- parse the list of class/struct fields and add the PField entries to their type.

- fixed a few issues with trying to access a class's Type before it got initialized.
This commit is contained in:
Christoph Oelckers 2016-10-09 15:47:31 +02:00
parent 49f18c0a19
commit ad43f2bc7e
9 changed files with 528 additions and 50 deletions

View file

@ -82,6 +82,8 @@ PName *TypeName;
PSound *TypeSound;
PColor *TypeColor;
PStatePointer *TypeState;
PStruct *TypeVector2;
PStruct *TypeVector3;
// PRIVATE DATA DEFINITIONS ------------------------------------------------
@ -590,6 +592,19 @@ void PType::StaticInit()
TypeTable.AddType(TypeColor = new PColor);
TypeTable.AddType(TypeState = new PStatePointer);
TypeVector2 = new PStruct(NAME_Vector2, nullptr);
TypeVector2->AddField(NAME_X, TypeFloat64);
TypeVector2->AddField(NAME_Y, TypeFloat64);
TypeTable.AddType(TypeVector2);
TypeVector3 = new PStruct(NAME_Vector3, nullptr);
TypeVector3->AddField(NAME_X, TypeFloat64);
TypeVector3->AddField(NAME_Y, TypeFloat64);
TypeVector3->AddField(NAME_Z, TypeFloat64);
TypeTable.AddType(TypeVector3);
GlobalSymbols.AddSymbol(new PSymbolType(NAME_sByte, TypeSInt8));
GlobalSymbols.AddSymbol(new PSymbolType(NAME_Byte, TypeUInt8));
GlobalSymbols.AddSymbol(new PSymbolType(NAME_Short, TypeSInt16));
@ -606,6 +621,8 @@ void PType::StaticInit()
GlobalSymbols.AddSymbol(new PSymbolType(NAME_Sound, TypeSound));
GlobalSymbols.AddSymbol(new PSymbolType(NAME_Color, TypeColor));
GlobalSymbols.AddSymbol(new PSymbolType(NAME_State, TypeState));
GlobalSymbols.AddSymbol(new PSymbolType(NAME_Vector2, TypeVector2));
GlobalSymbols.AddSymbol(new PSymbolType(NAME_Vector3, TypeVector3));
}

View file

@ -14,11 +14,17 @@ typedef std::pair<const class PType *, unsigned> FTypeAndOffset;
// Making all these different storage types use a common set of flags seems
// like the simplest thing to do.
#define VARF_Optional (1<<0) // func param is optional
#define VARF_Method (1<<1) // func has an implied self parameter
#define VARF_Action (1<<2) // func has implied owner and state parameters
#define VARF_Native (1<<3) // func is native code/don't auto serialize field
#define VARF_ReadOnly (1<<4) // field is read only, do not write to it
enum
{
VARF_Optional = (1<<0), // func param is optional
VARF_Method = (1<<1), // func has an implied self parameter
VARF_Action = (1<<2), // func has implied owner and state parameters
VARF_Native = (1<<3), // func is native code/don't auto serialize field
VARF_ReadOnly = (1<<4), // field is read only, do not write to it
VARF_Private = (1<<5), // field is private to containing class
VARF_Protected = (1<<6), // field is only accessible by containing class and children.
VARF_Deprecated = (1<<7), // Deprecated fields should output warnings when used.
};
// Symbol information -------------------------------------------------------
@ -872,6 +878,8 @@ extern PString *TypeString;
extern PName *TypeName;
extern PSound *TypeSound;
extern PColor *TypeColor;
extern PStruct *TypeVector2;
extern PStruct *TypeVector3;
extern PStatePointer *TypeState;
// A constant value ---------------------------------------------------------

View file

@ -697,6 +697,8 @@ xx(Array)
xx(Sound)
xx(State)
xx(Fixed)
xx(Vector2)
xx(Vector3)
xx(Min)
xx(Max)

View file

@ -65,7 +65,7 @@ public:
FLispString()
{
NestDepth = Column = 0;
WrapWidth = 72;
WrapWidth = 200;
NeedSpace = false;
ConsecOpens = 0;
}

View file

@ -290,6 +290,7 @@ enum_def(X) ::= ENUM(T) IDENTIFIER(A) enum_type(B) LBRACE opt_enum_list(C) RBRAC
def->NodeName = A.Name();
def->EnumType = (EZCCBuiltinType)B.Int;
def->Elements = C;
def->Symbol = nullptr;
// If the first element does not have an explicit value, make it 0.
if (C != NULL)

View file

@ -60,28 +60,47 @@ void ZCCCompiler::ProcessClass(ZCC_Class *cnode, PSymbolTreeNode *treenode)
auto node = cnode->Body;
PSymbolTreeNode *childnode;
ZCC_Enum *enumType = nullptr;
do
// Need to check if the class actually has a body.
if (node != nullptr) do
{
switch (node->NodeType)
{
case AST_Struct:
case AST_ConstantDef:
case AST_VarDeclarator:
case AST_Enum:
if ((childnode = AddNamedNode(static_cast<ZCC_NamedNode *>(node), &treenode->TreeNodes)))
{
switch (node->NodeType)
{
case AST_Struct: cls.Structs.Push(ZCC_StructWork(static_cast<ZCC_Struct *>(node), childnode)); break;
case AST_ConstantDef: cls.Constants.Push(static_cast<ZCC_ConstantDef *>(node)); break;
case AST_VarDeclarator: cls.Fields.Push(static_cast<ZCC_VarDeclarator *>(node)); break;
default: assert(0 && "Default case is just here to make GCC happy. It should never be reached");
case AST_Enum:
enumType = static_cast<ZCC_Enum *>(node);
cls.Enums.Push(enumType);
break;
case AST_Struct:
ProcessStruct(static_cast<ZCC_Struct *>(node), childnode, cls.cls);
break;
case AST_ConstantDef:
cls.Constants.Push(static_cast<ZCC_ConstantDef *>(node));
cls.Constants.Last()->Type = enumType;
break;
default:
assert(0 && "Default case is just here to make GCC happy. It should never be reached");
}
}
break;
case AST_Enum: break;
case AST_EnumTerminator:break;
case AST_VarDeclarator:
cls.Fields.Push(static_cast<ZCC_VarDeclarator *>(node));
break;
case AST_EnumTerminator:
enumType = nullptr;
break;
// todo
case AST_States:
@ -100,37 +119,53 @@ void ZCCCompiler::ProcessClass(ZCC_Class *cnode, PSymbolTreeNode *treenode)
//==========================================================================
//
// ZCCCompiler :: ProcessClass
// ZCCCompiler :: ProcessStruct
//
//==========================================================================
void ZCCCompiler::ProcessStruct(ZCC_Struct *cnode, PSymbolTreeNode *treenode)
void ZCCCompiler::ProcessStruct(ZCC_Struct *cnode, PSymbolTreeNode *treenode, ZCC_Class *outer)
{
Structs.Push(ZCC_StructWork(static_cast<ZCC_Struct *>(cnode), treenode));
Structs.Push(ZCC_StructWork(static_cast<ZCC_Struct *>(cnode), treenode, outer));
ZCC_StructWork &cls = Structs.Last();
auto node = cnode->Body;
PSymbolTreeNode *childnode;
ZCC_Enum *enumType = nullptr;
do
// Need to check if the struct actually has a body.
if (node != nullptr) do
{
switch (node->NodeType)
{
case AST_ConstantDef:
case AST_VarDeclarator:
case AST_Enum:
if ((childnode = AddNamedNode(static_cast<ZCC_NamedNode *>(node), &treenode->TreeNodes)))
{
switch (node->NodeType)
{
case AST_ConstantDef: cls.Constants.Push(static_cast<ZCC_ConstantDef *>(node)); break;
case AST_VarDeclarator: cls.Fields.Push(static_cast<ZCC_VarDeclarator *>(node)); break;
default: assert(0 && "Default case is just here to make GCC happy. It should never be reached");
case AST_Enum:
enumType = static_cast<ZCC_Enum *>(node);
cls.Enums.Push(enumType);
break;
case AST_ConstantDef:
cls.Constants.Push(static_cast<ZCC_ConstantDef *>(node));
cls.Constants.Last()->Type = enumType;
break;
default:
assert(0 && "Default case is just here to make GCC happy. It should never be reached");
}
}
break;
case AST_Enum: break;
case AST_EnumTerminator:break;
case AST_VarDeclarator:
cls.Fields.Push(static_cast<ZCC_VarDeclarator *>(node));
break;
case AST_EnumTerminator:
enumType = nullptr;
break;
default:
assert(0 && "Unhandled AST node type");
@ -148,13 +183,16 @@ void ZCCCompiler::ProcessStruct(ZCC_Struct *cnode, PSymbolTreeNode *treenode)
//==========================================================================
ZCCCompiler::ZCCCompiler(ZCC_AST &ast, DObject *_outer, PSymbolTable &_symbols, PSymbolTable &_outsymbols)
: Outer(_outer), GlobalTreeNodes(&_symbols), OutputSymbols(&_outsymbols), AST(ast), ErrorCount(0), WarnCount(0)
: Outer(_outer), GlobalTreeNodes(&_symbols), OutputSymbols(&_outsymbols), AST(ast), ErrorCount(0), WarnCount(0)
{
// Group top-level nodes by type
if (ast.TopNode != NULL)
{
ZCC_TreeNode *node = ast.TopNode;
PSymbolTreeNode *tnode;
PType *enumType = nullptr;
ZCC_Enum *zenumType = nullptr;
do
{
switch (node->NodeType)
@ -162,28 +200,46 @@ ZCCCompiler::ZCCCompiler(ZCC_AST &ast, DObject *_outer, PSymbolTable &_symbols,
case AST_Class:
case AST_Struct:
case AST_ConstantDef:
case AST_Enum:
if ((tnode = AddNamedNode(static_cast<ZCC_NamedNode *>(node), GlobalTreeNodes)))
{
switch (node->NodeType)
{
case AST_Class: ProcessClass(static_cast<ZCC_Class *>(node), tnode); break;
case AST_Struct: ProcessStruct(static_cast<ZCC_Struct *>(node), tnode); break;
case AST_ConstantDef: Constants.Push(static_cast<ZCC_ConstantDef *>(node)); break;
default: assert(0 && "Default case is just here to make GCC happy. It should never be reached");
case AST_Enum:
zenumType = static_cast<ZCC_Enum *>(node);
enumType = NewEnum(zenumType->NodeName, nullptr);
GlobalSymbols.AddSymbol(new PSymbolType(zenumType->NodeName, enumType));
break;
case AST_Class:
ProcessClass(static_cast<ZCC_Class *>(node), tnode);
break;
case AST_Struct:
ProcessStruct(static_cast<ZCC_Struct *>(node), tnode, nullptr);
break;
case AST_ConstantDef:
Constants.Push(static_cast<ZCC_ConstantDef *>(node));
Constants.Last()->Type = zenumType;
break;
default:
assert(0 && "Default case is just here to make GCC happy. It should never be reached");
}
}
break;
case AST_Enum: break;
case AST_EnumTerminator:break;
case AST_EnumTerminator:
zenumType = nullptr;
break;
default:
assert(0 && "Unhandled AST node type");
break;
}
node = node->SiblingNext;
}
while (node != ast.TopNode);
} while (node != ast.TopNode);
}
}
@ -285,7 +341,7 @@ int ZCCCompiler::Compile()
CreateClassTypes();
CreateStructTypes();
CompileAllConstants();
//CompileAllFields();
CompileAllFields();
return ErrorCount;
}
@ -301,10 +357,17 @@ void ZCCCompiler::CreateStructTypes()
{
for(auto s : Structs)
{
s->Type = NewStruct(s->NodeName, nullptr);
s.Outer = s.OuterDef == nullptr? nullptr : s.OuterDef->Type;
s->Type = NewStruct(s->NodeName, s.Outer);
s->Symbol = new PSymbolType(s->NodeName, s->Type);
s->Type->Symbols.SetName(FName(s->NodeName));
GlobalSymbols.AddSymbol(s->Symbol);
for (auto e : s.Enums)
{
auto etype = NewEnum(e->NodeName, s->Type);
s->Type->Symbols.AddSymbol(new PSymbolType(e->NodeName, etype));
}
}
}
@ -427,6 +490,16 @@ void ZCCCompiler::CreateClassTypes()
GlobalSymbols.AddSymbol(c->Symbol);
Classes.Push(c);
}
// Last but not least: Now that all classes have been created, we can create the symbols for the internal enums
for (auto cd : Classes)
{
for (auto e : cd.Enums)
{
auto etype = NewEnum(e->NodeName, cd->Type);
cd->Type->Symbols.AddSymbol(new PSymbolType(e->NodeName, etype));
}
}
}
//==========================================================================
@ -464,10 +537,6 @@ void ZCCCompiler::CompileAllConstants()
for (auto &c : Classes)
{
CopyConstants(constantwork, c.Constants, &c->Type->Symbols);
for (auto &s : c.Structs)
{
CopyConstants(constantwork, s.Constants, &s->Type->Symbols);
}
}
for (auto &s : Structs)
{
@ -529,10 +598,16 @@ void ZCCCompiler::AddConstant(ZCC_ConstantWork &constant)
}
else if (cval->Type->IsA(RUNTIME_CLASS(PInt)))
{
// How do we get an Enum type in here without screwing everything up???
//auto type = def->Type != nullptr ? def->Type : cval->Type;
def->Symbol = new PSymbolConstNumeric(def->NodeName, cval->Type, cval->IntVal);
}
else if (cval->Type->IsA(RUNTIME_CLASS(PFloat)))
{
if (def->Type != nullptr)
{
Error(def, "Enum members must be integer values");
}
def->Symbol = new PSymbolConstNumeric(def->NodeName, cval->Type, cval->DoubleVal);
}
else
@ -974,3 +1049,368 @@ ZCC_ExprTypeRef *ZCCCompiler::NodeFromSymbolType(PSymbolType *sym, ZCC_Expressio
ref->Type = NewClassPointer(RUNTIME_CLASS(PType));
return ref;
}
//==========================================================================
//
// ZCCCompiler :: CompileAllFields
//
// builds the internal structure of all classes and structs
//
//==========================================================================
void ZCCCompiler::CompileAllFields()
{
// Create copies of the arrays which can be altered
auto Classes = this->Classes;
auto Structs = this->Structs;
// first step: Look for native classes with native children.
// These may not have any variables added to them because it'd clash with the native definitions.
for (unsigned i = 0; i < Classes.Size(); i++)
{
auto c = Classes[i];
if (c->Type->Size != TentativeClass && c.Fields.Size() > 0)
{
// We need to search the global class table here because not all children may have a scripted definition attached.
for (auto ac : PClass::AllClasses)
{
if (ac->ParentClass == c->Type && ac->Size != TentativeClass)
{
Error(c, "Trying to add fields to class '%s' with native children", c->Type->TypeName.GetChars());
Classes.Delete(i);
i--;
break;
}
}
}
}
bool donesomething = true;
while (donesomething && (Structs.Size() > 0 || Classes.Size() > 0))
{
donesomething = false;
for (unsigned i = 0; i < Structs.Size(); i++)
{
if (CompileFields(Structs[i]->Type, Structs[i].Fields, Structs[i].Outer, true))
{
// Remove from the list if all fields got compiled.
Structs.Delete(i);
i--;
donesomething = true;
}
}
for (unsigned i = 0; i < Classes.Size(); i++)
{
if (Classes[i]->Type->Size == TentativeClass)
{
if (Classes[i]->Type->ParentClass->Size == TentativeClass)
{
// we do not know the parent class's size yet, so skip this class for now.
continue;
}
else
{
// Inherit the size of the parent class
Classes[i]->Type->Size = Classes[i]->Type->ParentClass->Size;
}
}
if (CompileFields(Classes[i]->Type, Classes[i].Fields, nullptr, false))
{
// Remove from the list if all fields got compiled.
Classes.Delete(i);
i--;
donesomething = true;
}
}
}
// report all entries
if (Structs.Size() > 0)
{
}
if (Classes.Size() > 0)
{
}
}
//==========================================================================
//
// ZCCCompiler :: CompileFields
//
// builds the internal structure of a single class or struct
//
//==========================================================================
bool ZCCCompiler::CompileFields(PStruct *type, TArray<ZCC_VarDeclarator *> &Fields, PClass *Outer, bool forstruct)
{
Printf("Adding fields to %s, original size is %d\n", type->TypeName.GetChars(), type->Size);
while (Fields.Size() > 0)
{
auto field = Fields[0];
PType *fieldtype = DetermineType(type, field, field->Type, true);
// For structs only allow 'deprecated', for classes exclude function qualifiers.
int notallowed = forstruct? ~ZCC_Deprecated : ZCC_Latent | ZCC_Final | ZCC_Action | ZCC_Static | ZCC_FuncConst | ZCC_Abstract;
if (field->Flags & notallowed)
{
Error(field, "Invalid qualifiers for %s (%s not allowed)", FName(field->Names->Name).GetChars(), FlagsToString(field->Flags & notallowed));
field->Flags &= notallowed;
}
uint32_t varflags;
// These map directly to implementation flags.
if (field->Flags & ZCC_Private) varflags |= VARF_Private;
if (field->Flags & ZCC_Protected) varflags |= VARF_Protected;
if (field->Flags & ZCC_Deprecated) varflags |= VARF_Deprecated;
if (field->Flags & ZCC_ReadOnly) varflags |= VARF_ReadOnly;
if (field->Flags & ZCC_Native)
{
// todo: get the native address of this field.
}
if (field->Flags & ZCC_Meta)
{
varflags |= VARF_ReadOnly; // metadata implies readonly
// todo: this needs to go into the metaclass and needs some handling
}
if (field->Type->ArraySize != nullptr)
{
fieldtype = ResolveArraySize(fieldtype, field->Type->ArraySize, &type->Symbols);
}
auto name = field->Names;
do
{
auto thisfieldtype = fieldtype;
if (name->ArraySize != nullptr)
{
thisfieldtype = ResolveArraySize(thisfieldtype, name->ArraySize, &type->Symbols);
}
type->AddField(name->Name, thisfieldtype, varflags);
Printf("Added field %s, new size is %d\n", FName(name->Name).GetChars(), type->Size);
name = static_cast<ZCC_VarName*>(name->SiblingNext);
} while (name != field->Names);
Fields.Delete(0);
}
if (Fields.Size() > 0)
{
Printf("%d fields unprocessed\n", Fields.Size());
}
return Fields.Size() == 0;
}
//==========================================================================
//
// ZCCCompiler :: FieldFlagsToString
//
// creates a string for a field's flags
//
//==========================================================================
FString ZCCCompiler::FlagsToString(uint32_t flags)
{
const char *flagnames[] = { "native", "static", "private", "protected", "latent", "final", "meta", "action", "deprecated", "readonly", "funcconst", "abstract" };
FString build;
for (int i = 0; i < 12; i++)
{
if (flags & (1 << i))
{
if (build.IsNotEmpty()) build += ", ";
build += flagnames[i];
}
}
return build;
}
//==========================================================================
//
// ZCCCompiler :: DetermineType
//
// retrieves the type for this field, for arrays the type of a single entry.
//
//==========================================================================
PType *ZCCCompiler::DetermineType(PType *outertype, ZCC_VarDeclarator *field, ZCC_Type *ztype, bool allowarraytypes)
{
if (!allowarraytypes && ztype->ArraySize != nullptr)
{
Error(field, "%s: Array type not allowed", FName(field->Names->Name).GetChars());
return TypeError;
}
switch (ztype->NodeType)
{
case AST_BasicType:
{
auto btype = static_cast<ZCC_BasicType *>(ztype);
switch (btype->Type)
{
case ZCC_SInt8:
return TypeSInt8;
case ZCC_UInt8:
return TypeUInt8;
case ZCC_SInt16:
return TypeSInt16;
case ZCC_UInt16:
return TypeUInt16;
case ZCC_SInt32:
case ZCC_IntAuto: // todo: for enums, autoselect appropriately sized int
return TypeSInt32;
case ZCC_UInt32:
return TypeUInt32;
case ZCC_Bool:
return TypeBool;
// Do we really want to allow single precision floats, despite all the problems they cause?
// These are nearly guaranteed to desync between MSVC and GCC on x87, because GCC does not implement an IEEE compliant mode
case ZCC_Float32:
case ZCC_FloatAuto:
//return TypeFloat32;
case ZCC_Float64:
return TypeFloat64;
case ZCC_String:
return TypeString;
case ZCC_Name:
return TypeName;
case ZCC_Vector2:
return TypeVector2;
case ZCC_Vector3:
return TypeVector3;
case ZCC_Vector4:
// This has almost no use, so we really shouldn't bother.
Error(field, "vector<4> not implemented for %s", FName(field->Names->Name).GetChars());
return TypeError;
case ZCC_UserType:
return ResolveUserType(btype, &outertype->Symbols);
break;
}
}
case AST_MapType:
if (allowarraytypes)
{
Error(field, "%s: Map types not implemented yet", FName(field->Names->Name).GetChars());
// Todo: Decide what we allow here and if it makes sense to allow more complex constructs.
auto mtype = static_cast<ZCC_MapType *>(ztype);
return NewMap(DetermineType(outertype, field, mtype->KeyType, false), DetermineType(outertype, field, mtype->ValueType, false));
}
break;
case AST_DynArrayType:
if (allowarraytypes)
{
Error(field, "%s: Dynamic array types not implemented yet", FName(field->Names->Name).GetChars());
auto atype = static_cast<ZCC_DynArrayType *>(ztype);
return NewDynArray(DetermineType(outertype, field, atype->ElementType, false));
}
break;
case AST_ClassType:
{
auto ctype = static_cast<ZCC_ClassType *>(ztype);
if (ctype->Restriction == nullptr)
{
return NewClassPointer(RUNTIME_CLASS(DObject));
}
else
{
auto sym = outertype->Symbols.FindSymbol(ctype->Restriction->Id, true);
if (sym == nullptr) sym = GlobalSymbols.FindSymbol(ctype->Restriction->Id, false);
if (sym == nullptr)
{
Error(field, "%s: Unknown identifier", FName(ctype->Restriction->Id).GetChars());
return TypeError;
}
auto typesym = dyn_cast<PSymbolType>(sym);
if (typesym == nullptr || !typesym->Type->IsKindOf(RUNTIME_CLASS(PClass)))
{
Error(field, "%s does not represent a class type", FName(ctype->Restriction->Id).GetChars());
return TypeError;
}
return NewClassPointer(static_cast<PClass *>(typesym->Type));
}
}
}
return TypeError;
}
//==========================================================================
//
// ZCCCompiler :: ResolveUserType
//
// resolves a user type and returns a matching PType
//
//==========================================================================
PType *ZCCCompiler::ResolveUserType(ZCC_BasicType *type, PSymbolTable *symt)
{
Printf("Resolving user type %s\n", FName(type->UserType->Id).GetChars());
// Check the symbol table for the identifier.
PSymbolTable *table;
PSymbol *sym = symt->FindSymbolInTable(type->UserType->Id, table);
// GlobalSymbols cannot be the parent of a class's symbol table so we have to look for global symbols explicitly.
if (sym == nullptr && symt != &GlobalSymbols) sym = GlobalSymbols.FindSymbolInTable(type->UserType->Id, table);
if (sym != nullptr && sym->IsKindOf(RUNTIME_CLASS(PSymbolType)))
{
auto type = static_cast<PSymbolType *>(sym)->Type;
if (type->IsKindOf(RUNTIME_CLASS(PEnum)))
{
return TypeSInt32; // hack this to an integer until we can resolve the enum mess.
}
return type;
}
return TypeError;
}
//==========================================================================
//
// ZCCCompiler :: ResolveArraySize
//
// resolves the array size and returns a matching type.
//
//==========================================================================
PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PSymbolTable *sym)
{
// The duplicate Simplify call is necessary because if the head node gets replaced there is no way to detect the end of the list otherwise.
arraysize = Simplify(arraysize, sym);
ZCC_Expression *val;
do
{
val = Simplify(arraysize, sym);
if (val->Operation != PEX_ConstValue || !val->Type->IsA(RUNTIME_CLASS(PInt)))
{
Error(arraysize, "Array index must be an integer constant");
return TypeError;
}
int size = static_cast<ZCC_ExprConstant *>(val)->IntVal;
if (size < 1)
{
Error(arraysize, "Array size must be positive");
return TypeError;
}
baseType = NewArray(baseType, size);
val = static_cast<ZCC_Expression *>(val->SiblingNext);
} while (val != arraysize);
return baseType;
}

View file

@ -4,14 +4,19 @@
struct ZCC_StructWork
{
ZCC_Struct *strct;
ZCC_Class *OuterDef;
PClass *Outer;
PSymbolTreeNode *node;
TArray<ZCC_Enum *> Enums;
TArray<ZCC_ConstantDef *> Constants;
TArray<ZCC_VarDeclarator *> Fields;
ZCC_StructWork(ZCC_Struct * s, PSymbolTreeNode *n)
ZCC_StructWork(ZCC_Struct * s, PSymbolTreeNode *n, ZCC_Class *outer)
{
strct = s;
node = n;
OuterDef = outer;
Outer = nullptr;
};
ZCC_Struct *operator->()
@ -31,8 +36,8 @@ struct ZCC_ClassWork
{
ZCC_Class *cls;
PSymbolTreeNode *node;
TArray<ZCC_Enum *> Enums;
TArray<ZCC_ConstantDef *> Constants;
TArray<ZCC_StructWork> Structs;
TArray<ZCC_VarDeclarator *> Fields;
ZCC_ClassWork(ZCC_Class * s, PSymbolTreeNode *n)
@ -67,16 +72,22 @@ public:
private:
void ProcessClass(ZCC_Class *node, PSymbolTreeNode *tnode);
void ProcessStruct(ZCC_Struct *node, PSymbolTreeNode *tnode);
void ProcessStruct(ZCC_Struct *node, PSymbolTreeNode *tnode, ZCC_Class *outer);
void CreateStructTypes();
void CreateClassTypes();
void CopyConstants(TArray<ZCC_ConstantWork> &dest, TArray<ZCC_ConstantDef*> &Constants, PSymbolTable *ot);
void CompileAllFields();
void CompileAllConstants();
void AddConstant(ZCC_ConstantWork &constant);
int CompileConstants(const TArray<ZCC_ConstantDef *> &defs, PSymbolTable *Output);
bool CompileConstant(ZCC_ConstantDef *def, PSymbolTable *Symbols);
void CompileAllFields();
bool CompileFields(PStruct *type, TArray<ZCC_VarDeclarator *> &Fields, PClass *Outer, bool forstruct);
FString FlagsToString(uint32_t flags);
PType *DetermineType(PType *outertype, ZCC_VarDeclarator *field, ZCC_Type *ztype, bool allowarraytypes);
PType *ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PSymbolTable *sym);
PType *ResolveUserType(ZCC_BasicType *type, PSymbolTable *sym);
TArray<ZCC_ConstantDef *> Constants;
TArray<ZCC_StructWork> Structs;
TArray<ZCC_ClassWork> Classes;

View file

@ -179,6 +179,7 @@ struct ZCC_Identifier : ZCC_TreeNode
struct ZCC_NamedNode : ZCC_TreeNode
{
ENamedName NodeName;
PSymbolType *Symbol;
};
struct ZCC_Class : ZCC_NamedNode
@ -188,14 +189,12 @@ struct ZCC_Class : ZCC_NamedNode
VM_UWORD Flags;
ZCC_TreeNode *Body;
PClass *Type;
PSymbolType *Symbol;
};
struct ZCC_Struct : ZCC_NamedNode
{
ZCC_TreeNode *Body;
PStruct *Type;
PSymbolType *Symbol;
};
struct ZCC_Enum : ZCC_NamedNode
@ -444,6 +443,7 @@ struct ZCC_ConstantDef : ZCC_NamedNode
{
ZCC_Expression *Value;
PSymbolConst *Symbol;
ZCC_Enum *Type; // gets set when the constant originates from an enum.
};
struct ZCC_Declarator : ZCC_TreeNode

View file

@ -74,6 +74,9 @@ enum EFireBulletsFlags
FBF_NOPITCH = 8,
FBF_NOFLASH = 16,
FBF_NORANDOMPUFFZ = 32,
FBF_PUFFTARGET = 64,
FBF_PUFFMASTER = 128,
FBF_PUFFTRACER = 256,
};
// Flags for A_SpawnItemEx
@ -283,15 +286,11 @@ enum ECustomPunchFlags
CPF_STEALARMOR = 32,
};
// Flags for A_CustomMissile
enum ECustomMissileFlags
enum EFireCustomMissileFlags
{
FPF_AIMATANGLE = 1,
FPF_TRANSFERTRANSLATION = 2,
FPF_NOAUTOAIM = 4,
FBF_PUFFTARGET = 64,
FBF_PUFFMASTER = 128,
FBF_PUFFTRACER = 256,
};
// Flags for A_Teleport