer::dest_height; uint8_t *PolyTriangleDrawer::dest; bool PolyTriangleDrawer::dest_bgra; bool PolyTriangleDrawer::mirror; void PolyTriangleDrawer::set_viewport(int x, int y, int width, int height, DCanvas *canvas) { dest = (uint8_t*)canvas->GetBuffer(); dest_width = canvas->GetWidth(); dest_height = canvas->GetHeight(); dest_pitch = canvas->GetPitch(); dest_bgra = canvas->IsBgra(); int offsetx = clamp(x, 0, dest_width); int offsety = clamp(y, 0, dest_height); int pixelsize = dest_bgra ? 4 : 1; viewport_x = x - offsetx; viewport_y = y - offsety; viewport_width = width; viewport_height = height; dest += (offsetx + offsety * dest_pitch) * pixelsize; dest_width = clamp(viewport_x + viewport_width, 0, dest_width - offsetx); dest_height = clamp(viewport_y + viewport_height, 0, dest_height - offsety); mirror = false; } void PolyTriangleDrawer::toggle_mirror() { mirror = !mirror; } void PolyTriangleDrawer::draw(const PolyDrawArgs &args, TriDrawVariant variant, TriBlendMode blendmode) { DrawerCommandQueue::QueueCommand(args, variant, blendmode, mirror); } void PolyTriangleDrawer::draw_arrays(const PolyDrawArgs &drawargs, TriDrawVariant variant, TriBlendMode blendmode, WorkerThreadData *thread) { if (drawargs.vcount < 3) return; auto llvm = Drawers::Instance(); PolyDrawFuncPtr drawfuncs[3]; int num_drawfuncs = 0; int bmode = (int)blendmode; switch (variant) { case TriDrawVariant::DrawNormal: drawfuncs[num_drawfuncs++] = &ScreenTriangle::SetupNormal; drawfuncs[num_drawfuncs++] = dest_bgra ? llvm->TriDraw32[bmode] : llvm->TriDraw8[bmode]; drawfuncs[num_drawfuncs++] = &ScreenTriangle::SubsectorWrite; break; case TriDrawVariant::FillNormal: drawfuncs[num_drawfuncs++] = &ScreenTriangle::SetupNormal; drawfuncs[num_drawfuncs++] = dest_bgra ? llvm->TriFill32[bmode] : llvm->TriFill8[bmode]; drawfuncs[num_drawfuncs++] = &ScreenTriangle::SubsectorWrite; break; case TriDrawVariant::DrawSubsector: drawfuncs[num_drawfuncs++] = &ScreenTriangle::SetupSubsector; drawfuncs[num_drawfuncs++] = dest_bgra ? llvm->TriDraw32[bmode] : llvm->TriDraw8[bmode]; break; case TriDrawVariant::FillSubsector: drawfuncs[num_drawfuncs++] = &ScreenTriangle::SetupSubsector; drawfuncs[num_drawfuncs++] = dest_bgra ? llvm->TriFill32[bmode] : llvm->TriFill8[bmode]; break; case TriDrawVariant::Stencil: drawfuncs[num_drawfuncs++] = &ScreenTriangle::SetupNormal; drawfuncs[num_drawfuncs++] = &ScreenTriangle::StencilWrite; break; case TriDrawVariant::StencilClose: drawfuncs[num_drawfuncs++] = &ScreenTriangle::SetupNormal; drawfuncs[num_drawfuncs++] = &ScreenTriangle::StencilWrite; drawfuncs[num_drawfuncs++] = &ScreenTriangle::SubsectorWrite; break; default: break; } TriDrawTriangleArgs args; args.dest = dest; args.pitch = dest_pitch; args.clipleft = 0; args.clipright = dest_width; args.cliptop = 0; args.clipbottom = dest_height; args.texturePixels = drawargs.texturePixels; args.textureWidth = drawargs.textureWidth; args.textureHeight = drawargs.textureHeight; args.translation = drawargs.translation; args.uniforms = &drawargs.uniforms; args.stencilTestValue = drawargs.stenciltestvalue; args.stencilWriteValue = drawargs.stencilwritevalue; args.stencilPitch = PolyStencilBuffer::Instance()->BlockWidth(); args.stencilValues = PolyStencilBuffer::Instance()->Values(); args.stencilMasks = PolyStencilBuffer::Instance()->Masks(); args.subsectorGBuffer = PolySubsectorGBuffer::Instance()->Values(); args.colormaps = drawargs.colormaps; args.RGB32k = RGB32k.All; args.BaseColors = (const uint8_t *)GPalette.BaseColors; bool ccw = drawargs.ccw; const TriVertex *vinput = drawargs.vinput; int vcount = drawargs.vcount; ShadedTriVertex vert[3]; if (drawargs.mode == TriangleDrawMode::Normal) { for (int i = 0; i < vcount / 3; i++) { for (int j = 0; j < 3; j++) vert[j] = shade_vertex(*drawargs.objectToClip, drawargs.clipPlane, *(vinput++)); draw_shaded_triangle(vert, ccw, &args, thread, drawfuncs, num_drawfuncs); } } else if (drawargs.mode == TriangleDrawMode::Fan) { vert[0] = shade_vertex(*drawargs.objectToClip, drawargs.clipPlane, *(vinput++)); vert[1] = shade_vertex(*drawargs.objectToClip, drawargs.clipPlane, *(vinput++)); for (int i = 2; i < vcount; i++) { vert[2] = shade_vertex(*drawargs.objectToClip, drawargs.clipPlane, *(vinput++)); draw_shaded_triangle(vert, ccw, &args, thread, drawfuncs, num_drawfuncs); vert[1] = vert[2]; } } else // TriangleDrawMode::Strip { vert[0] = shade_vertex(*drawargs.objectToClip, drawargs.clipPlane, *(vinput++)); vert[1] = shade_vertex(*drawargs.objectToClip, drawargs.clipPlane, *(vinput++)); for (int i = 2; i < vcount; i++) { vert[2] = shade_vertex(*drawargs.objectToClip, drawargs.clipPlane, *(vinput++)); draw_shaded_triangle(vert, ccw, &args, thread, drawfuncs, num_drawfuncs); vert[0] = vert[1]; vert[1] = vert[2]; ccw = !ccw; } } } ShadedTriVertex PolyTriangleDrawer::shade_vertex(const TriMatrix &objectToClip, const float *clipPlane, const TriVertex &v) { // Apply transform to get clip coordinates: ShadedTriVertex sv = objectToClip * v; // Calculate gl_ClipDistance[0] sv.clipDistance0 = v.x * clipPlane[0] + v.y * clipPlane[1] + v.z * clipPlane[2] + v.w * clipPlane[3]; return sv; } void PolyTriangleDrawer::draw_shaded_triangle(const ShadedTriVertex *vert, bool ccw, TriDrawTriangleArgs *args, WorkerThreadData *thread, PolyDrawFuncPtr *drawfuncs, int num_drawfuncs) { // Cull, clip and generate additional vertices as needed TriVertex clippedvert[max_additional_vertices]; int numclipvert; clipedge(vert, clippedvert, numclipvert); // Map to 2D viewport: for (int j = 0; j < numclipvert; j++) { auto &v = clippedvert[j]; // Calculate normalized device coordinates: v.w = 1.0f / v.w; v.x *= v.w; v.y *= v.w; v.z *= v.w; // Apply viewport scale to get screen coordinates: v.x = viewport_x + viewport_width * (1.0f + v.x) * 0.5f; v.y = viewport_y + viewport_height * (1.0f - v.y) * 0.5f; } // Keep varyings in -128 to 128 range if possible if (numclipvert > 0) { for (int j = 0; j < TriVertex::NumVarying; j++) { float newOrigin = floorf(clippedvert[0].varying[j] * 0.1f) * 10.0f; for (int i = 0; i < numclipvert; i++) { clippedvert[i].varying[j] -= newOrigin; } } } // Draw screen triangles if (ccw) { for (int i = numclipvert; i > 1; i--) { args->v1 = &clippedvert[numclipvert - 1]; args->v2 = &clippedvert[i - 1]; args->v3 = &clippedvert[i - 2]; for (int j = 0; j < num_drawfuncs; j++) drawfuncs[j](args, thread); } } else { for (int i = 2; i < numclipvert; i++) { args->v1 = &clippedvert[0]; args->v2 = &clippedvert[i - 1]; args->v3 = &clippedvert[i]; for (int j = 0; j < num_drawfuncs; j++) drawfuncs[j](args, thread); } } } bool PolyTriangleDrawer::cullhalfspace(float clipdistance1, float clipdistance2, float &t1, float &t2) { if (clipdistance1 < 0.0f && clipdistance2 < 0.0f) return true; if (clipdistance1 < 0.0f) t1 = MAX(-clipdistance1 / (clipdistance2 - clipdistance1), 0.0f); else t1 = 0.0f; if (clipdistance2 < 0.0f) t2 = MIN(1.0f + clipdistance2 / (clipdistance1 - clipdistance2), 1.0f); else t2 = 1.0f; return false; } void PolyTriangleDrawer::clipedge(const ShadedTriVertex *verts, TriVertex *clippedvert, int &numclipvert) { // Clip and cull so that the following is true for all vertices: // -v.w <= v.x <= v.w // -v.w <= v.y <= v.w // -v.w <= v.z <= v.w // use barycentric weights while clipping vertices float weights[max_additional_vertices * 3 * 2]; for (int i = 0; i < 3; i++) { weights[i * 3 + 0] = 0.0f; weights[i * 3 + 1] = 0.0f; weights[i * 3 + 2] = 0.0f; weights[i * 3 + i] = 1.0f; } // halfspace clip distances static const int numclipdistances = 7; float clipdistance[numclipdistances * 3]; for (int i = 0; i < 3; i++) { const auto &v = verts[i]; clipdistance[i * numclipdistances + 0] = v.x + v.w; clipdistance[i * numclipdistances + 1] = v.w - v.x; clipdistance[i * numclipdistances + 2] = v.y + v.w; clipdistance[i * numclipdistances + 3] = v.w - v.y; clipdistance[i * numclipdistances + 4] = v.z + v.w; clipdistance[i * numclipdistances + 5] = v.w - v.z; clipdistance[i * numclipdistances + 6] = v.clipDistance0; } // Clip against each halfspace float *input = weights; float *output = weights + max_additional_vertices * 3; int inputverts = 3; int outputverts = 0; for (int p = 0; p < numclipdistances; p++) { // Clip each edge outputverts = 0; for (int i = 0; i < inputverts; i++) { int j = (i + 1) % inputverts; float clipdistance1 = clipdistance[0 * numclipdistances + p] * input[i * 3 + 0] + clipdistance[1 * numclipdistances + p] * input[i * 3 + 1] + clipdistance[2 * numclipdistances + p] * input[i * 3 + 2]; float clipdistance2 = clipdistance[0 * numclipdistances + p] * input[j * 3 + 0] + clipdistance[1 * numclipdistances + p] * input[j * 3 + 1] + clipdistance[2 * numclipdistances + p] * input[j * 3 + 2]; float t1, t2; if (!cullhalfspace(clipdistance1, clipdistance2, t1, t2) && outputverts + 1 < max_additional_vertices) { // add t1 vertex for (int k = 0; k < 3; k++) output[outputverts * 3 + k] = input[i * 3 + k] * (1.0f - t1) + input[j * 3 + k] * t1; outputverts++; if (t2 != 1.0f && t2 > t1) { // add t2 vertex for (int k = 0; k < 3; k++) output[outputverts * 3 + k] = input[i * 3 + k] * (1.0f - t2) + input[j * 3 + k] * t2; outputverts++; } } } std::swap(input, output); std::swap(inputverts, outputverts); if (inputverts == 0) break; } // Convert barycentric weights to actual vertices numclipvert = inputverts; for (int i = 0; i < numclipvert; i++) { auto &v = clippedvert[i]; memset(&v, 0, sizeof(TriVertex)); for (int w = 0; w < 3; w++) { float weight = input[i * 3 + w]; v.x += verts[w].x * weight; v.y += verts[w].y * weight; v.z += verts[w].z * weight; v.w += verts[w].w * weight; for (int iv = 0; iv < TriVertex::NumVarying; iv++) v.varying[iv] += verts[w].varying[iv] * weight; } } } ///////////////////////////////////////////////////////////////////////////// DrawPolyTrianglesCommand::DrawPolyTrianglesCommand(const PolyDrawArgs &args, TriDrawVariant variant, TriBlendMode blendmode, bool mirror) : args(args), variant(variant), blendmode(blendmode) { if (mirror) this->args.ccw = !this->args.ccw; } void DrawPolyTrianglesCommand::Execute(DrawerThread *thread) { WorkerThreadData thread_data; thread_data.core = thread->core; thread_data.num_cores = thread->num_cores; thread_data.pass_start_y = thread->pass_start_y; thread_data.pass_end_y = thread->pass_end_y; thread_data.temp = thread->dc_temp_rgba; thread_data.FullSpans = thread->FullSpansBuffer.data(); thread_data.PartialBlocks = thread->PartialBlocksBuffer.data(); PolyTriangleDrawer::draw_arrays(args, variant, blendmode, &thread_data); } FString DrawPolyTrianglesCommand::DebugInfo() { FString variantstr; switch (variant) { default: variantstr = "Unknown"; break; case TriDrawVariant::DrawNormal: variantstr = "DrawNormal"; break; case TriDrawVariant::FillNormal: variantstr = "FillNormal"; break; case TriDrawVariant::DrawSubsector: variantstr = "DrawSubsector"; break; case TriDrawVariant::FillSubsector: variantstr = "FillSubsector"; break; case TriDrawVariant::FuzzSubsector: variantstr = "FuzzSubsector"; break; case TriDrawVariant::Stencil: variantstr = "Stencil"; break; } FString blendmodestr; switch (blendmode) { default: blendmodestr = "Unknown"; break; case TriBlendMode::Copy: blendmodestr = "Copy"; break; case TriBlendMode::AlphaBlend: blendmodestr = "AlphaBlend"; break; case TriBlendMode::AddSolid: blendmodestr = "AddSolid"; break; case TriBlendMode::Add: blendmodestr = "Add"; break; case TriBlendMode::Sub: blendmodestr = "Sub"; break; case TriBlendMode::RevSub: blendmodestr = "RevSub"; break; case TriBlendMode::Stencil: blendmodestr = "Stencil"; break; case TriBlendMode::Shaded: blendmodestr = "Shaded"; break; case TriBlendMode::TranslateCopy: blendmodestr = "TranslateCopy"; break; case TriBlendMode::TranslateAlphaBlend: blendmodestr = "TranslateAlphaBlend"; break; case TriBlendMode::TranslateAdd: blendmodestr = "TranslateAdd"; break; case TriBlendMode::TranslateSub: blendmodestr = "TranslateSub"; break; case TriBlendMode::TranslateRevSub: blendmodestr = "TranslateRevSub"; break; case TriBlendMode::AddSrcColorOneMinusSrcColor: blendmodestr = "AddSrcColorOneMinusSrcColor"; break; } FString info; info.Format("DrawPolyTriangles: variant = %s, blend mode = %s, color = %d, light = %d, textureWidth = %d, textureHeight = %d, texture = %s, translation = %s, colormaps = %s", variantstr.GetChars(), blendmodestr.GetChars(), args.uniforms.color, args.uniforms.light, args.textureWidth, args.textureHeight, args.texturePixels ? "ptr" : "null", args.translation ? "ptr" : "null", args.colormaps ? "ptr" : "null"); return info; } ///////////////////////////////////////////////////////////////////////////// TriMatrix TriMatrix::null() { TriMatrix m; memset(m.matrix, 0, sizeof(m.matrix)); return m; } TriMatrix TriMatrix::identity() { TriMatrix m = null(); m.matrix[0] = 1.0f; m.matrix[5] = 1.0f; m.matrix[10] = 1.0f; m.matrix[15] = 1.0f; return m; } TriMatrix TriMatrix::translate(float x, float y, float z) { TriMatrix m = identity(); m.matrix[0 + 3 * 4] = x; m.matrix[1 + 3 * 4] = y; m.matrix[2 + 3 * 4] = z; return m; } TriMatrix TriMatrix::scale(float x, float y, float z) { TriMatrix m = null(); m.matrix[0 + 0 * 4] = x; m.matrix[1 + 1 * 4] = y; m.matrix[2 + 2 * 4] = z; m.matrix[3 + 3 * 4] = 1; return m; } TriMatrix TriMatrix::rotate(float angle, float x, float y, float z) { float c = cosf(angle); float s = sinf(angle); TriMatrix m = null(); m.matrix[0 + 0 * 4] = (x*x*(1.0f - c) + c); m.matrix[0 + 1 * 4] = (x*y*(1.0f - c) - z*s); m.matrix[0 + 2 * 4] = (x*z*(1.0f - c) + y*s); m.matrix[1 + 0 * 4] = (y*x*(1.0f - c) + z*s); m.matrix[1 + 1 * 4] = (y*y*(1.0f - c) + c); m.matrix[1 + 2 * 4] = (y*z*(1.0f - c) - x*s); m.matrix[2 + 0 * 4] = (x*z*(1.0f - c) - y*s); m.matrix[2 + 1 * 4] = (y*z*(1.0f - c) + x*s); m.matrix[2 + 2 * 4] = (z*z*(1.0f - c) + c); m.matrix[3 + 3 * 4] = 1.0f; return m; } TriMatrix TriMatrix::swapYZ() { TriMatrix m = null(); m.matrix[0 + 0 * 4] = 1.0f; m.matrix[1 + 2 * 4] = 1.0f; m.matrix[2 + 1 * 4] = -1.0f; m.matrix[3 + 3 * 4] = 1.0f; return m; } TriMatrix TriMatrix::perspective(float fovy, float aspect, float z_near, float z_far) { float f = (float)(1.0 / tan(fovy * M_PI / 360.0)); TriMatrix m = null(); m.matrix[0 + 0 * 4] = f / aspect; m.matrix[1 + 1 * 4] = f; m.matrix[2 + 2 * 4] = (z_far + z_near) / (z_near - z_far); m.matrix[2 + 3 * 4] = (2.0f * z_far * z_near) / (z_near - z_far); m.matrix[3 + 2 * 4] = -1.0f; return m; } TriMatrix TriMatrix::frustum(float left, float right, float bottom, float top, float near, float far) { float a = (right + left) / (right - left); float b = (top + bottom) / (top - bottom); float c = -(far + near) / (far - near); float d = -(2.0f * far) / (far - near); TriMatrix m = null(); m.matrix[0 + 0 * 4] = 2.0f * near / (right - left); m.matrix[1 + 1 * 4] = 2.0f * near / (top - bottom); m.matrix[0 + 2 * 4] = a; m.matrix[1 + 2 * 4] = b; m.matrix[2 + 2 * 4] = c; m.matrix[2 + 3 * 4] = d; m.matrix[3 + 2 * 4] = -1; return m; } TriMatrix TriMatrix::worldToView() { TriMatrix m = null(); m.matrix[0 + 0 * 4] = (float)ViewSin; m.matrix[0 + 1 * 4] = (float)-ViewCos; m.matrix[1 + 2 * 4] = 1.0f; m.matrix[2 + 0 * 4] = (float)-ViewCos; m.matrix[2 + 1 * 4] = (float)-ViewSin; m.matrix[3 + 3 * 4] = 1.0f; return m * translate((float)-ViewPos.X, (float)-ViewPos.Y, (float)-ViewPos.Z); } TriMatrix TriMatrix::viewToClip() { float near = 5.0f; float far = 65536.0f; float width = (float)(FocalTangent * near); float top = (float)(swrenderer::CenterY / swrenderer::InvZtoScale * near); float bottom = (float)(top - viewheight / swrenderer::InvZtoScale * near); return frustum(-width, width, bottom, top, near, far); } TriMatrix TriMatrix::operator*(const TriMatrix &mult) const { TriMatrix result; for (int x = 0; x < 4; x++) { for (int y = 0; y < 4; y++) { result.matrix[x + y * 4] = matrix[0 * 4 + x] * mult.matrix[y * 4 + 0] + matrix[1 * 4 + x] * mult.matrix[y * 4 + 1] + matrix[2 * 4 + x] * mult.matrix[y * 4 + 2] + matrix[3 * 4 + x] * mult.matrix[y * 4 + 3]; } } return result; } ShadedTriVertex TriMatrix::operator*(TriVertex v) const { float vx = matrix[0 * 4 + 0] * v.x + matrix[1 * 4 + 0] * v.y + matrix[2 * 4 + 0] * v.z + matrix[3 * 4 + 0] * v.w; float vy = matrix[0 * 4 + 1] * v.x + matrix[1 * 4 + 1] * v.y + matrix[2 * 4 + 1] * v.z + matrix[3 * 4 + 1] * v.w; float vz = matrix[0 * 4 + 2] * v.x + matrix[1 * 4 + 2] * v.y + matrix[2 * 4 + 2] * v.z + matrix[3 * 4 + 2] * v.w; float vw = matrix[0 * 4 + 3] * v.x + matrix[1 * 4 + 3] * v.y + matrix[2 * 4 + 3] * v.z + matrix[3 * 4 + 3] * v.w; ShadedTriVertex sv; sv.x = vx; sv.y = vy; sv.z = vz; sv.w = vw; for (int i = 0; i < TriVertex::NumVarying; i++) sv.varying[i] = v.varying[i]; return sv; } ///////////////////////////////////////////////////////////////////////////// namespace { int NextBufferVertex = 0; } TriVertex *PolyVertexBuffer::GetVertices(int count) { enum { VertexBufferSize = 256 * 1024 }; static TriVertex Vertex[VertexBufferSize]; if (NextBufferVertex + count > VertexBufferSize) return nullptr; TriVertex *v = Vertex + NextBufferVertex; NextBufferVertex += count; return v; } void PolyVertexBuffer::Clear() { NextBufferVertex = 0; } ///////////////////////////////////////////////////////////////////////////// void ScreenTriangle::SetupNormal(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { const TriVertex &v1 = *args->v1; const TriVertex &v2 = *args->v2; const TriVertex &v3 = *args->v3; int clipright = args->clipright; int clipbottom = args->clipbottom; int stencilPitch = args->stencilPitch; uint8_t * RESTRICT stencilValues = args->stencilValues; uint32_t * RESTRICT stencilMasks = args->stencilMasks; uint8_t stencilTestValue = args->stencilTestValue; TriFullSpan * RESTRICT span = thread->FullSpans; TriPartialBlock * RESTRICT partial = thread->PartialBlocks; // 28.4 fixed-point coordinates const int Y1 = (int)round(16.0f * v1.y); const int Y2 = (int)round(16.0f * v2.y); const int Y3 = (int)round(16.0f * v3.y); const int X1 = (int)round(16.0f * v1.x); const int X2 = (int)round(16.0f * v2.x); const int X3 = (int)round(16.0f * v3.x); // Deltas const int DX12 = X1 - X2; const int DX23 = X2 - X3; const int DX31 = X3 - X1; const int DY12 = Y1 - Y2; const int DY23 = Y2 - Y3; const int DY31 = Y3 - Y1; // Fixed-point deltas const int FDX12 = DX12 << 4; const int FDX23 = DX23 << 4; const int FDX31 = DX31 << 4; const int FDY12 = DY12 << 4; const int FDY23 = DY23 << 4; const int FDY31 = DY31 << 4; // Bounding rectangle int minx = MAX((MIN(MIN(X1, X2), X3) + 0xF) >> 4, 0); int maxx = MIN((MAX(MAX(X1, X2), X3) + 0xF) >> 4, clipright - 1); int miny = MAX((MIN(MIN(Y1, Y2), Y3) + 0xF) >> 4, 0); int maxy = MIN((MAX(MAX(Y1, Y2), Y3) + 0xF) >> 4, clipbottom - 1); if (minx >= maxx || miny >= maxy) { thread->NumFullSpans = 0; thread->NumPartialBlocks = 0; return; } // Block size, standard 8x8 (must be power of two) const int q = 8; // Start in corner of 8x8 block minx &= ~(q - 1); miny &= ~(q - 1); // Half-edge constants int C1 = DY12 * X1 - DX12 * Y1; int C2 = DY23 * X2 - DX23 * Y2; int C3 = DY31 * X3 - DX31 * Y3; // Correct for fill convention if (DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++; if (DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++; if (DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++; // First block line for this thread int core = thread->core; int num_cores = thread->num_cores; int core_skip = (num_cores - ((miny / q) - core) % num_cores) % num_cores; miny += core_skip * q; thread->StartX = minx; thread->StartY = miny; span->Length = 0; // Loop through blocks for (int y = miny; y < maxy; y += q * num_cores) { for (int x = minx; x < maxx; x += q) { // Corners of block int x0 = x << 4; int x1 = (x + q - 1) << 4; int y0 = y << 4; int y1 = (y + q - 1) << 4; // Evaluate half-space functions bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0; bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0; bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0; bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0; int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3); bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0; bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0; bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0; bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0; int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3); bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0; bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0; bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0; bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0; int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3); // Stencil test the whole block, if possible int block = x / 8 + y / 8 * stencilPitch; uint8_t *stencilBlock = &stencilValues[block * 64]; uint32_t *stencilBlockMask = &stencilMasks[block]; bool blockIsSingleStencil = ((*stencilBlockMask) & 0xffffff00) == 0xffffff00; bool skipBlock = blockIsSingleStencil && ((*stencilBlockMask) & 0xff) != stencilTestValue; // Skip block when outside an edge if (a == 0 || b == 0 || c == 0 || skipBlock) { if (span->Length != 0) { span++; span->Length = 0; } continue; } // Accept whole block when totally covered if (a == 0xf && b == 0xf && c == 0xf && x + q <= clipright && y + q <= clipbottom && blockIsSingleStencil) { if (span->Length != 0) { span->Length++; } else { span->X = x; span->Y = y; span->Length = 1; } } else // Partially covered block { x0 = x << 4; x1 = (x + q - 1) << 4; int CY1 = C1 + DX12 * y0 - DY12 * x0; int CY2 = C2 + DX23 * y0 - DY23 * x0; int CY3 = C3 + DX31 * y0 - DY31 * x0; uint32_t mask0 = 0; uint32_t mask1 = 0; for (int iy = 0; iy < 4; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; for (int ix = 0; ix < q; ix++) { bool passStencilTest = blockIsSingleStencil || stencilBlock[ix + iy * q] == stencilTestValue; bool covered = (CX1 > 0 && CX2 > 0 && CX3 > 0 && (x + ix) < clipright && (y + iy) < clipbottom && passStencilTest); mask0 <<= 1; mask0 |= (uint32_t)covered; CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; } for (int iy = 4; iy < q; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; for (int ix = 0; ix < q; ix++) { bool passStencilTest = blockIsSingleStencil || stencilBlock[ix + iy * q] == stencilTestValue; bool covered = (CX1 > 0 && CX2 > 0 && CX3 > 0 && (x + ix) < clipright && (y + iy) < clipbottom && passStencilTest); mask1 <<= 1; mask1 |= (uint32_t)covered; CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; } if (mask0 != 0xffffffff || mask1 != 0xffffffff) { if (span->Length > 0) { span++; span->Length = 0; } partial->X = x; partial->Y = y; partial->Mask0 = mask0; partial->Mask1 = mask1; partial++; } else if (span->Length != 0) { span->Length++; } else { span->X = x; span->Y = y; span->Length = 1; } } } if (span->Length != 0) { span++; span->Length = 0; } } thread->NumFullSpans = (int)(span - thread->FullSpans); thread->NumPartialBlocks = (int)(partial - thread->PartialBlocks); } void ScreenTriangle::SetupSubsector(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { const TriVertex &v1 = *args->v1; const TriVertex &v2 = *args->v2; const TriVertex &v3 = *args->v3; int clipright = args->clipright; int clipbottom = args->clipbottom; int stencilPitch = args->stencilPitch; uint8_t * RESTRICT stencilValues = args->stencilValues; uint32_t * RESTRICT stencilMasks = args->stencilMasks; uint8_t stencilTestValue = args->stencilTestValue; uint32_t * RESTRICT subsectorGBuffer = args->subsectorGBuffer; uint32_t subsectorDepth = args->uniforms->subsectorDepth; int32_t pitch = args->pitch; TriFullSpan * RESTRICT span = thread->FullSpans; TriPartialBlock * RESTRICT partial = thread->PartialBlocks; // 28.4 fixed-point coordinates const int Y1 = (int)round(16.0f * v1.y); const int Y2 = (int)round(16.0f * v2.y); const int Y3 = (int)round(16.0f * v3.y); const int X1 = (int)round(16.0f * v1.x); const int X2 = (int)round(16.0f * v2.x); const int X3 = (int)round(16.0f * v3.x); // Deltas const int DX12 = X1 - X2; const int DX23 = X2 - X3; const int DX31 = X3 - X1; const int DY12 = Y1 - Y2; const int DY23 = Y2 - Y3; const int DY31 = Y3 - Y1; // Fixed-point deltas const int FDX12 = DX12 << 4; const int FDX23 = DX23 << 4; const int FDX31 = DX31 << 4; const int FDY12 = DY12 << 4; const int FDY23 = DY23 << 4; const int FDY31 = DY31 << 4; // Bounding rectangle int minx = MAX((MIN(MIN(X1, X2), X3) + 0xF) >> 4, 0); int maxx = MIN((MAX(MAX(X1, X2), X3) + 0xF) >> 4, clipright - 1); int miny = MAX((MIN(MIN(Y1, Y2), Y3) + 0xF) >> 4, 0); int maxy = MIN((MAX(MAX(Y1, Y2), Y3) + 0xF) >> 4, clipbottom - 1); if (minx >= maxx || miny >= maxy) { thread->NumFullSpans = 0; thread->NumPartialBlocks = 0; return; } // Block size, standard 8x8 (must be power of two) const int q = 8; // Start in corner of 8x8 block minx &= ~(q - 1); miny &= ~(q - 1); // Half-edge constants int C1 = DY12 * X1 - DX12 * Y1; int C2 = DY23 * X2 - DX23 * Y2; int C3 = DY31 * X3 - DX31 * Y3; // Correct for fill convention if (DY12 < 0 || (DY12 == 0 && DX12 > 0)) C1++; if (DY23 < 0 || (DY23 == 0 && DX23 > 0)) C2++; if (DY31 < 0 || (DY31 == 0 && DX31 > 0)) C3++; // First block line for this thread int core = thread->core; int num_cores = thread->num_cores; int core_skip = (num_cores - ((miny / q) - core) % num_cores) % num_cores; miny += core_skip * q; thread->StartX = minx; thread->StartY = miny; span->Length = 0; // Loop through blocks for (int y = miny; y < maxy; y += q * num_cores) { for (int x = minx; x < maxx; x += q) { // Corners of block int x0 = x << 4; int x1 = (x + q - 1) << 4; int y0 = y << 4; int y1 = (y + q - 1) << 4; // Evaluate half-space functions bool a00 = C1 + DX12 * y0 - DY12 * x0 > 0; bool a10 = C1 + DX12 * y0 - DY12 * x1 > 0; bool a01 = C1 + DX12 * y1 - DY12 * x0 > 0; bool a11 = C1 + DX12 * y1 - DY12 * x1 > 0; int a = (a00 << 0) | (a10 << 1) | (a01 << 2) | (a11 << 3); bool b00 = C2 + DX23 * y0 - DY23 * x0 > 0; bool b10 = C2 + DX23 * y0 - DY23 * x1 > 0; bool b01 = C2 + DX23 * y1 - DY23 * x0 > 0; bool b11 = C2 + DX23 * y1 - DY23 * x1 > 0; int b = (b00 << 0) | (b10 << 1) | (b01 << 2) | (b11 << 3); bool c00 = C3 + DX31 * y0 - DY31 * x0 > 0; bool c10 = C3 + DX31 * y0 - DY31 * x1 > 0; bool c01 = C3 + DX31 * y1 - DY31 * x0 > 0; bool c11 = C3 + DX31 * y1 - DY31 * x1 > 0; int c = (c00 << 0) | (c10 << 1) | (c01 << 2) | (c11 << 3); // Stencil test the whole block, if possible int block = x / 8 + y / 8 * stencilPitch; uint8_t *stencilBlock = &stencilValues[block * 64]; uint32_t *stencilBlockMask = &stencilMasks[block]; bool blockIsSingleStencil = ((*stencilBlockMask) & 0xffffff00) == 0xffffff00; bool skipBlock = blockIsSingleStencil && ((*stencilBlockMask) & 0xff) < stencilTestValue; // Skip block when outside an edge if (a == 0 || b == 0 || c == 0 || skipBlock) { if (span->Length != 0) { span++; span->Length = 0; } continue; } // Accept whole block when totally covered if (a == 0xf && b == 0xf && c == 0xf && x + q <= clipright && y + q <= clipbottom && blockIsSingleStencil) { // Totally covered block still needs a subsector coverage test: uint32_t *subsector = subsectorGBuffer + x + y * pitch; uint32_t mask0 = 0; uint32_t mask1 = 0; for (int iy = 0; iy < 4; iy++) { for (int ix = 0; ix < q; ix++) { bool covered = subsector[ix] >= subsectorDepth; mask0 <<= 1; mask0 |= (uint32_t)covered; } subsector += pitch; } for (int iy = 4; iy < q; iy++) { for (int ix = 0; ix < q; ix++) { bool covered = subsector[ix] >= subsectorDepth; mask1 <<= 1; mask1 |= (uint32_t)covered; } subsector += pitch; } if (mask0 != 0xffffffff || mask1 != 0xffffffff) { if (span->Length > 0) { span++; span->Length = 0; } partial->X = x; partial->Y = y; partial->Mask0 = mask0; partial->Mask1 = mask1; partial++; } else if (span->Length != 0) { span->Length++; } else { span->X = x; span->Y = y; span->Length = 1; } } else // Partially covered block { x0 = x << 4; x1 = (x + q - 1) << 4; int CY1 = C1 + DX12 * y0 - DY12 * x0; int CY2 = C2 + DX23 * y0 - DY23 * x0; int CY3 = C3 + DX31 * y0 - DY31 * x0; uint32_t *subsector = subsectorGBuffer + x + y * pitch; uint32_t mask0 = 0; uint32_t mask1 = 0; for (int iy = 0; iy < 4; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; for (int ix = 0; ix < q; ix++) { bool passStencilTest = blockIsSingleStencil || stencilBlock[ix + iy * q] >= stencilTestValue; bool covered = (CX1 > 0 && CX2 > 0 && CX3 > 0 && (x + ix) < clipright && (y + iy) < clipbottom && passStencilTest && subsector[ix] >= subsectorDepth); mask0 <<= 1; mask0 |= (uint32_t)covered; CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; subsector += pitch; } for (int iy = 4; iy < q; iy++) { int CX1 = CY1; int CX2 = CY2; int CX3 = CY3; for (int ix = 0; ix < q; ix++) { bool passStencilTest = blockIsSingleStencil || stencilBlock[ix + iy * q] >= stencilTestValue; bool covered = (CX1 > 0 && CX2 > 0 && CX3 > 0 && (x + ix) < clipright && (y + iy) < clipbottom && passStencilTest && subsector[ix] >= subsectorDepth); mask1 <<= 1; mask1 |= (uint32_t)covered; CX1 -= FDY12; CX2 -= FDY23; CX3 -= FDY31; } CY1 += FDX12; CY2 += FDX23; CY3 += FDX31; subsector += pitch; } if (mask0 != 0xffffffff || mask1 != 0xffffffff) { if (span->Length > 0) { span++; span->Length = 0; } partial->X = x; partial->Y = y; partial->Mask0 = mask0; partial->Mask1 = mask1; partial++; } else if (span->Length != 0) { span->Length++; } else { span->X = x; span->Y = y; span->Length = 1; } } } if (span->Length != 0) { span++; span->Length = 0; } } thread->NumFullSpans = (int)(span - thread->FullSpans); thread->NumPartialBlocks = (int)(partial - thread->PartialBlocks); } void ScreenTriangle::StencilWrite(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { uint8_t * RESTRICT stencilValues = args->stencilValues; uint32_t * RESTRICT stencilMasks = args->stencilMasks; uint32_t stencilWriteValue = args->stencilWriteValue; uint32_t stencilPitch = args->stencilPitch; int numSpans = thread->NumFullSpans; auto fullSpans = thread->FullSpans; int numBlocks = thread->NumPartialBlocks; auto partialBlocks = thread->PartialBlocks; for (int i = 0; i < numSpans; i++) { const auto &span = fullSpans[i]; int block = span.X / 8 + span.Y / 8 * stencilPitch; uint8_t *stencilBlock = &stencilValues[block * 64]; uint32_t *stencilBlockMask = &stencilMasks[block]; int width = span.Length; for (int x = 0; x < width; x++) stencilBlockMask[x] = 0xffffff00 | stencilWriteValue; } for (int i = 0; i < numBlocks; i++) { const auto &block = partialBlocks[i]; uint32_t mask0 = block.Mask0; uint32_t mask1 = block.Mask1; int sblock = block.X / 8 + block.Y / 8 * stencilPitch; uint8_t *stencilBlock = &stencilValues[sblock * 64]; uint32_t *stencilBlockMask = &stencilMasks[sblock]; bool isSingleValue = ((*stencilBlockMask) & 0xffffff00) == 0xffffff00; if (isSingleValue) { uint8_t value = (*stencilBlockMask) & 0xff; for (int v = 0; v < 64; v++) stencilBlock[v] = value; *stencilBlockMask = 0; } int count = 0; for (int v = 0; v < 32; v++) { if ((mask0 & (1 << 31)) || stencilBlock[v] == stencilWriteValue) { stencilBlock[v] = stencilWriteValue; count++; } mask0 <<= 1; } for (int v = 32; v < 64; v++) { if ((mask1 & (1 << 31)) || stencilBlock[v] == stencilWriteValue) { stencilBlock[v] = stencilWriteValue; count++; } mask1 <<= 1; } if (count == 64) *stencilBlockMask = 0xffffff00 | stencilWriteValue; } } void ScreenTriangle::SubsectorWrite(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { uint32_t * RESTRICT subsectorGBuffer = args->subsectorGBuffer; uint32_t subsectorDepth = args->uniforms->subsectorDepth; int pitch = args->pitch; int numSpans = thread->NumFullSpans; auto fullSpans = thread->FullSpans; int numBlocks = thread->NumPartialBlocks; auto partialBlocks = thread->PartialBlocks; for (int i = 0; i < numSpans; i++) { const auto &span = fullSpans[i]; uint32_t *subsector = subsectorGBuffer + span.X + span.Y * pitch; int width = span.Length * 8; int height = 8; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) subsector[x] = subsectorDepth; subsector += pitch; } } for (int i = 0; i < numBlocks; i++) { const auto &block = partialBlocks[i]; uint32_t *subsector = subsectorGBuffer + block.X + block.Y * pitch; uint32_t mask0 = block.Mask0; uint32_t mask1 = block.Mask1; for (int y = 0; y < 4; y++) { for (int x = 0; x < 8; x++) { if (mask0 & (1 << 31)) subsector[x] = subsectorDepth; mask0 <<= 1; } subsector += pitch; } for (int y = 4; y < 8; y++) { for (int x = 0; x < 8; x++) { if (mask1 & (1 << 31)) subsector[x] = subsectorDepth; mask1 <<= 1; } subsector += pitch; } } } #if 0 float ScreenTriangle::FindGradientX(float x0, float y0, float x1, float y1, float x2, float y2, float c0, float c1, float c2) { float top = (c1 - c2) * (y0 - y2) - (c0 - c2) * (y1 - y2); float bottom = (x1 - x2) * (y0 - y2) - (x0 - x2) * (y1 - y2); return top / bottom; } float ScreenTriangle::FindGradientY(float x0, float y0, float x1, float y1, float x2, float y2, float c0, float c1, float c2) { float top = (c1 - c2) * (x0 - x2) - (c0 - c2) * (x1 - x2); float bottom = (x0 - x2) * (y1 - y2) - (x1 - x2) * (y0 - y2); return top / bottom; } void ScreenTriangle::Draw(const TriDrawTriangleArgs *args, WorkerThreadData *thread) { int numSpans = thread->NumFullSpans; auto fullSpans = thread->FullSpans; int numBlocks = thread->NumPartialBlocks; auto partialBlocks = thread->PartialBlocks; int startX = thread->StartX; int startY = thread->StartY; // Calculate gradients const TriVertex &v1 = *args->v1; const TriVertex &v2 = *args->v2; const TriVertex &v3 = *args->v3; ScreenTriangleStepVariables gradientX; ScreenTriangleStepVariables gradientY; ScreenTriangleStepVariables start; gradientX.W = FindGradientX(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.w, v2.w, v3.w); gradientY.W = FindGradientY(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.w, v2.w, v3.w); start.W = v1.w + gradientX.W * (startX - v1.x) + gradientY.W * (startY - v1.y); for (int i = 0; i < TriVertex::NumVarying; i++) { gradientX.Varying[i] = FindGradientX(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.varying[i] * v1.w, v2.varying[i] * v2.w, v3.varying[i] * v3.w); gradientY.Varying[i] = FindGradientY(v1.x, v1.y, v2.x, v2.y, v3.x, v3.y, v1.varying[i] * v1.w, v2.varying[i] * v2.w, v3.varying[i] * v3.w); start.Varying[i] = v1.varying[i] * v1.w + gradientX.Varying[i] * (startX - v1.x) + gradientY.Varying[i] * (startY - v1.y); } const uint32_t * RESTRICT texPixels = (const uint32_t *)args->texturePixels; uint32_t texWidth = args->textureWidth; uint32_t texHeight = args->textureHeight; uint32_t * RESTRICT destOrg = (uint32_t*)args->dest; uint32_t * RESTRICT subsectorGBuffer = (uint32_t*)args->subsectorGBuffer; int pitch = args->pitch; uint32_t subsectorDepth = args->uniforms->subsectorDepth; uint32_t light = args->uniforms->light; float shade = (64.0f - (light * 255 / 256 + 12.0f) * 32.0f / 128.0f) / 32.0f; float globVis = 1706.0f; for (int i = 0; i < numSpans; i++) { const auto &span = fullSpans[i]; uint32_t *dest = destOrg + span.X + span.Y * pitch; uint32_t *subsector = subsectorGBuffer + span.X + span.Y * pitch; int width = span.Length; int height = 8; ScreenTriangleStepVariables blockPosY; blockPosY.W = start.W + gradientX.W * (span.X - startX) + gradientY.W * (span.Y - startY); for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] = start.Varying[j] + gradientX.Varying[j] * (span.X - startX) + gradientY.Varying[j] * (span.Y - startY); for (int y = 0; y < height; y++) { ScreenTriangleStepVariables blockPosX = blockPosY; float rcpW = 0x01000000 / blockPosX.W; int32_t varyingPos[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW); int lightpos = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); for (int x = 0; x < width; x++) { blockPosX.W += gradientX.W * 8; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosX.Varying[j] += gradientX.Varying[j] * 8; rcpW = 0x01000000 / blockPosX.W; int32_t varyingStep[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) { int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW); varyingStep[j] = (nextPos - varyingPos[j]) / 8; } int lightnext = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); int lightstep = (lightnext - lightpos) / 8; for (int ix = 0; ix < 8; ix++) { int texelX = ((((uint32_t)varyingPos[0] << 8) >> 16) * texWidth) >> 16; int texelY = ((((uint32_t)varyingPos[1] << 8) >> 16) * texHeight) >> 16; uint32_t fg = texPixels[texelX * texHeight + texelY]; uint32_t r = RPART(fg); uint32_t g = GPART(fg); uint32_t b = BPART(fg); r = r * lightpos / 256; g = g * lightpos / 256; b = b * lightpos / 256; fg = 0xff000000 | (r << 16) | (g << 8) | b; dest[x * 8 + ix] = fg; subsector[x * 8 + ix] = subsectorDepth; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] += varyingStep[j]; lightpos += lightstep; } } blockPosY.W += gradientY.W; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] += gradientY.Varying[j]; dest += pitch; subsector += pitch; } } for (int i = 0; i < numBlocks; i++) { const auto &block = partialBlocks[i]; ScreenTriangleStepVariables blockPosY; blockPosY.W = start.W + gradientX.W * (block.X - startX) + gradientY.W * (block.Y - startY); for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] = start.Varying[j] + gradientX.Varying[j] * (block.X - startX) + gradientY.Varying[j] * (block.Y - startY); uint32_t *dest = destOrg + block.X + block.Y * pitch; uint32_t *subsector = subsectorGBuffer + block.X + block.Y * pitch; uint32_t mask0 = block.Mask0; uint32_t mask1 = block.Mask1; for (int y = 0; y < 4; y++) { ScreenTriangleStepVariables blockPosX = blockPosY; float rcpW = 0x01000000 / blockPosX.W; int32_t varyingPos[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW); int lightpos = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); blockPosX.W += gradientX.W * 8; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosX.Varying[j] += gradientX.Varying[j] * 8; rcpW = 0x01000000 / blockPosX.W; int32_t varyingStep[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) { int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW); varyingStep[j] = (nextPos - varyingPos[j]) / 8; } int lightnext = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); int lightstep = (lightnext - lightpos) / 8; for (int x = 0; x < 8; x++) { if (mask0 & (1 << 31)) { int texelX = ((((uint32_t)varyingPos[0] << 8) >> 16) * texWidth) >> 16; int texelY = ((((uint32_t)varyingPos[1] << 8) >> 16) * texHeight) >> 16; uint32_t fg = texPixels[texelX * texHeight + texelY]; uint32_t r = RPART(fg); uint32_t g = GPART(fg); uint32_t b = BPART(fg); r = r * lightpos / 256; g = g * lightpos / 256; b = b * lightpos / 256; fg = 0xff000000 | (r << 16) | (g << 8) | b; dest[x] = fg; subsector[x] = subsectorDepth; } mask0 <<= 1; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] += varyingStep[j]; lightpos += lightstep; } blockPosY.W += gradientY.W; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] += gradientY.Varying[j]; dest += pitch; subsector += pitch; } for (int y = 4; y < 8; y++) { ScreenTriangleStepVariables blockPosX = blockPosY; float rcpW = 0x01000000 / blockPosX.W; int32_t varyingPos[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] = (int32_t)(blockPosX.Varying[j] * rcpW); int lightpos = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); blockPosX.W += gradientX.W * 8; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosX.Varying[j] += gradientX.Varying[j] * 8; rcpW = 0x01000000 / blockPosX.W; int32_t varyingStep[TriVertex::NumVarying]; for (int j = 0; j < TriVertex::NumVarying; j++) { int32_t nextPos = (int32_t)(blockPosX.Varying[j] * rcpW); varyingStep[j] = (nextPos - varyingPos[j]) / 8; } int lightnext = 256 - (int)(clamp(shade - MIN(24.0f, globVis * blockPosX.W) / 32.0f, 0.0f, 31.0f / 32.0f) * 256.0f); int lightstep = (lightnext - lightpos) / 8; for (int x = 0; x < 8; x++) { if (mask1 & (1 << 31)) { int texelX = ((((uint32_t)varyingPos[0] << 8) >> 16) * texWidth) >> 16; int texelY = ((((uint32_t)varyingPos[1] << 8) >> 16) * texHeight) >> 16; uint32_t fg = texPixels[texelX * texHeight + texelY]; uint32_t r = RPART(fg); uint32_t g = GPART(fg); uint32_t b = BPART(fg); r = r * lightpos / 256; g = g * lightpos / 256; b = b * lightpos / 256; fg = 0xff000000 | (r << 16) | (g << 8) | b; dest[x] = fg; subsector[x] = subsectorDepth; } mask1 <<= 1; for (int j = 0; j < TriVertex::NumVarying; j++) varyingPos[j] += varyingStep[j]; lightpos += lightstep; } blockPosY.W += gradientY.W; for (int j = 0; j < TriVertex::NumVarying; j++) blockPosY.Varying[j] += gradientY.Varying[j]; dest += pitch; subsector += pitch; } } } #endif