in vec2 TexCoord; layout(location=0) out vec4 FragColor; layout(binding=0) uniform sampler2D DepthTexture; #if defined(MULTISAMPLE) layout(binding=1) uniform sampler2DMS NormalTexture; #else layout(binding=1) uniform sampler2D NormalTexture; #endif #if defined(USE_RANDOM_TEXTURE) layout(binding=2) uniform sampler2D RandomTexture; #endif #define PI 3.14159265358979323846 // Calculate eye space position for the specified texture coordinate vec3 FetchViewPos(vec2 uv) { float z = texture(DepthTexture, uv).x; return vec3((UVToViewA * uv + UVToViewB) * z, z); } #if defined(MULTISAMPLE) vec3 SampleNormal(vec2 uv) { ivec2 texSize = textureSize(NormalTexture); ivec2 ipos = ivec2(uv * vec2(texSize)); return texelFetch(NormalTexture, ipos, SampleIndex).xyz * 2.0 - 1.0; } #else vec3 SampleNormal(vec2 uv) { ivec2 texSize = textureSize(NormalTexture, 0); ivec2 ipos = ivec2(uv * vec2(texSize)); return texelFetch(NormalTexture, ipos, 0).xyz * 2.0 - 1.0; } #endif // Look up the eye space normal for the specified texture coordinate vec3 FetchNormal(vec2 uv) { vec3 normal = SampleNormal(Offset + uv * Scale); if (length(normal) > 0.1) { normal = normalize(normal); normal.z = -normal.z; return normal; } else { return vec3(0.0); } } // Compute normalized 2D direction vec2 RotateDirection(vec2 dir, vec2 cossin) { return vec2(dir.x * cossin.x - dir.y * cossin.y, dir.x * cossin.y + dir.y * cossin.x); } vec4 GetJitter() { #if !defined(USE_RANDOM_TEXTURE) return vec4(1,0,1,1); //vec3 rand = noise3(TexCoord.x + TexCoord.y); //float angle = 2.0 * PI * rand.x / NUM_DIRECTIONS; //return vec4(cos(angle), sin(angle), rand.y, rand.z); #else return texture(RandomTexture, gl_FragCoord.xy / RANDOM_TEXTURE_WIDTH); #endif } // Calculates the ambient occlusion of a sample float ComputeSampleAO(vec3 kernelPos, vec3 normal, vec3 samplePos) { vec3 v = samplePos - kernelPos; float distanceSquare = dot(v, v); float nDotV = dot(normal, v) * inversesqrt(distanceSquare); return clamp(nDotV - NDotVBias, 0.0, 1.0) * clamp(distanceSquare * NegInvR2 + 1.0, 0.0, 1.0); } // Calculates the total ambient occlusion for the entire fragment float ComputeAO(vec3 viewPosition, vec3 viewNormal) { vec4 rand = GetJitter(); float radiusPixels = RadiusToScreen / viewPosition.z; float stepSizePixels = radiusPixels / (NUM_STEPS + 1.0); const float directionAngleStep = 2.0 * PI / NUM_DIRECTIONS; float ao = 0.0; for (float directionIndex = 0.0; directionIndex < NUM_DIRECTIONS; ++directionIndex) { float angle = directionAngleStep * directionIndex; vec2 direction = RotateDirection(vec2(cos(angle), sin(angle)), rand.xy); float rayPixels = (rand.z * stepSizePixels + 1.0); for (float StepIndex = 0.0; StepIndex < NUM_STEPS; ++StepIndex) { vec2 sampleUV = round(rayPixels * direction) * InvFullResolution + TexCoord; vec3 samplePos = FetchViewPos(sampleUV); ao += ComputeSampleAO(viewPosition, viewNormal, samplePos); rayPixels += stepSizePixels; } } ao *= AOMultiplier / (NUM_DIRECTIONS * NUM_STEPS); return clamp(1.0 - ao * 2.0, 0.0, 1.0); } void main() { vec3 viewPosition = FetchViewPos(TexCoord); vec3 viewNormal = FetchNormal(TexCoord); float occlusion = viewNormal != vec3(0.0) ? ComputeAO(viewPosition, viewNormal) * AOStrength + (1.0 - AOStrength) : 1.0; FragColor = vec4(occlusion, viewPosition.z, 0.0, 1.0); }