in vec2 TexCoord; out vec4 FragColor; // This constant must match the same constant in gl_shadowmap.h // #define ShadowmapQuality 1024 //#define ShadowmapQuality 128 uniform float ShadowmapQuality; // A node in an AABB binary tree with lines stored in the leaf nodes struct GPUNode { vec2 aabb_min; // Min xy values for the axis-aligned box containing the node and its subtree vec2 aabb_max; // Max xy values int left; // Left subnode index int right; // Right subnode index int line_index; // Line index if it is a leaf node, otherwise -1 int padding; // Unused - maintains 16 byte alignment }; // 2D line segment, referenced by leaf nodes struct GPULine { vec2 pos; // Line start position vec2 delta; // Line end position - line start position }; layout(std430, binding = 2) buffer LightNodes { GPUNode nodes[]; }; layout(std430, binding = 3) buffer LightLines { GPULine lines[]; }; layout(std430, binding = 4) buffer LightList { vec4 lights[]; }; // Overlap test between line segment and axis-aligned bounding box. Returns true if they overlap. bool overlapRayAABB(vec2 ray_start2d, vec2 ray_end2d, vec2 aabb_min2d, vec2 aabb_max2d) { // To do: simplify test to use a 2D test vec3 ray_start = vec3(ray_start2d, 0.0); vec3 ray_end = vec3(ray_end2d, 0.0); vec3 aabb_min = vec3(aabb_min2d, -1.0); vec3 aabb_max = vec3(aabb_max2d, 1.0); vec3 c = (ray_start + ray_end) * 0.5f; vec3 w = ray_end - c; vec3 h = (aabb_max - aabb_min) * 0.5f; // aabb.extents(); c -= (aabb_max + aabb_min) * 0.5f; // aabb.center(); vec3 v = abs(w); if (abs(c.x) > v.x + h.x || abs(c.y) > v.y + h.y || abs(c.z) > v.z + h.z) return false; // disjoint; if (abs(c.y * w.z - c.z * w.y) > h.y * v.z + h.z * v.y || abs(c.x * w.z - c.z * w.x) > h.x * v.z + h.z * v.x || abs(c.x * w.y - c.y * w.x) > h.x * v.y + h.y * v.x) return false; // disjoint; return true; // overlap; } // Intersection test between two line segments. // Returns the intersection point as a value between 0-1 on the ray line segment. 1.0 if there was no hit. float intersectRayLine(vec2 ray_start, vec2 ray_end, int line_index, vec2 raydelta, float rayd, float raydist2) { const float epsilon = 0.0000001; GPULine line = lines[line_index]; vec2 raynormal = vec2(raydelta.y, -raydelta.x); float den = dot(raynormal, line.delta); if (abs(den) > epsilon) { float t_line = (rayd - dot(raynormal, line.pos)) / den; if (t_line >= 0.0 && t_line <= 1.0) { vec2 linehitdelta = line.pos + line.delta * t_line - ray_start; float t = dot(raydelta, linehitdelta) / raydist2; return t > 0.0 ? t : 1.0; } } return 1.0; } // Returns true if an AABB tree node is a leaf node. Leaf nodes contains a line. bool isLeaf(int node_index) { return nodes[node_index].line_index != -1; } // Perform ray intersection test between the ray line segment and all the lines in the AABB binary tree. // Returns the intersection point as a value between 0-1 on the ray line segment. 1.0 if there was no hit. float rayTest(vec2 ray_start, vec2 ray_end) { vec2 raydelta = ray_end - ray_start; float raydist2 = dot(raydelta, raydelta); vec2 raynormal = vec2(raydelta.y, -raydelta.x); float rayd = dot(raynormal, ray_start); if (raydist2 < 1.0) return 1.0; float t = 1.0; // Walk the AABB binary tree searching for nodes touching the ray line segment's AABB box. // When it reaches a leaf node, use a line segment intersection test to see if we got a hit. int stack[16]; int stack_pos = 1; stack[0] = nodes.length() - 1; while (stack_pos > 0) { int node_index = stack[stack_pos - 1]; if (!overlapRayAABB(ray_start, ray_end, nodes[node_index].aabb_min, nodes[node_index].aabb_max)) { stack_pos--; } else if (isLeaf(node_index)) { t = min(intersectRayLine(ray_start, ray_end, nodes[node_index].line_index, raydelta, rayd, raydist2), t); stack_pos--; } else if (stack_pos == 16) { stack_pos--; // stack overflow } else { stack[stack_pos - 1] = nodes[node_index].left; stack[stack_pos] = nodes[node_index].right; stack_pos++; } } return t; } void main() { // Find the light that belongs to this texel in the shadowmap texture we output to: int lightIndex = int(gl_FragCoord.y); vec4 light = lights[lightIndex]; float radius = light.w; vec2 lightpos = light.xy; if (radius > 0.0) { // We found an active light. Calculate the ray direction for the texel. // // The texels are laid out so that there are four projections: // // * top-left to top-right // * top-right to bottom-right // * bottom-right to bottom-left // * bottom-left to top-left // vec2 raydir; float u = gl_FragCoord.x / ShadowmapQuality * 4.0; switch (int(u)) { case 0: raydir = vec2(u * 2.0 - 1.0, 1.0); break; case 1: raydir = vec2(1.0, 1.0 - (u - 1.0) * 2.0); break; case 2: raydir = vec2(1.0 - (u - 2.0) * 2.0, -1.0); break; case 3: raydir = vec2(-1.0, (u - 3.0) * 2.0 - 1.0); break; } // Find the position for the ray starting at the light position and travelling until light contribution is zero: vec2 pixelpos = lightpos + raydir * radius; // Check if we hit any line between the light and the end position: float t = rayTest(lightpos, pixelpos); // Calculate the square distance for the hit, if any: vec2 delta = (pixelpos - lightpos) * t; float dist2 = dot(delta, delta); FragColor = vec4(dist2, 0.0, 0.0, 1.0); } else { FragColor = vec4(1.0, 0.0, 0.0, 1.0); } }