/* ** music_hmi_midiout.cpp ** Code to let ZDoom play HMI MIDI music through the MIDI streaming API. ** **--------------------------------------------------------------------------- ** Copyright 2010 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** */ // HEADER FILES ------------------------------------------------------------ #include "i_musicinterns.h" #include "templates.h" #include "doomdef.h" #include "m_swap.h" #include "files.h" // MACROS ------------------------------------------------------------------ #define HMP_NEW_DATE "013195" #define HMI_SONG_MAGIC "HMI-MIDISONG061595" #define TRACK_MAGIC "HMI-MIDITRACK" // Used by SendCommand to check for unexpected end-of-track conditions. #define CHECK_FINISHED \ if (track->TrackP >= track->MaxTrackP) \ { \ track->Finished = true; \ return events; \ } // In song header #define HMI_DIVISION_OFFSET 0xD4 #define HMI_TRACK_COUNT_OFFSET 0xE4 #define HMI_TRACK_DIR_PTR_OFFSET 0xE8 #define HMP_DIVISION_OFFSET 0x38 #define HMP_TRACK_COUNT_OFFSET 0x30 #define HMP_DESIGNATIONS_OFFSET 0x94 #define HMP_TRACK_OFFSET_0 0x308 // original HMP #define HMP_TRACK_OFFSET_1 0x388 // newer HMP // In track header #define HMITRACK_DATA_PTR_OFFSET 0x57 #define HMITRACK_DESIGNATION_OFFSET 0x99 #define HMPTRACK_LEN_OFFSET 4 #define HMPTRACK_DESIGNATION_OFFSET 8 #define HMPTRACK_MIDI_DATA_OFFSET 12 #define NUM_HMP_DESIGNATIONS 5 #define NUM_HMI_DESIGNATIONS 8 // MIDI device types for designation #define HMI_DEV_GM 0xA000 // Generic General MIDI (not a real device) #define HMI_DEV_MPU401 0xA001 // MPU-401, Roland Sound Canvas, Ensoniq SoundScape, Rolad RAP-10 #define HMI_DEV_OPL2 0xA002 // SoundBlaster (Pro), ESS AudioDrive #define HMI_DEV_MT32 0xA004 // MT-32 #define HMI_DEV_SBAWE32 0xA008 // SoundBlaster AWE32 #define HMI_DEV_OPL3 0xA009 // SoundBlaster 16, Microsoft Sound System, Pro Audio Spectrum 16 #define HMI_DEV_GUS 0xA00A // Gravis UltraSound, Gravis UltraSound Max/Ace // TYPES ------------------------------------------------------------------- struct HMISong::TrackInfo { const uint8_t *TrackBegin; size_t TrackP; size_t MaxTrackP; uint32_t Delay; uint32_t PlayedTime; uint16_t Designation[NUM_HMI_DESIGNATIONS]; bool Enabled; bool Finished; uint8_t RunningStatus; uint32_t ReadVarLenHMI(); uint32_t ReadVarLenHMP(); }; // EXTERNAL FUNCTION PROTOTYPES -------------------------------------------- // PUBLIC FUNCTION PROTOTYPES ---------------------------------------------- // PRIVATE FUNCTION PROTOTYPES --------------------------------------------- // EXTERNAL DATA DECLARATIONS ---------------------------------------------- extern char MIDI_EventLengths[7]; extern char MIDI_CommonLengths[15]; // PRIVATE DATA DEFINITIONS ------------------------------------------------ // PUBLIC DATA DEFINITIONS ------------------------------------------------- // CODE -------------------------------------------------------------------- //========================================================================== // // HMISong Constructor // // Buffers the file and does some validation of the HMI header. // //========================================================================== HMISong::HMISong (FileReader &reader, EMidiDevice type, const char *args) : MIDIStreamer(type, args), MusHeader(0), Tracks(0) { if (!CheckExitEvent()) { return; } int len = reader.GetLength(); if (len < 0x100) { // Way too small to be HMI. return; } MusHeader = new uint8_t[len]; SongLen = len; NumTracks = 0; if (reader.Read(MusHeader, len) != len) return; // Do some validation of the MIDI file if (memcmp(MusHeader, HMI_SONG_MAGIC, sizeof(HMI_SONG_MAGIC)) == 0) { SetupForHMI(len); } else if (((uint32_t *)MusHeader)[0] == MAKE_ID('H','M','I','M') && ((uint32_t *)MusHeader)[1] == MAKE_ID('I','D','I','P')) { SetupForHMP(len); } } //========================================================================== // // HMISong Destructor // //========================================================================== HMISong::~HMISong() { if (Tracks != NULL) { delete[] Tracks; } if (MusHeader != NULL) { delete[] MusHeader; } } //========================================================================== // // HMISong :: SetupForHMI // //========================================================================== void HMISong::SetupForHMI(int len) { int i, p; ReadVarLen = ReadVarLenHMI; NumTracks = GetShort(MusHeader + HMI_TRACK_COUNT_OFFSET); if (NumTracks <= 0) { return; } // The division is the number of pulses per quarter note (PPQN). // HMI files have two values here, a full value and a quarter value. Some games, // notably Quarantines, have identical values for some reason, so it's safer to // use the quarter value and multiply it by four than to trust the full value. Division = GetShort(MusHeader + HMI_DIVISION_OFFSET) << 2; InitialTempo = 4000000; Tracks = new TrackInfo[NumTracks + 1]; int track_dir = GetInt(MusHeader + HMI_TRACK_DIR_PTR_OFFSET); // Gather information about each track for (i = 0, p = 0; i < NumTracks; ++i) { int start = GetInt(MusHeader + track_dir + i*4); int tracklen, datastart; if (start > len - HMITRACK_DESIGNATION_OFFSET - 4) { // Track is incomplete. continue; } // BTW, HMI does not actually check the track header. if (memcmp(MusHeader + start, TRACK_MAGIC, 13) != 0) { continue; } // The track ends where the next one begins. If this is the // last track, then it ends at the end of the file. if (i == NumTracks - 1) { tracklen = len - start; } else { tracklen = GetInt(MusHeader + track_dir + i*4 + 4) - start; } // Clamp incomplete tracks to the end of the file. tracklen = MIN(tracklen, len - start); if (tracklen <= 0) { continue; } // Offset to actual MIDI events. datastart = GetInt(MusHeader + start + HMITRACK_DATA_PTR_OFFSET); tracklen -= datastart; if (tracklen <= 0) { continue; } // Store track information Tracks[p].TrackBegin = MusHeader + start + datastart; Tracks[p].TrackP = 0; Tracks[p].MaxTrackP = tracklen; // Retrieve track designations. We can't check them yet, since we have not yet // connected to the MIDI device. for (int ii = 0; ii < NUM_HMI_DESIGNATIONS; ++ii) { Tracks[p].Designation[ii] = GetShort(MusHeader + start + HMITRACK_DESIGNATION_OFFSET + ii*2); } p++; } // In case there were fewer actual chunks in the file than the // header specified, update NumTracks with the current value of p. NumTracks = p; } //========================================================================== // // HMISong :: SetupForHMP // //========================================================================== void HMISong::SetupForHMP(int len) { int track_data; int i, p; ReadVarLen = ReadVarLenHMP; if (MusHeader[8] == 0) { track_data = HMP_TRACK_OFFSET_0; } else if (memcmp(MusHeader + 8, HMP_NEW_DATE, sizeof(HMP_NEW_DATE)) == 0) { track_data = HMP_TRACK_OFFSET_1; } else { // unknown HMIMIDIP version return; } NumTracks = GetInt(MusHeader + HMP_TRACK_COUNT_OFFSET); if (NumTracks <= 0) { return; } // The division is the number of pulses per quarter note (PPQN). Division = GetInt(MusHeader + HMP_DIVISION_OFFSET); InitialTempo = 1000000; Tracks = new TrackInfo[NumTracks + 1]; // Gather information about each track for (i = 0, p = 0; i < NumTracks; ++i) { int start = track_data; int tracklen; if (start > len - HMPTRACK_MIDI_DATA_OFFSET) { // Track is incomplete. break; } tracklen = GetInt(MusHeader + start + HMPTRACK_LEN_OFFSET); track_data += tracklen; // Clamp incomplete tracks to the end of the file. tracklen = MIN(tracklen, len - start); if (tracklen <= 0) { continue; } // Subtract track header size. tracklen -= HMPTRACK_MIDI_DATA_OFFSET; if (tracklen <= 0) { continue; } // Store track information Tracks[p].TrackBegin = MusHeader + start + HMPTRACK_MIDI_DATA_OFFSET; Tracks[p].TrackP = 0; Tracks[p].MaxTrackP = tracklen; // Retrieve track designations. We can't check them yet, since we have not yet // connected to the MIDI device. #if 0 // This is completely a guess based on knowledge of how designations work with // HMI files. Some songs contain nothing but zeroes for this data, so I'd rather // not go around using it without confirmation. Printf("Track %d: %d %08x %d: \034I", i, GetInt(MusHeader + start), GetInt(MusHeader + start + 4), GetInt(MusHeader + start + 8)); int designations = HMP_DESIGNATIONS_OFFSET + GetInt(MusHeader + start + HMPTRACK_DESIGNATION_OFFSET) * 4 * NUM_HMP_DESIGNATIONS; for (int ii = 0; ii < NUM_HMP_DESIGNATIONS; ++ii) { Printf(" %04x", GetInt(MusHeader + designations + ii*4)); } Printf("\n"); #endif Tracks[p].Designation[0] = HMI_DEV_GM; Tracks[p].Designation[1] = HMI_DEV_GUS; Tracks[p].Designation[2] = HMI_DEV_OPL2; Tracks[p].Designation[3] = 0; p++; } // In case there were fewer actual chunks in the file than the // header specified, update NumTracks with the current value of p. NumTracks = p; } //========================================================================== // // HMISong :: CheckCaps // // Check track designations and disable tracks that have not been // designated for the device we will be playing on. // //========================================================================== void HMISong::CheckCaps(int tech) { // What's the equivalent HMI device for our technology? if (tech == MIDIDEV_FMSYNTH) { tech = HMI_DEV_OPL3; } else if (tech == MIDIDEV_MIDIPORT) { tech = HMI_DEV_MPU401; } else { // Good enough? Or should we just say we're GM. tech = HMI_DEV_SBAWE32; } for (int i = 0; i < NumTracks; ++i) { Tracks[i].Enabled = false; // Track designations are stored in a 0-terminated array. for (unsigned int j = 0; j < countof(Tracks[i].Designation) && Tracks[i].Designation[j] != 0; ++j) { if (Tracks[i].Designation[j] == tech) { Tracks[i].Enabled = true; } // If a track is designated for device 0xA000, it will be played by a MIDI // driver for device types 0xA000, 0xA001, and 0xA008. Why this does not // include the GUS, I do not know. else if (Tracks[i].Designation[j] == HMI_DEV_GM) { Tracks[i].Enabled = (tech == HMI_DEV_MPU401 || tech == HMI_DEV_SBAWE32); } // If a track is designated for device 0xA002, it will be played by a MIDI // driver for device types 0xA002 or 0xA009. else if (Tracks[i].Designation[j] == HMI_DEV_OPL2) { Tracks[i].Enabled = (tech == HMI_DEV_OPL3); } // Any other designation must match the specific MIDI driver device number. // (Which we handled first above.) if (Tracks[i].Enabled) { // This track's been enabled, so we can stop checking other designations. break; } } } } //========================================================================== // // HMISong :: DoInitialSetup // // Sets the starting channel volumes. // //========================================================================== void HMISong :: DoInitialSetup() { for (int i = 0; i < 16; ++i) { ChannelVolumes[i] = 100; } } //========================================================================== // // HMISong :: DoRestart // // Rewinds every track. // //========================================================================== void HMISong :: DoRestart() { int i; // Set initial state. FakeTrack = &Tracks[NumTracks]; NoteOffs.Clear(); for (i = 0; i <= NumTracks; ++i) { Tracks[i].TrackP = 0; Tracks[i].Finished = false; Tracks[i].RunningStatus = 0; Tracks[i].PlayedTime = 0; } ProcessInitialMetaEvents (); for (i = 0; i < NumTracks; ++i) { Tracks[i].Delay = ReadVarLen(&Tracks[i]); } Tracks[i].Delay = 0; // for the FakeTrack Tracks[i].Enabled = true; TrackDue = Tracks; TrackDue = FindNextDue(); } //========================================================================== // // HMISong :: CheckDone // //========================================================================== bool HMISong::CheckDone() { return TrackDue == NULL; } //========================================================================== // // HMISong :: MakeEvents // // Copies MIDI events from the file and puts them into a MIDI stream // buffer. Returns the new position in the buffer. // //========================================================================== uint32_t *HMISong::MakeEvents(uint32_t *events, uint32_t *max_event_p, uint32_t max_time) { uint32_t *start_events; uint32_t tot_time = 0; uint32_t time = 0; uint32_t delay; start_events = events; while (TrackDue && events < max_event_p && tot_time <= max_time) { // It's possible that this tick may be nothing but meta-events and // not generate any real events. Repeat this until we actually // get some output so we don't send an empty buffer to the MIDI // device. do { delay = TrackDue->Delay; time += delay; // Advance time for all tracks by the amount needed for the one up next. tot_time += delay * Tempo / Division; AdvanceTracks(delay); // Play all events for this tick. do { bool sysex_noroom = false; uint32_t *new_events = SendCommand(events, TrackDue, time, max_event_p - events, sysex_noroom); if (sysex_noroom) { return events; } TrackDue = FindNextDue(); if (new_events != events) { time = 0; } events = new_events; } while (TrackDue && TrackDue->Delay == 0 && events < max_event_p); } while (start_events == events && TrackDue); time = 0; } return events; } //========================================================================== // // HMISong :: AdvanceTracks // // Advances time for all tracks by the specified amount. // //========================================================================== void HMISong::AdvanceTracks(uint32_t time) { for (int i = 0; i <= NumTracks; ++i) { if (Tracks[i].Enabled && !Tracks[i].Finished) { Tracks[i].Delay -= time; Tracks[i].PlayedTime += time; } } NoteOffs.AdvanceTime(time); } //========================================================================== // // HMISong :: SendCommand // // Places a single MIDIEVENT in the event buffer. // //========================================================================== uint32_t *HMISong::SendCommand (uint32_t *events, TrackInfo *track, uint32_t delay, ptrdiff_t room, bool &sysex_noroom) { uint32_t len; uint8_t event, data1 = 0, data2 = 0; // If the next event comes from the fake track, pop an entry off the note-off queue. if (track == FakeTrack) { AutoNoteOff off; NoteOffs.Pop(off); events[0] = delay; events[1] = 0; events[2] = MIDI_NOTEON | off.Channel | (off.Key << 8); return events + 3; } sysex_noroom = false; size_t start_p = track->TrackP; CHECK_FINISHED event = track->TrackBegin[track->TrackP++]; CHECK_FINISHED // The actual event type will be filled in below. If it's not a NOP, // the events pointer will be advanced once the actual event is written. // Otherwise, we do it at the end of the function. events[0] = delay; events[1] = 0; events[2] = MEVENT_NOP << 24; if (event != MIDI_SYSEX && event != MIDI_META && event != MIDI_SYSEXEND && event != 0xFe) { // Normal short message if ((event & 0xF0) == 0xF0) { if (MIDI_CommonLengths[event & 15] > 0) { data1 = track->TrackBegin[track->TrackP++]; if (MIDI_CommonLengths[event & 15] > 1) { data2 = track->TrackBegin[track->TrackP++]; } } } else if ((event & 0x80) == 0) { data1 = event; event = track->RunningStatus; } else { track->RunningStatus = event; data1 = track->TrackBegin[track->TrackP++]; } CHECK_FINISHED if (MIDI_EventLengths[(event&0x70)>>4] == 2) { data2 = track->TrackBegin[track->TrackP++]; } // Monitor channel volume controller changes. if ((event & 0x70) == (MIDI_CTRLCHANGE & 0x70) && data1 == 7) { data2 = VolumeControllerChange(event & 15, data2); } if (event != MIDI_META) { events[2] = event | (data1<<8) | (data2<<16); } if (ReadVarLen == ReadVarLenHMI && (event & 0x70) == (MIDI_NOTEON & 0x70)) { // HMI note on events include the time until an implied note off event. NoteOffs.AddNoteOff(track->ReadVarLenHMI(), event & 0x0F, data1); } } else { // SysEx events could potentially not have enough room in the buffer... if (event == MIDI_SYSEX || event == MIDI_SYSEXEND) { len = ReadVarLen(track); if (len >= (MAX_EVENTS-1)*3*4 || DeviceType == MDEV_SNDSYS) { // This message will never fit. Throw it away. track->TrackP += len; } else if (len + 12 >= (size_t)room * 4) { // Not enough room left in this buffer. Backup and wait for the next one. track->TrackP = start_p; sysex_noroom = true; return events; } else { uint8_t *msg = (uint8_t *)&events[3]; if (event == MIDI_SYSEX) { // Need to add the SysEx marker to the message. events[2] = (MEVENT_LONGMSG << 24) | (len + 1); *msg++ = MIDI_SYSEX; } else { events[2] = (MEVENT_LONGMSG << 24) | len; } memcpy(msg, &track->TrackBegin[track->TrackP], len); msg += len; // Must pad with 0 while ((size_t)msg & 3) { *msg++ = 0; } track->TrackP += len; } } else if (event == MIDI_META) { // It's a meta-event event = track->TrackBegin[track->TrackP++]; CHECK_FINISHED len = ReadVarLen(track); CHECK_FINISHED if (track->TrackP + len <= track->MaxTrackP) { switch (event) { case MIDI_META_EOT: track->Finished = true; break; case MIDI_META_TEMPO: Tempo = (track->TrackBegin[track->TrackP+0]<<16) | (track->TrackBegin[track->TrackP+1]<<8) | (track->TrackBegin[track->TrackP+2]); events[0] = delay; events[1] = 0; events[2] = (MEVENT_TEMPO << 24) | Tempo; break; } track->TrackP += len; if (track->TrackP == track->MaxTrackP) { track->Finished = true; } } else { track->Finished = true; } } else if (event == 0xFE) { // Skip unknown HMI events. event = track->TrackBegin[track->TrackP++]; CHECK_FINISHED if (event == 0x13 || event == 0x15) { track->TrackP += 6; } else if (event == 0x12 || event == 0x14) { track->TrackP += 2; } else if (event == 0x10) { track->TrackP += 2; CHECK_FINISHED track->TrackP += track->TrackBegin[track->TrackP] + 5; CHECK_FINISHED } else { // No idea. track->Finished = true; } } } if (!track->Finished) { track->Delay = ReadVarLen(track); } // Advance events pointer unless this is a non-delaying NOP. if (events[0] != 0 || MEVENT_EVENTTYPE(events[2]) != MEVENT_NOP) { if (MEVENT_EVENTTYPE(events[2]) == MEVENT_LONGMSG) { events += 3 + ((MEVENT_EVENTPARM(events[2]) + 3) >> 2); } else { events += 3; } } return events; } //========================================================================== // // HMISong :: ProcessInitialMetaEvents // // Handle all the meta events at the start of each track. // //========================================================================== void HMISong::ProcessInitialMetaEvents () { TrackInfo *track; int i; uint8_t event; uint32_t len; for (i = 0; i < NumTracks; ++i) { track = &Tracks[i]; while (!track->Finished && track->TrackP < track->MaxTrackP - 4 && track->TrackBegin[track->TrackP] == 0 && track->TrackBegin[track->TrackP+1] == 0xFF) { event = track->TrackBegin[track->TrackP+2]; track->TrackP += 3; len = ReadVarLen(track); if (track->TrackP + len <= track->MaxTrackP) { switch (event) { case MIDI_META_EOT: track->Finished = true; break; case MIDI_META_TEMPO: SetTempo( (track->TrackBegin[track->TrackP+0]<<16) | (track->TrackBegin[track->TrackP+1]<<8) | (track->TrackBegin[track->TrackP+2]) ); break; } } track->TrackP += len; } if (track->TrackP >= track->MaxTrackP - 4) { track->Finished = true; } } } //========================================================================== // // HMISong :: ReadVarLenHMI static // //========================================================================== uint32_t HMISong::ReadVarLenHMI(TrackInfo *track) { return track->ReadVarLenHMI(); } //========================================================================== // // HMISong :: ReadVarLenHMP static // //========================================================================== uint32_t HMISong::ReadVarLenHMP(TrackInfo *track) { return track->ReadVarLenHMP(); } //========================================================================== // // HMISong :: TrackInfo :: ReadVarLenHMI // // Reads a variable-length SMF number. // //========================================================================== uint32_t HMISong::TrackInfo::ReadVarLenHMI() { uint32_t time = 0, t = 0x80; while ((t & 0x80) && TrackP < MaxTrackP) { t = TrackBegin[TrackP++]; time = (time << 7) | (t & 127); } return time; } //========================================================================== // // HMISong :: TrackInfo :: ReadVarLenHMP // // Reads a variable-length HMP number. This is similar to the standard SMF // variable length number, except it's stored little-endian, and the high // bit set means the number is done. // //========================================================================== uint32_t HMISong::TrackInfo::ReadVarLenHMP() { uint32_t time = 0; uint8_t t = 0; int off = 0; while (!(t & 0x80) && TrackP < MaxTrackP) { t = TrackBegin[TrackP++]; time |= (t & 127) << off; off += 7; } return time; } //========================================================================== // // NoteOffQueue :: AddNoteOff // //========================================================================== void NoteOffQueue::AddNoteOff(uint32_t delay, uint8_t channel, uint8_t key) { unsigned int i = Reserve(1); while (i > 0 && (*this)[Parent(i)].Delay > delay) { (*this)[i] = (*this)[Parent(i)]; i = Parent(i); } (*this)[i].Delay = delay; (*this)[i].Channel = channel; (*this)[i].Key = key; } //========================================================================== // // NoteOffQueue :: Pop // //========================================================================== bool NoteOffQueue::Pop(AutoNoteOff &item) { item = (*this)[0]; if (TArray::Pop((*this)[0])) { Heapify(); return true; } return false; } //========================================================================== // // NoteOffQueue :: AdvanceTime // //========================================================================== void NoteOffQueue::AdvanceTime(uint32_t time) { // Because the time is decreasing by the same amount for every entry, // the heap property is maintained. for (unsigned int i = 0; i < Size(); ++i) { assert((*this)[i].Delay >= time); (*this)[i].Delay -= time; } } //========================================================================== // // NoteOffQueue :: Heapify // //========================================================================== void NoteOffQueue::Heapify() { unsigned int i = 0; for (;;) { unsigned int l = Left(i); unsigned int r = Right(i); unsigned int smallest = i; if (l < Size() && (*this)[l].Delay < (*this)[i].Delay) { smallest = l; } if (r < Size() && (*this)[r].Delay < (*this)[smallest].Delay) { smallest = r; } if (smallest == i) { break; } swapvalues((*this)[i], (*this)[smallest]); i = smallest; } } //========================================================================== // // HMISong :: FindNextDue // // Scans every track for the next event to play. Returns NULL if all events // have been consumed. // //========================================================================== HMISong::TrackInfo *HMISong::FindNextDue () { TrackInfo *track; uint32_t best; int i; // Give precedence to whichever track last had events taken from it. if (TrackDue != FakeTrack && !TrackDue->Finished && TrackDue->Delay == 0) { return TrackDue; } if (TrackDue == FakeTrack && NoteOffs.Size() != 0 && NoteOffs[0].Delay == 0) { FakeTrack->Delay = 0; return FakeTrack; } // Check regular tracks. track = NULL; best = 0xFFFFFFFF; for (i = 0; i < NumTracks; ++i) { if (Tracks[i].Enabled && !Tracks[i].Finished && Tracks[i].Delay < best) { best = Tracks[i].Delay; track = &Tracks[i]; } } // Check automatic note-offs. if (NoteOffs.Size() != 0 && NoteOffs[0].Delay <= best) { FakeTrack->Delay = NoteOffs[0].Delay; return FakeTrack; } return track; } //========================================================================== // // HMISong :: GetOPLDumper // //========================================================================== MusInfo *HMISong::GetOPLDumper(const char *filename) { return new HMISong(this, filename, MDEV_OPL); } //========================================================================== // // HMISong :: GetWaveDumper // //========================================================================== MusInfo *HMISong::GetWaveDumper(const char *filename, int rate) { return new HMISong(this, filename, MDEV_GUS); } //========================================================================== // // HMISong File Dumping Constructor // //========================================================================== HMISong::HMISong(const HMISong *original, const char *filename, EMidiDevice type) : MIDIStreamer(filename, type) { SongLen = original->SongLen; MusHeader = new uint8_t[original->SongLen]; memcpy(MusHeader, original->MusHeader, original->SongLen); NumTracks = original->NumTracks; Division = original->Division; Tempo = InitialTempo = original->InitialTempo; Tracks = new TrackInfo[NumTracks]; for (int i = 0; i < NumTracks; ++i) { TrackInfo *newtrack = &Tracks[i]; const TrackInfo *oldtrack = &original->Tracks[i]; newtrack->TrackBegin = MusHeader + (oldtrack->TrackBegin - original->MusHeader); newtrack->TrackP = 0; newtrack->MaxTrackP = oldtrack->MaxTrackP; } }