// //--------------------------------------------------------------------------- // // Copyright(C) 2010-2016 Christoph Oelckers // All rights reserved. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Lesser General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program. If not, see http://www.gnu.org/licenses/ // //-------------------------------------------------------------------------- // #include "volk/volk.h" #include "v_video.h" #include "m_png.h" #include "templates.h" #include "r_videoscale.h" #include "actor.h" #include "i_time.h" #include "hwrenderer/utility/hw_clock.h" #include "hwrenderer/utility/hw_vrmodes.h" #include "hwrenderer/models/hw_models.h" #include "hwrenderer/scene/hw_skydome.h" #include "hwrenderer/scene/hw_fakeflat.h" #include "hwrenderer/scene/hw_drawinfo.h" #include "hwrenderer/scene/hw_portal.h" #include "hwrenderer/data/hw_viewpointbuffer.h" #include "hwrenderer/data/flatvertices.h" #include "hwrenderer/data/shaderuniforms.h" #include "hwrenderer/dynlights/hw_lightbuffer.h" #include "swrenderer/r_swscene.h" #include "vk_framebuffer.h" #include "vk_buffers.h" #include "vulkan/renderer/vk_renderstate.h" #include "vulkan/renderer/vk_renderpass.h" #include "vulkan/shaders/vk_shader.h" #include "vulkan/textures/vk_samplers.h" #include "vulkan/textures/vk_hwtexture.h" #include "vulkan/system/vk_builders.h" #include "vulkan/system/vk_swapchain.h" #include "doomerrors.h" void Draw2D(F2DDrawer *drawer, FRenderState &state); EXTERN_CVAR(Bool, vid_vsync) EXTERN_CVAR(Bool, r_drawvoxels) EXTERN_CVAR(Int, gl_tonemap) EXTERN_CVAR(Int, screenblocks) EXTERN_CVAR(Bool, cl_capfps) extern bool NoInterpolateView; VulkanFrameBuffer::VulkanFrameBuffer(void *hMonitor, bool fullscreen, VulkanDevice *dev) : Super(hMonitor, fullscreen) { device = dev; SetViewportRects(nullptr); InitPalette(); } VulkanFrameBuffer::~VulkanFrameBuffer() { // All descriptors must be destroyed before the descriptor pool in renderpass manager is destroyed for (VkHardwareTexture *cur = VkHardwareTexture::First; cur; cur = cur->Next) cur->Reset(); delete MatricesUBO; delete ColorsUBO; delete GlowingWallsUBO; delete mVertexData; delete mSkyData; delete mViewpoints; delete mLights; } void VulkanFrameBuffer::InitializeState() { gl_vendorstring = "Vulkan"; hwcaps = RFL_SHADER_STORAGE_BUFFER | RFL_BUFFER_STORAGE; mUploadSemaphore.reset(new VulkanSemaphore(device)); mGraphicsCommandPool.reset(new VulkanCommandPool(device, device->graphicsFamily)); mRenderPassManager.reset(new VkRenderPassManager()); mVertexData = new FFlatVertexBuffer(GetWidth(), GetHeight()); mSkyData = new FSkyVertexBuffer; mViewpoints = new GLViewpointBuffer; mLights = new FLightBuffer(); // To do: move this to HW renderer interface maybe? MatricesUBO = (VKDataBuffer*)CreateDataBuffer(1234, false); ColorsUBO = (VKDataBuffer*)CreateDataBuffer(1234, false); GlowingWallsUBO = (VKDataBuffer*)CreateDataBuffer(1234, false); MatricesUBO->SetData(UniformBufferAlignment<::MatricesUBO>() * 50000, nullptr, false); ColorsUBO->SetData(UniformBufferAlignment<::ColorsUBO>() * 50000, nullptr, false); GlowingWallsUBO->SetData(UniformBufferAlignment<::GlowingWallsUBO>() * 50000, nullptr, false); mShaderManager.reset(new VkShaderManager(device)); mSamplerManager.reset(new VkSamplerManager(device)); mRenderPassManager->Init(); mRenderState.reset(new VkRenderState()); } void VulkanFrameBuffer::Update() { twoD.Reset(); Flush3D.Reset(); Flush3D.Clock(); int newWidth = GetClientWidth(); int newHeight = GetClientHeight(); if (lastSwapWidth != newWidth || lastSwapHeight != newHeight) { device->windowResized(); lastSwapWidth = newWidth; lastSwapHeight = newHeight; } device->beginFrame(); Draw2D(); Clear2D(); mRenderState->EndRenderPass(); //DrawPresentTexture(mOutputLetterbox, true); { auto sceneColor = mRenderPassManager->SceneColor.get(); PipelineBarrier barrier0; barrier0.addImage(sceneColor, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); barrier0.addImage(device->swapChain->swapChainImages[device->presentImageIndex], VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT, VK_ACCESS_TRANSFER_READ_BIT); barrier0.execute(GetDrawCommands(), VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT); VkImageBlit blit = {}; blit.srcOffsets[0] = { 0, 0, 0 }; blit.srcOffsets[1] = { sceneColor->width, sceneColor->height, 1 }; blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; blit.srcSubresource.mipLevel = 0; blit.srcSubresource.baseArrayLayer = 0; blit.srcSubresource.layerCount = 1; blit.dstOffsets[0] = { 0, 0, 0 }; blit.dstOffsets[1] = { (int32_t)device->swapChain->actualExtent.width, (int32_t)device->swapChain->actualExtent.height, 1 }; blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT; blit.dstSubresource.mipLevel = 0; blit.dstSubresource.baseArrayLayer = 0; blit.dstSubresource.layerCount = 1; GetDrawCommands()->blitImage( sceneColor->image, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, device->swapChain->swapChainImages[device->presentImageIndex], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit, VK_FILTER_NEAREST); PipelineBarrier barrier1; barrier1.addImage(sceneColor, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL, VK_ACCESS_TRANSFER_READ_BIT, VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT); barrier1.addImage(device->swapChain->swapChainImages[device->presentImageIndex], VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, VK_IMAGE_LAYOUT_PRESENT_SRC_KHR, VK_ACCESS_TRANSFER_WRITE_BIT, VK_ACCESS_COLOR_ATTACHMENT_READ_BIT); barrier1.execute(GetDrawCommands(), VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT); } mDrawCommands->end(); if (mUploadCommands) { mUploadCommands->end(); // Submit upload commands immediately VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &mUploadCommands->buffer; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = &mUploadSemaphore->semaphore; VkResult result = vkQueueSubmit(device->graphicsQueue, 1, &submitInfo, VK_NULL_HANDLE); if (result < VK_SUCCESS) I_FatalError("Failed to submit command buffer! Error %d\n", result); // Wait for upload commands to finish, then submit render commands VkSemaphore waitSemaphores[] = { mUploadSemaphore->semaphore, device->imageAvailableSemaphore->semaphore }; VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; submitInfo.waitSemaphoreCount = 2; submitInfo.pWaitSemaphores = waitSemaphores; submitInfo.pWaitDstStageMask = waitStages; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &mDrawCommands->buffer; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = &device->renderFinishedSemaphore->semaphore; result = vkQueueSubmit(device->graphicsQueue, 1, &submitInfo, device->renderFinishedFence->fence); if (result < VK_SUCCESS) I_FatalError("Failed to submit command buffer! Error %d\n", result); } else { VkSemaphore waitSemaphores[] = { device->imageAvailableSemaphore->semaphore }; VkPipelineStageFlags waitStages[] = { VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT }; VkSubmitInfo submitInfo = {}; submitInfo.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO; submitInfo.waitSemaphoreCount = 1; submitInfo.pWaitSemaphores = waitSemaphores; submitInfo.pWaitDstStageMask = waitStages; submitInfo.commandBufferCount = 1; submitInfo.pCommandBuffers = &mDrawCommands->buffer; submitInfo.signalSemaphoreCount = 1; submitInfo.pSignalSemaphores = &device->renderFinishedSemaphore->semaphore; VkResult result = vkQueueSubmit(device->graphicsQueue, 1, &submitInfo, device->renderFinishedFence->fence); if (result < VK_SUCCESS) I_FatalError("Failed to submit command buffer! Error %d\n", result); } Flush3D.Unclock(); Finish.Reset(); Finish.Clock(); device->presentFrame(); device->waitPresent(); mDrawCommands.reset(); mUploadCommands.reset(); mFrameDeleteList.clear(); Finish.Unclock(); Super::Update(); } void VulkanFrameBuffer::WriteSavePic(player_t *player, FileWriter *file, int width, int height) { if (!V_IsHardwareRenderer()) Super::WriteSavePic(player, file, width, height); } sector_t *VulkanFrameBuffer::RenderView(player_t *player) { // To do: this is virtually identical to FGLRenderer::RenderView and should be merged. mRenderState->SetVertexBuffer(screen->mVertexData); screen->mVertexData->Reset(); sector_t *retsec; if (!V_IsHardwareRenderer()) { if (!swdrawer) swdrawer.reset(new SWSceneDrawer); retsec = swdrawer->RenderView(player); } else { hw_ClearFakeFlat(); iter_dlightf = iter_dlight = draw_dlight = draw_dlightf = 0; checkBenchActive(); // reset statistics counters ResetProfilingData(); // Get this before everything else if (cl_capfps || r_NoInterpolate) r_viewpoint.TicFrac = 1.; else r_viewpoint.TicFrac = I_GetTimeFrac(); screen->mLights->Clear(); screen->mViewpoints->Clear(); #if 0 // NoInterpolateView should have no bearing on camera textures, but needs to be preserved for the main view below. bool saved_niv = NoInterpolateView; NoInterpolateView = false; // Shader start time does not need to be handled per level. Just use the one from the camera to render from. GetRenderState()->CheckTimer(player->camera->Level->ShaderStartTime); // prepare all camera textures that have been used in the last frame. // This must be done for all levels, not just the primary one! for (auto Level : AllLevels()) { Level->canvasTextureInfo.UpdateAll([&](AActor *camera, FCanvasTexture *camtex, double fov) { RenderTextureView(camtex, camera, fov); }); } NoInterpolateView = saved_niv; #endif // now render the main view float fovratio; float ratio = r_viewwindow.WidescreenRatio; if (r_viewwindow.WidescreenRatio >= 1.3f) { fovratio = 1.333333f; } else { fovratio = ratio; } retsec = RenderViewpoint(r_viewpoint, player->camera, NULL, r_viewpoint.FieldOfView.Degrees, ratio, fovratio, true, true); } All.Unclock(); return retsec; } sector_t *VulkanFrameBuffer::RenderViewpoint(FRenderViewpoint &mainvp, AActor * camera, IntRect * bounds, float fov, float ratio, float fovratio, bool mainview, bool toscreen) { // To do: this is virtually identical to FGLRenderer::RenderViewpoint and should be merged. R_SetupFrame(mainvp, r_viewwindow, camera); #if 0 if (mainview && toscreen) UpdateShadowMap(); #endif // Update the attenuation flag of all light defaults for each viewpoint. // This function will only do something if the setting differs. FLightDefaults::SetAttenuationForLevel(!!(camera->Level->flags3 & LEVEL3_ATTENUATE)); // Render (potentially) multiple views for stereo 3d // Fixme. The view offsetting should be done with a static table and not require setup of the entire render state for the mode. auto vrmode = VRMode::GetVRMode(mainview && toscreen); for (int eye_ix = 0; eye_ix < vrmode->mEyeCount; ++eye_ix) { const auto &eye = vrmode->mEyes[eye_ix]; screen->SetViewportRects(bounds); #if 0 if (mainview) // Bind the scene frame buffer and turn on draw buffers used by ssao { bool useSSAO = (gl_ssao != 0); mBuffers->BindSceneFB(useSSAO); GetRenderState()->SetPassType(useSSAO ? GBUFFER_PASS : NORMAL_PASS); GetRenderState()->EnableDrawBuffers(gl_RenderState.GetPassDrawBufferCount()); GetRenderState()->Apply(); } #endif auto di = HWDrawInfo::StartDrawInfo(mainvp.ViewLevel, nullptr, mainvp, nullptr); auto &vp = di->Viewpoint; di->Set3DViewport(*GetRenderState()); di->SetViewArea(); auto cm = di->SetFullbrightFlags(mainview ? vp.camera->player : nullptr); di->Viewpoint.FieldOfView = fov; // Set the real FOV for the current scene (it's not necessarily the same as the global setting in r_viewpoint) // Stereo mode specific perspective projection di->VPUniforms.mProjectionMatrix = eye.GetProjection(fov, ratio, fovratio); // Stereo mode specific viewpoint adjustment vp.Pos += eye.GetViewShift(vp.HWAngles.Yaw.Degrees); di->SetupView(*GetRenderState(), vp.Pos.X, vp.Pos.Y, vp.Pos.Z, false, false); // std::function until this can be done better in a cross-API fashion. di->ProcessScene(toscreen, [&](HWDrawInfo *di, int mode) { DrawScene(di, mode); }); if (mainview) { PostProcess.Clock(); if (toscreen) di->EndDrawScene(mainvp.sector, *GetRenderState()); // do not call this for camera textures. #if 0 if (GetRenderState()->GetPassType() == GBUFFER_PASS) // Turn off ssao draw buffers { GetRenderState()->SetPassType(NORMAL_PASS); GetRenderState()->EnableDrawBuffers(1); } mBuffers->BlitSceneToTexture(); // Copy the resulting scene to the current post process texture PostProcessScene(cm, [&]() { di->DrawEndScene2D(mainvp.sector, *GetRenderState()); }); #endif PostProcess.Unclock(); } di->EndDrawInfo(); #if 0 if (vrmode->mEyeCount > 1) mBuffers->BlitToEyeTexture(eye_ix); #endif } return mainvp.sector; } void VulkanFrameBuffer::DrawScene(HWDrawInfo *di, int drawmode) { // To do: this is virtually identical to FGLRenderer::DrawScene and should be merged. static int recursion = 0; static int ssao_portals_available = 0; const auto &vp = di->Viewpoint; #if 0 bool applySSAO = false; if (drawmode == DM_MAINVIEW) { ssao_portals_available = gl_ssao_portals; applySSAO = true; } else if (drawmode == DM_OFFSCREEN) { ssao_portals_available = 0; } else if (drawmode == DM_PORTAL && ssao_portals_available > 0) { applySSAO = true; ssao_portals_available--; } #endif if (vp.camera != nullptr) { ActorRenderFlags savedflags = vp.camera->renderflags; di->CreateScene(); vp.camera->renderflags = savedflags; } else { di->CreateScene(); } #if 0 glDepthMask(true); if (!gl_no_skyclear) screen->mPortalState->RenderFirstSkyPortal(recursion, di, *GetRenderState()); #endif di->RenderScene(*GetRenderState()); #if 0 if (applySSAO && GetRenderState()->GetPassType() == GBUFFER_PASS) { GetRenderState()->EnableDrawBuffers(1); GLRenderer->AmbientOccludeScene(di->VPUniforms.mProjectionMatrix.get()[5]); glViewport(screen->mSceneViewport.left, screen->mSceneViewport.top, screen->mSceneViewport.width, screen->mSceneViewport.height); GLRenderer->mBuffers->BindSceneFB(true); GetRenderState()->EnableDrawBuffers(GetRenderState()->GetPassDrawBufferCount()); GetRenderState()->Apply(); screen->mViewpoints->Bind(*GetRenderState(), di->vpIndex); } #endif // Handle all portals after rendering the opaque objects but before // doing all translucent stuff recursion++; screen->mPortalState->EndFrame(di, *GetRenderState()); recursion--; di->RenderTranslucent(*GetRenderState()); } uint32_t VulkanFrameBuffer::GetCaps() { if (!V_IsHardwareRenderer()) return Super::GetCaps(); // describe our basic feature set ActorRenderFeatureFlags FlagSet = RFF_FLATSPRITES | RFF_MODELS | RFF_SLOPE3DFLOORS | RFF_TILTPITCH | RFF_ROLLSPRITES | RFF_POLYGONAL | RFF_MATSHADER | RFF_POSTSHADER | RFF_BRIGHTMAP; if (r_drawvoxels) FlagSet |= RFF_VOXELS; if (gl_tonemap != 5) // not running palette tonemap shader FlagSet |= RFF_TRUECOLOR; return (uint32_t)FlagSet; } void VulkanFrameBuffer::SetVSync(bool vsync) { if (device->swapChain->vsync != vsync) { device->windowResized(); } } void VulkanFrameBuffer::CleanForRestart() { // force recreation of the SW scene drawer to ensure it gets a new set of resources. swdrawer.reset(); } IHardwareTexture *VulkanFrameBuffer::CreateHardwareTexture() { return new VkHardwareTexture(); } FModelRenderer *VulkanFrameBuffer::CreateModelRenderer(int mli) { return new FGLModelRenderer(nullptr, *GetRenderState(), mli); } IShaderProgram *VulkanFrameBuffer::CreateShaderProgram() { I_FatalError("VulkanFrameBuffer::CreateShaderProgram not implemented\n"); return nullptr; } IVertexBuffer *VulkanFrameBuffer::CreateVertexBuffer() { return new VKVertexBuffer(); } IIndexBuffer *VulkanFrameBuffer::CreateIndexBuffer() { return new VKIndexBuffer(); } IDataBuffer *VulkanFrameBuffer::CreateDataBuffer(int bindingpoint, bool ssbo) { auto buffer = new VKDataBuffer(bindingpoint, ssbo); if (bindingpoint == VIEWPOINT_BINDINGPOINT) { ViewpointUBO = buffer; } else if (bindingpoint == LIGHTBUF_BINDINGPOINT) { LightBufferSSO = buffer; } return buffer; } void VulkanFrameBuffer::UnbindTexUnit(int no) { } void VulkanFrameBuffer::TextureFilterChanged() { } void VulkanFrameBuffer::BlurScene(float amount) { } void VulkanFrameBuffer::UpdatePalette() { } void VulkanFrameBuffer::BeginFrame() { mRenderPassManager->BeginFrame(); } void VulkanFrameBuffer::Draw2D() { ::Draw2D(&m2DDrawer, *mRenderState); } VulkanCommandBuffer *VulkanFrameBuffer::GetUploadCommands() { if (!mUploadCommands) { mUploadCommands = mGraphicsCommandPool->createBuffer(); mUploadCommands->begin(); } return mUploadCommands.get(); } VulkanCommandBuffer *VulkanFrameBuffer::GetDrawCommands() { if (!mDrawCommands) { mDrawCommands = mGraphicsCommandPool->createBuffer(); mDrawCommands->begin(); } return mDrawCommands.get(); }