This is only the parsing part, the arrays are not yet getting evaluated.
This required quite a hacky workaround because the gramma couldn't be made to accept the rule. The scanner will check if a 'static' token is immediately followed by a 'const' token and will combine both to a new 'staticconst' token that does not create conflicts with other rules.
- added a StartSlideshow ACS and ZScript command and extended the functionality to specify the slideshow's name when starting it.
This is for triggering any kind of intermission definition in the middle of a level - keep in mind that this may not be set up to loop!
This method was chosen because it avoids adding variable declarations to the global namespace which would have required a lot more work while polluting the grammar.
This way the global variables can be handled by a small bit of special coding in the struct generator.
If we have to write compiler specific code for micro-optimizations I am out.
The Posix compatible version nullified most the advantage on MSVC by writing out the XMM register to memory and then reading back the float.
That's not worth the hassle for an optimization that brings a few microseconds at best.
* dynamic lights also work in the true color software renderer and have been moved out of the OpenGL menu.
* created a separate software renderer menu and moved all relevant options there.
* delete non-applicable options when running in legacy mode.
* moved the OpenGL preferences menu one level up to eliminate a two-entry GL top level menu.
Removing this made me realize that calling the renderers' FakeFlat functions from the automap is inherently unsafe with the recent refactorings because there is absolutely no guarantee that the data may actually still be defined when the automap is being drawn.
So the best approach here is to give the automap its own FakeFlat function that runs independently of render data and assumptions of data preservation. This one can also be a lot simpler because it only needs the floor, not the ceiling info.
- optimized the math to get a plane equation from a linedef. The original code used a generic algorithm that knew nothing about the fact that Doom walls are always perfectly vertical. With this knowledge the plane calculation can be reduced to a lot less code because retrieving the normal is trivial in this special case.
- use the SSE2 rsqrtss instruction to calculate a wall's length, because this is by far the most frequent use of square roots in the GL renderer. So far this is only active on x64, it may be activated on 32 bit later as well, but only after it has been decided if 32 bit builds should be x87 or SSE2.
# Conflicts:
# src/gl/dynlights/gl_dynlight.cpp
# Conflicts:
# src/g_shared/a_dynlightdata.cpp