/* ** bitmap.h ** **--------------------------------------------------------------------------- ** Copyright 2008 Christoph Oelckers ** All rights reserved. ** ** Redistribution and use in source and binary forms, with or without ** modification, are permitted provided that the following conditions ** are met: ** ** 1. Redistributions of source code must retain the above copyright ** notice, this list of conditions and the following disclaimer. ** 2. Redistributions in binary form must reproduce the above copyright ** notice, this list of conditions and the following disclaimer in the ** documentation and/or other materials provided with the distribution. ** 3. The name of the author may not be used to endorse or promote products ** derived from this software without specific prior written permission. ** ** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR ** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES ** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, ** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT ** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, ** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY ** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF ** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. **--------------------------------------------------------------------------- ** ** */ #ifndef __BITMAP_H__ #define __BITMAP_H__ #include "doomtype.h" #include "templates.h" struct FCopyInfo; struct FClipRect { int x, y, width, height; bool Intersect(int ix, int iy, int iw, int ih); }; class FBitmap { protected: BYTE *data; int Width; int Height; int Pitch; bool FreeBuffer; FClipRect ClipRect; public: FBitmap() { data = NULL; Width = Height = 0; Pitch = 0; FreeBuffer = false; ClipRect.x = ClipRect.y = ClipRect.width = ClipRect.height = 0; } FBitmap(BYTE *buffer, int pitch, int width, int height) { data = buffer; Pitch = pitch; Width = width; Height = height; FreeBuffer = false; ClipRect.x = ClipRect.y = 0; ClipRect.width = width; ClipRect.height = height; } virtual ~FBitmap() { Destroy(); } void Destroy() { if (data != NULL && FreeBuffer) delete [] data; data = NULL; FreeBuffer = false; } bool Create (int w, int h) { Pitch = w*4; Width = w; Height = h; data = new BYTE[4*w*h]; memset(data, 0, 4*w*h); FreeBuffer = true; ClipRect.x = ClipRect.y = 0; ClipRect.width = w; ClipRect.height = h; return data != NULL; } int GetHeight() const { return Height; } int GetWidth() const { return Width; } int GetPitch() const { return Pitch; } const BYTE *GetPixels() const { return data; } BYTE *GetPixels() { return data; } void SetClipRect(FClipRect &clip) { ClipRect = clip; } void IntersectClipRect(FClipRect &clip) { ClipRect.Intersect(clip.x, clip.y, clip.width, clip.height); } void IntersectClipRect(int cx, int cy, int cw, int ch) { ClipRect.Intersect(cx, cy, cw, ch); } const FClipRect &GetClipRect() const { return ClipRect; } void Zero(); virtual void CopyPixelDataRGB(int originx, int originy, const BYTE *patch, int srcwidth, int srcheight, int step_x, int step_y, int rotate, int ct, FCopyInfo *inf = NULL, /* for PNG tRNS */ int r=0, int g=0, int b=0); virtual void CopyPixelData(int originx, int originy, const BYTE * patch, int srcwidth, int srcheight, int step_x, int step_y, int rotate, PalEntry * palette, FCopyInfo *inf = NULL); }; bool ClipCopyPixelRect(const FClipRect *cr, int &originx, int &originy, const BYTE *&patch, int &srcwidth, int &srcheight, int &step_x, int &step_y, int rotate); //=========================================================================== // // True color conversion classes for the different pixel formats // used by the supported texture formats // //=========================================================================== struct cRGB { static __forceinline unsigned char R(const unsigned char * p) { return p[0]; } static __forceinline unsigned char G(const unsigned char * p) { return p[1]; } static __forceinline unsigned char B(const unsigned char * p) { return p[2]; } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return 255; } static __forceinline int Gray(const unsigned char * p) { return (p[0]*77 + p[1]*143 + p[2]*36)>>8; } }; struct cRGBT { static __forceinline unsigned char R(const unsigned char * p) { return p[0]; } static __forceinline unsigned char G(const unsigned char * p) { return p[1]; } static __forceinline unsigned char B(const unsigned char * p) { return p[2]; } static __forceinline unsigned char A(const unsigned char * p, BYTE r, BYTE g, BYTE b) { return (p[0] != r || p[1] != g || p[2] != b) ? 255 : 0; } static __forceinline int Gray(const unsigned char * p) { return (p[0]*77 + p[1]*143 + p[2]*36)>>8; } }; struct cRGBA { enum { RED = 0, GREEN = 1, BLUE = 1, ALPHA = 3 }; static __forceinline unsigned char R(const unsigned char * p) { return p[0]; } static __forceinline unsigned char G(const unsigned char * p) { return p[1]; } static __forceinline unsigned char B(const unsigned char * p) { return p[2]; } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return p[3]; } static __forceinline int Gray(const unsigned char * p) { return (p[0]*77 + p[1]*143 + p[2]*36)>>8; } }; struct cIA { static __forceinline unsigned char R(const unsigned char * p) { return p[0]; } static __forceinline unsigned char G(const unsigned char * p) { return p[0]; } static __forceinline unsigned char B(const unsigned char * p) { return p[0]; } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return p[1]; } static __forceinline int Gray(const unsigned char * p) { return p[0]; } }; struct cCMYK { static __forceinline unsigned char R(const unsigned char * p) { return p[3] - (((256-p[0])*p[3]) >> 8); } static __forceinline unsigned char G(const unsigned char * p) { return p[3] - (((256-p[1])*p[3]) >> 8); } static __forceinline unsigned char B(const unsigned char * p) { return p[3] - (((256-p[2])*p[3]) >> 8); } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return 255; } static __forceinline int Gray(const unsigned char * p) { return (R(p)*77 + G(p)*143 + B(p)*36)>>8; } }; struct cBGR { static __forceinline unsigned char R(const unsigned char * p) { return p[2]; } static __forceinline unsigned char G(const unsigned char * p) { return p[1]; } static __forceinline unsigned char B(const unsigned char * p) { return p[0]; } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return 255; } static __forceinline int Gray(const unsigned char * p) { return (p[2]*77 + p[1]*143 + p[0]*36)>>8; } }; struct cBGRA { enum { RED = 2, GREEN = 1, BLUE = 0, ALPHA = 3 }; static __forceinline unsigned char R(const unsigned char * p) { return p[2]; } static __forceinline unsigned char G(const unsigned char * p) { return p[1]; } static __forceinline unsigned char B(const unsigned char * p) { return p[0]; } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return p[3]; } static __forceinline int Gray(const unsigned char * p) { return (p[2]*77 + p[1]*143 + p[0]*36)>>8; } }; struct cARGB { enum { RED = 1, GREEN = 2, BLUE = 3, ALPHA = 0 }; static __forceinline unsigned char R(const unsigned char * p) { return p[1]; } static __forceinline unsigned char G(const unsigned char * p) { return p[2]; } static __forceinline unsigned char B(const unsigned char * p) { return p[3]; } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return p[0]; } static __forceinline int Gray(const unsigned char * p) { return (p[1]*77 + p[2]*143 + p[3]*36)>>8; } }; struct cI16 { static __forceinline unsigned char R(const unsigned char * p) { return p[1]; } static __forceinline unsigned char G(const unsigned char * p) { return p[1]; } static __forceinline unsigned char B(const unsigned char * p) { return p[1]; } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return 255; } static __forceinline int Gray(const unsigned char * p) { return p[1]; } }; struct cRGB555 { static __forceinline unsigned char R(const unsigned char * p) { return (((*(WORD*)p)&0x1f)<<3); } static __forceinline unsigned char G(const unsigned char * p) { return (((*(WORD*)p)&0x3e0)>>2); } static __forceinline unsigned char B(const unsigned char * p) { return (((*(WORD*)p)&0x7c00)>>7); } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return 255; } static __forceinline int Gray(const unsigned char * p) { return (R(p)*77 + G(p)*143 + B(p)*36)>>8; } }; struct cPalEntry { static __forceinline unsigned char R(const unsigned char * p) { return ((PalEntry*)p)->r; } static __forceinline unsigned char G(const unsigned char * p) { return ((PalEntry*)p)->g; } static __forceinline unsigned char B(const unsigned char * p) { return ((PalEntry*)p)->b; } static __forceinline unsigned char A(const unsigned char * p, BYTE x, BYTE y, BYTE z) { return ((PalEntry*)p)->a; } static __forceinline int Gray(const unsigned char * p) { return (R(p)*77 + G(p)*143 + B(p)*36)>>8; } }; enum ColorType { CF_RGB, CF_RGBT, CF_RGBA, CF_IA, CF_CMYK, CF_BGR, CF_BGRA, CF_I16, CF_RGB555, CF_PalEntry }; enum EBlend { BLEND_NONE = 0, BLEND_ICEMAP = 1, BLEND_DESATURATE1 = 2, BLEND_DESATURATE31 = 32, BLEND_SPECIALCOLORMAP1 = 33, BLEND_MODULATE = -1, BLEND_OVERLAY = -2, }; enum ECopyOp { OP_COPY, OP_BLEND, OP_ADD, OP_SUBTRACT, OP_REVERSESUBTRACT, OP_MODULATE, OP_COPYALPHA, OP_COPYNEWALPHA, OP_OVERLAY, OP_OVERWRITE }; struct FCopyInfo { ECopyOp op; EBlend blend; fixed_t blendcolor[4]; fixed_t alpha; fixed_t invalpha; }; struct bOverwrite { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = s; } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = s; } static __forceinline bool ProcessAlpha0() { return true; } }; struct bCopy { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = s; } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = s; } static __forceinline bool ProcessAlpha0() { return false; } }; struct bCopyNewAlpha { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = s; } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = (s*i->alpha) >> FRACBITS; } static __forceinline bool ProcessAlpha0() { return false; } }; struct bCopyAlpha { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = (s*a + d*(255-a))/255; } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = s; } static __forceinline bool ProcessAlpha0() { return false; } }; struct bOverlay { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = (s*a + d*(255-a))/255; } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = MAX(s,d); } static __forceinline bool ProcessAlpha0() { return false; } }; struct bBlend { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = (d*i->invalpha + s*i->alpha) >> FRACBITS; } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = s; } static __forceinline bool ProcessAlpha0() { return false; } }; struct bAdd { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = MIN((d*FRACUNIT + s*i->alpha) >> FRACBITS, 255); } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = s; } static __forceinline bool ProcessAlpha0() { return false; } }; struct bSubtract { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = MAX((d*FRACUNIT - s*i->alpha) >> FRACBITS, 0); } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = s; } static __forceinline bool ProcessAlpha0() { return false; } }; struct bReverseSubtract { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = MAX((-d*FRACUNIT + s*i->alpha) >> FRACBITS, 0); } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = s; } static __forceinline bool ProcessAlpha0() { return false; } }; struct bModulate { static __forceinline void OpC(BYTE &d, BYTE s, BYTE a, FCopyInfo *i) { d = (s*d)/255; } static __forceinline void OpA(BYTE &d, BYTE s, FCopyInfo *i) { d = s; } static __forceinline bool ProcessAlpha0() { return false; } }; #endif