/* ** r_swcolormaps.cpp ** Colormap handling for the software renderer ** **--------------------------------------------------------------------------- ** Copyright 1998-2008 Randy Heit ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** */ #include #include #include #include #include "i_system.h" #include "w_wad.h" #include "doomdef.h" #include "r_sky.h" #include "c_dispatch.h" #include "sc_man.h" #include "v_text.h" #include "st_start.h" #include "doomstat.h" #include "v_palette.h" #include "colormatcher.h" #include "r_data/colormaps.h" #include "r_swcolormaps.h" #include "v_video.h" #include "templates.h" #include "r_utility.h" #include "r_renderer.h" #include FDynamicColormap NormalLight; FDynamicColormap FullNormalLight; //[SP] Emulate GZDoom brightness bool NormalLightHasFixedLights; FSWColormap realcolormaps; FSWColormap realfbcolormaps; //[SP] For fullbright use TArray SpecialSWColormaps; //========================================================================== // // Colored Lighting Stuffs // //========================================================================== static std::mutex buildmapmutex; static FDynamicColormap *CreateSpecialLights (PalEntry color, PalEntry fade, int desaturate) { // GetSpecialLights is called by the scene worker threads. // If we didn't find the colormap, search again, but this time one thread at a time std::unique_lock lock(buildmapmutex); // If this colormap has already been created, just return it // This may happen if another thread beat us to it for (FDynamicColormap *colormap = &NormalLight; colormap != NULL; colormap = colormap->Next) { if (color == colormap->Color && fade == colormap->Fade && desaturate == colormap->Desaturate) { return colormap; } } // Not found. Create it. FDynamicColormap *colormap = new FDynamicColormap; colormap->Next = NormalLight.Next; colormap->Color = color; colormap->Fade = fade; colormap->Desaturate = desaturate; colormap->Maps = new uint8_t[NUMCOLORMAPS*256]; colormap->BuildLights (); // Make sure colormap is fully built before making it publicly visible std::atomic_thread_fence(std::memory_order_release); NormalLight.Next = colormap; return colormap; } FDynamicColormap *GetSpecialLights (PalEntry color, PalEntry fade, int desaturate) { // If this colormap has already been created, just return it for (FDynamicColormap *colormap = &NormalLight; colormap != NULL; colormap = colormap->Next) { if (color == colormap->Color && fade == colormap->Fade && desaturate == colormap->Desaturate) { return colormap; } } return CreateSpecialLights(color, fade, desaturate); } //========================================================================== // // Free all lights created with GetSpecialLights // //========================================================================== static void FreeSpecialLights() { FDynamicColormap *colormap, *next; for (colormap = NormalLight.Next; colormap != NULL; colormap = next) { next = colormap->Next; delete[] colormap->Maps; delete colormap; } NormalLight.Next = NULL; } //========================================================================== // // Builds NUMCOLORMAPS colormaps lit with the specified color // //========================================================================== void FDynamicColormap::BuildLights () { int l, c; int lr, lg, lb, ld, ild; PalEntry colors[256], basecolors[256]; uint8_t *shade; if (Maps == NULL) return; // Scale light to the range 0-256, so we can avoid // dividing by 255 in the bottom loop. lr = Color.r*256/255; lg = Color.g*256/255; lb = Color.b*256/255; ld = Desaturate*256/255; if (ld < 0) // No negative desaturations, please. { ld = -ld; } ild = 256-ld; if (ld == 0) { memcpy (basecolors, GPalette.BaseColors, sizeof(basecolors)); } else { // Desaturate the palette before lighting it. for (c = 0; c < 256; c++) { int r = GPalette.BaseColors[c].r; int g = GPalette.BaseColors[c].g; int b = GPalette.BaseColors[c].b; int intensity = ((r * 77 + g * 143 + b * 37) >> 8) * ld; basecolors[c].r = (r*ild + intensity) >> 8; basecolors[c].g = (g*ild + intensity) >> 8; basecolors[c].b = (b*ild + intensity) >> 8; basecolors[c].a = 0; } } // build normal (but colored) light mappings for (l = 0; l < NUMCOLORMAPS; l++) { DoBlending (basecolors, colors, 256, Fade.r, Fade.g, Fade.b, l * (256 / NUMCOLORMAPS)); shade = Maps + 256*l; if ((uint32_t)Color == MAKERGB(255,255,255)) { // White light, so we can just pick the colors directly for (c = 0; c < 256; c++) { *shade++ = ColorMatcher.Pick (colors[c].r, colors[c].g, colors[c].b); } } else { // Colored light, so do the (slightly) slower thing for (c = 0; c < 256; c++) { *shade++ = ColorMatcher.Pick ( (colors[c].r*lr)>>8, (colors[c].g*lg)>>8, (colors[c].b*lb)>>8); } } } } //========================================================================== // // // //========================================================================== void FDynamicColormap::ChangeColor (PalEntry lightcolor, int desaturate) { if (lightcolor != Color || desaturate != Desaturate) { Color = lightcolor; // [BB] desaturate must be in [0,255] Desaturate = clamp(desaturate, 0, 255); if (Maps) BuildLights (); } } //========================================================================== // // // //========================================================================== void FDynamicColormap::ChangeFade (PalEntry fadecolor) { if (fadecolor != Fade) { Fade = fadecolor; if (Maps) BuildLights (); } } //========================================================================== // // // //========================================================================== void FDynamicColormap::ChangeColorFade (PalEntry lightcolor, PalEntry fadecolor) { if (lightcolor != Color || fadecolor != Fade) { Color = lightcolor; Fade = fadecolor; if (Maps) BuildLights (); } } //========================================================================== // // // //========================================================================== void FDynamicColormap::RebuildAllLights() { FDynamicColormap *cm; for (cm = &NormalLight; cm != NULL; cm = cm->Next) { if (cm->Maps == NULL) { cm->Maps = new uint8_t[NUMCOLORMAPS*256]; cm->BuildLights (); } } } //========================================================================== // // R_CheckForFixedLights // // Returns true if there are any entries in the colormaps that are the // same for every colormap and not the fade color. // //========================================================================== static bool R_CheckForFixedLights(const uint8_t *colormaps) { const uint8_t *lastcolormap = colormaps + (NUMCOLORMAPS - 1) * 256; uint8_t freq[256]; int i, j; // Count the frequencies of different colors in the final colormap. // If they occur more than X amount of times, we ignore them as a // potential fixed light. memset(freq, 0, sizeof(freq)); for (i = 0; i < 256; ++i) { freq[lastcolormap[i]]++; } // Now check the colormaps for fixed lights that are uncommon in the // final coloramp. for (i = 255; i >= 0; --i) { uint8_t color = lastcolormap[i]; if (freq[color] > 10) // arbitrary number to decide "common" colors { continue; } // It's rare in the final colormap. See if it's the same for all colormaps. for (j = 0; j < NUMCOLORMAPS - 1; ++j) { if (colormaps[j * 256 + i] != color) break; } if (j == NUMCOLORMAPS - 1) { // It was the same all the way across. return true; } } return false; } //========================================================================== // // R_SetDefaultColormap // //========================================================================== void SetDefaultColormap (const char *name) { if (strnicmp (fakecmaps[0].name, name, 8) != 0) { int lump, i, j; uint8_t map[256]; uint8_t unremap[256]; uint8_t remap[256]; lump = Wads.CheckNumForFullName (name, true, ns_colormaps); if (lump == -1) lump = Wads.CheckNumForName (name, ns_global); // [RH] If using BUILD's palette, generate the colormap if (lump == -1 || Wads.CheckNumForFullName("palette.dat") >= 0 || Wads.CheckNumForFullName("blood.pal") >= 0) { Printf ("Make colormap\n"); FDynamicColormap foo; foo.Color = 0xFFFFFF; foo.Fade = 0; foo.Maps = realcolormaps.Maps; foo.Desaturate = 0; foo.Next = NULL; foo.BuildLights (); } else { auto lumpr = Wads.OpenLumpReader (lump); // [RH] The colormap may not have been designed for the specific // palette we are using, so remap it to match the current palette. memcpy (remap, GPalette.Remap, 256); memset (unremap, 0, 256); for (i = 0; i < 256; ++i) { unremap[remap[i]] = i; } // Mapping to color 0 is okay, because the colormap won't be used to // produce a masked texture. remap[0] = 0; for (i = 0; i < NUMCOLORMAPS; ++i) { uint8_t *map2 = &realcolormaps.Maps[i*256]; lumpr.Read (map, 256); for (j = 0; j < 256; ++j) { map2[j] = remap[map[unremap[j]]]; } } } } } //========================================================================== // // R_InitColormaps // //========================================================================== static void InitBoomColormaps () { // [RH] Try and convert BOOM colormaps into blending values. // This is a really rough hack, but it's better than // not doing anything with them at all (right?) uint32_t NumLumps = Wads.GetNumLumps(); realcolormaps.Maps = new uint8_t[256*NUMCOLORMAPS*fakecmaps.Size()]; SetDefaultColormap ("COLORMAP"); if (fakecmaps.Size() > 1) { uint8_t unremap[256], remap[256], mapin[256]; int i; unsigned j; memcpy (remap, GPalette.Remap, 256); memset (unremap, 0, 256); for (i = 0; i < 256; ++i) { unremap[remap[i]] = i; } remap[0] = 0; for (j = 1; j < fakecmaps.Size(); j++) { if (Wads.LumpLength (fakecmaps[j].lump) >= (NUMCOLORMAPS+1)*256) { int k, r; auto lump = Wads.OpenLumpReader (fakecmaps[j].lump); uint8_t *const map = realcolormaps.Maps + NUMCOLORMAPS*256*j; for (k = 0; k < NUMCOLORMAPS; ++k) { uint8_t *map2 = &map[k*256]; lump.Read (mapin, 256); map2[0] = 0; for (r = 1; r < 256; ++r) { map2[r] = remap[mapin[unremap[r]]]; } } } } } } //========================================================================== // // // //========================================================================== static void DeinitSWColorMaps() { FreeSpecialLights(); if (realcolormaps.Maps != nullptr) { delete[] realcolormaps.Maps; realcolormaps.Maps = nullptr; } if (realfbcolormaps.Maps) { delete[] realfbcolormaps.Maps; realfbcolormaps.Maps = nullptr; } } //========================================================================== // // // //========================================================================== void InitSWColorMaps() { DeinitSWColorMaps(); atterm(DeinitSWColorMaps); InitBoomColormaps(); NormalLight.Color = PalEntry (255, 255, 255); NormalLight.Fade = 0; NormalLight.Maps = realcolormaps.Maps; NormalLightHasFixedLights = R_CheckForFixedLights(realcolormaps.Maps); // [SP] Create a copy of the colormap if (!realfbcolormaps.Maps) { realfbcolormaps.Maps = new uint8_t[256*NUMCOLORMAPS*fakecmaps.Size()]; memcpy(realfbcolormaps.Maps, realcolormaps.Maps, 256*NUMCOLORMAPS*fakecmaps.Size()); } FullNormalLight.Color = PalEntry(255, 255, 255); FullNormalLight.Fade = 0; FullNormalLight.Maps = realfbcolormaps.Maps; SpecialSWColormaps.Resize(SpecialColormaps.Size()); for(unsigned i = 0; i < SpecialColormaps.Size(); i++) { SpecialSWColormaps[i].Maps = SpecialColormaps[i].Colormap; } } //========================================================================== // // // //========================================================================== CCMD (testfade) { FString colorstring; uint32_t color; if (argv.argc() < 2) { Printf ("testfade \n"); } else { if ( !(colorstring = V_GetColorStringByName (argv[1])).IsEmpty() ) { color = V_GetColorFromString (NULL, colorstring); } else { color = V_GetColorFromString (NULL, argv[1]); } level.fadeto = color; NormalLight.ChangeFade (color); } } //========================================================================== // // // //========================================================================== CCMD (testcolor) { FString colorstring; uint32_t color; int desaturate; if (argv.argc() < 2) { Printf ("testcolor [desaturation]\n"); } else { if ( !(colorstring = V_GetColorStringByName (argv[1])).IsEmpty() ) { color = V_GetColorFromString (NULL, colorstring); } else { color = V_GetColorFromString (NULL, argv[1]); } if (argv.argc() > 2) { desaturate = atoi (argv[2]); } else { desaturate = NormalLight.Desaturate; } NormalLight.ChangeColor (color, desaturate); } }