/* exp.c * * Exponential function * * * * SYNOPSIS: * * double x, y, exp(); * * y = exp( x ); * * * * DESCRIPTION: * * Returns e (2.71828...) raised to the x power. * * Range reduction is accomplished by separating the argument * into an integer k and fraction f such that * * x k f * e = 2 e. * * A Pade' form 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) * of degree 2/3 is used to approximate exp(f) in the basic * interval [-0.5, 0.5]. * * * ACCURACY: * * Relative error: * arithmetic domain # trials peak rms * DEC 0, MAXLOG 38000 3.0e-17 6.2e-18 * IEEE +- 708 40000 2.0e-16 5.6e-17 * * * Error amplification in the exponential function can be * a serious matter. The error propagation involves * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), * which shows that a 1 lsb error in representing X produces * a relative error of X times 1 lsb in the function. * While the routine gives an accurate result for arguments * that are exactly represented by a double precision * computer number, the result contains amplified roundoff * error for large arguments not exactly represented. * * * ERROR MESSAGES: * * message condition value returned * exp underflow x < MINLOG 0.0 * exp overflow x > MAXLOG MAXNUM * */ /* Cephes Math Library Release 2.2: January, 1991 Copyright 1984, 1991 by Stephen L. Moshier Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ /* Exponential function */ #include "mconf.h" static char fname[] = {"exp"}; #ifdef UNK static double P[] = { 1.26177193074810590878E-4, 3.02994407707441961300E-2, 9.99999999999999999910E-1, }; static double Q[] = { 3.00198505138664455042E-6, 2.52448340349684104192E-3, 2.27265548208155028766E-1, 2.00000000000000000009E0, }; static double C1 = 6.93145751953125E-1; static double C2 = 1.42860682030941723212E-6; #endif #ifdef DEC static short P[] = { 0035004,0047156,0127442,0057502, 0036770,0033210,0063121,0061764, 0040200,0000000,0000000,0000000, }; static short Q[] = { 0033511,0072665,0160662,0176377, 0036045,0070715,0124105,0132777, 0037550,0134114,0142077,0001637, 0040400,0000000,0000000,0000000, }; static short sc1[] = {0040061,0071000,0000000,0000000}; #define C1 (*(double *)sc1) static short sc2[] = {0033277,0137216,0075715,0057117}; #define C2 (*(double *)sc2) #endif #ifdef IBMPC static short P[] = { 0x4be8,0xd5e4,0x89cd,0x3f20, 0x2c7e,0x0cca,0x06d1,0x3f9f, 0x0000,0x0000,0x0000,0x3ff0, }; static short Q[] = { 0x5fa0,0xbc36,0x2eb6,0x3ec9, 0xb6c0,0xb508,0xae39,0x3f64, 0xe074,0x9887,0x1709,0x3fcd, 0x0000,0x0000,0x0000,0x4000, }; static short sc1[] = {0x0000,0x0000,0x2e40,0x3fe6}; #define C1 (*(double *)sc1) static short sc2[] = {0xabca,0xcf79,0xf7d1,0x3eb7}; #define C2 (*(double *)sc2) #endif #ifdef MIEEE static short P[] = { 0x3f20,0x89cd,0xd5e4,0x4be8, 0x3f9f,0x06d1,0x0cca,0x2c7e, 0x3ff0,0x0000,0x0000,0x0000, }; static short Q[] = { 0x3ec9,0x2eb6,0xbc36,0x5fa0, 0x3f64,0xae39,0xb508,0xb6c0, 0x3fcd,0x1709,0x9887,0xe074, 0x4000,0x0000,0x0000,0x0000, }; static short sc1[] = {0x3fe6,0x2e40,0x0000,0x0000}; #define C1 (*(double *)sc1) static short sc2[] = {0x3eb7,0xf7d1,0xcf79,0xabca}; #define C2 (*(double *)sc2) #endif extern double LOGE2, LOG2E, MAXLOG, MINLOG, MAXNUM; double c_exp(x) double x; { double px, xx; int n; double polevl(), floor(), ldexp(); if( x > MAXLOG) { mtherr( fname, OVERFLOW ); return( MAXNUM ); } if( x < MINLOG ) { mtherr( fname, UNDERFLOW ); return(0.0); } /* Express e**x = e**g 2**n * = e**g e**( n loge(2) ) * = e**( g + n loge(2) ) */ px = floor( LOG2E * x + 0.5 ); /* floor() truncates toward -infinity. */ n = (int)px; x -= px * C1; x -= px * C2; /* rational approximation for exponential * of the fractional part: * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) ) */ xx = x * x; px = x * polevl( xx, P, 2 ); x = px/( polevl( xx, Q, 3 ) - px ); x = 1.0 + ldexp( x, 1 ); /* multiply by power of 2 */ x = ldexp( x, n ); return(x); }