mirror of
https://github.com/ZDoom/gzdoom-gles.git
synced 2024-11-28 23:11:58 +00:00
- FVertexBuilder's output looks correct now.
This commit is contained in:
parent
950ed07ae6
commit
625eb1e76a
11 changed files with 1064 additions and 228 deletions
|
@ -1049,6 +1049,7 @@ set (PCH_SOURCES
|
|||
gl/system/gl_buffers.cpp
|
||||
gl/textures/gl_hwtexture.cpp
|
||||
gl/textures/gl_samplers.cpp
|
||||
hwrenderer/data/hw_vertexbuilder.cpp
|
||||
hwrenderer/data/hw_sections.cpp
|
||||
hwrenderer/data/flatvertices.cpp
|
||||
hwrenderer/data/hw_viewpointbuffer.cpp
|
||||
|
|
790
src/earcut.hpp
Normal file
790
src/earcut.hpp
Normal file
|
@ -0,0 +1,790 @@
|
|||
/*
|
||||
ISC License
|
||||
|
||||
Copyright (c) 2015, Mapbox
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any purpose
|
||||
with or without fee is hereby granted, provided that the above copyright notice
|
||||
and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
|
||||
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
|
||||
FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
|
||||
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
|
||||
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
|
||||
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
|
||||
THIS SOFTWARE.
|
||||
*/
|
||||
#pragma once
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
#include <memory>
|
||||
#include <vector>
|
||||
|
||||
namespace mapbox {
|
||||
|
||||
namespace util {
|
||||
|
||||
template <std::size_t I, typename T> struct nth {
|
||||
inline static typename std::tuple_element<I, T>::type
|
||||
get(const T& t) { return std::get<I>(t); };
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
namespace detail {
|
||||
|
||||
template <typename N = uint32_t>
|
||||
class Earcut {
|
||||
public:
|
||||
std::vector<N> indices;
|
||||
std::size_t vertices = 0;
|
||||
|
||||
template <typename Polygon>
|
||||
void operator()(const Polygon& points);
|
||||
|
||||
private:
|
||||
struct Node {
|
||||
Node(N index, double x_, double y_) : i(index), x(x_), y(y_) {}
|
||||
Node(const Node&) = delete;
|
||||
Node& operator=(const Node&) = delete;
|
||||
Node(Node&&) = delete;
|
||||
Node& operator=(Node&&) = delete;
|
||||
|
||||
const N i;
|
||||
const double x;
|
||||
const double y;
|
||||
|
||||
// previous and next vertice nodes in a polygon ring
|
||||
Node* prev = nullptr;
|
||||
Node* next = nullptr;
|
||||
|
||||
// z-order curve value
|
||||
int32_t z = 0;
|
||||
|
||||
// previous and next nodes in z-order
|
||||
Node* prevZ = nullptr;
|
||||
Node* nextZ = nullptr;
|
||||
|
||||
// indicates whether this is a steiner point
|
||||
bool steiner = false;
|
||||
};
|
||||
|
||||
template <typename Ring> Node* linkedList(const Ring& points, const bool clockwise);
|
||||
Node* filterPoints(Node* start, Node* end = nullptr);
|
||||
void earcutLinked(Node* ear, int pass = 0);
|
||||
bool isEar(Node* ear);
|
||||
bool isEarHashed(Node* ear);
|
||||
Node* cureLocalIntersections(Node* start);
|
||||
void splitEarcut(Node* start);
|
||||
template <typename Polygon> Node* eliminateHoles(const Polygon& points, Node* outerNode);
|
||||
void eliminateHole(Node* hole, Node* outerNode);
|
||||
Node* findHoleBridge(Node* hole, Node* outerNode);
|
||||
void indexCurve(Node* start);
|
||||
Node* sortLinked(Node* list);
|
||||
int32_t zOrder(const double x_, const double y_);
|
||||
Node* getLeftmost(Node* start);
|
||||
bool pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const;
|
||||
bool isValidDiagonal(Node* a, Node* b);
|
||||
double area(const Node* p, const Node* q, const Node* r) const;
|
||||
bool equals(const Node* p1, const Node* p2);
|
||||
bool intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2);
|
||||
bool intersectsPolygon(const Node* a, const Node* b);
|
||||
bool locallyInside(const Node* a, const Node* b);
|
||||
bool middleInside(const Node* a, const Node* b);
|
||||
Node* splitPolygon(Node* a, Node* b);
|
||||
template <typename Point> Node* insertNode(std::size_t i, const Point& p, Node* last);
|
||||
void removeNode(Node* p);
|
||||
|
||||
bool hashing;
|
||||
double minX, maxX;
|
||||
double minY, maxY;
|
||||
double inv_size = 0;
|
||||
|
||||
template <typename T, typename Alloc = std::allocator<T>>
|
||||
class ObjectPool {
|
||||
public:
|
||||
ObjectPool() { }
|
||||
ObjectPool(std::size_t blockSize_) {
|
||||
reset(blockSize_);
|
||||
}
|
||||
~ObjectPool() {
|
||||
clear();
|
||||
}
|
||||
template <typename... Args>
|
||||
T* construct(Args&&... args) {
|
||||
if (currentIndex >= blockSize) {
|
||||
currentBlock = alloc.allocate(blockSize);
|
||||
allocations.emplace_back(currentBlock);
|
||||
currentIndex = 0;
|
||||
}
|
||||
T* object = ¤tBlock[currentIndex++];
|
||||
alloc.construct(object, std::forward<Args>(args)...);
|
||||
return object;
|
||||
}
|
||||
void reset(std::size_t newBlockSize) {
|
||||
for (auto allocation : allocations) alloc.deallocate(allocation, blockSize);
|
||||
allocations.clear();
|
||||
blockSize = std::max<std::size_t>(1, newBlockSize);
|
||||
currentBlock = nullptr;
|
||||
currentIndex = blockSize;
|
||||
}
|
||||
void clear() { reset(blockSize); }
|
||||
private:
|
||||
T* currentBlock = nullptr;
|
||||
std::size_t currentIndex = 1;
|
||||
std::size_t blockSize = 1;
|
||||
std::vector<T*> allocations;
|
||||
Alloc alloc;
|
||||
};
|
||||
ObjectPool<Node> nodes;
|
||||
};
|
||||
|
||||
template <typename N> template <typename Polygon>
|
||||
void Earcut<N>::operator()(const Polygon& points) {
|
||||
// reset
|
||||
indices.clear();
|
||||
vertices = 0;
|
||||
|
||||
if (points.empty()) return;
|
||||
|
||||
double x;
|
||||
double y;
|
||||
int threshold = 80;
|
||||
std::size_t len = 0;
|
||||
|
||||
for (size_t i = 0; threshold >= 0 && i < points.size(); i++) {
|
||||
threshold -= static_cast<int>(points[i].size());
|
||||
len += points[i].size();
|
||||
}
|
||||
|
||||
//estimate size of nodes and indices
|
||||
nodes.reset(len * 3 / 2);
|
||||
indices.reserve(len + points[0].size());
|
||||
|
||||
Node* outerNode = linkedList(points[0], true);
|
||||
if (!outerNode) return;
|
||||
|
||||
if (points.size() > 1) outerNode = eliminateHoles(points, outerNode);
|
||||
|
||||
// if the shape is not too simple, we'll use z-order curve hash later; calculate polygon bbox
|
||||
hashing = threshold < 0;
|
||||
if (hashing) {
|
||||
Node* p = outerNode->next;
|
||||
minX = maxX = outerNode->x;
|
||||
minY = maxY = outerNode->y;
|
||||
do {
|
||||
x = p->x;
|
||||
y = p->y;
|
||||
minX = std::min<double>(minX, x);
|
||||
minY = std::min<double>(minY, y);
|
||||
maxX = std::max<double>(maxX, x);
|
||||
maxY = std::max<double>(maxY, y);
|
||||
p = p->next;
|
||||
} while (p != outerNode);
|
||||
|
||||
// minX, minY and size are later used to transform coords into integers for z-order calculation
|
||||
inv_size = std::max<double>(maxX - minX, maxY - minY);
|
||||
inv_size = inv_size != .0 ? (1. / inv_size) : .0;
|
||||
}
|
||||
|
||||
earcutLinked(outerNode);
|
||||
|
||||
nodes.clear();
|
||||
}
|
||||
|
||||
// create a circular doubly linked list from polygon points in the specified winding order
|
||||
template <typename N> template <typename Ring>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::linkedList(const Ring& points, const bool clockwise) {
|
||||
using Point = typename Ring::value_type;
|
||||
double sum = 0;
|
||||
const std::size_t len = points.size();
|
||||
std::size_t i, j;
|
||||
Node* last = nullptr;
|
||||
|
||||
// calculate original winding order of a polygon ring
|
||||
for (i = 0, j = len > 0 ? len - 1 : 0; i < len; j = i++) {
|
||||
const auto& p1 = points[i];
|
||||
const auto& p2 = points[j];
|
||||
const double p20 = util::nth<0, Point>::get(p2);
|
||||
const double p10 = util::nth<0, Point>::get(p1);
|
||||
const double p11 = util::nth<1, Point>::get(p1);
|
||||
const double p21 = util::nth<1, Point>::get(p2);
|
||||
sum += (p20 - p10) * (p11 + p21);
|
||||
}
|
||||
|
||||
// link points into circular doubly-linked list in the specified winding order
|
||||
if (clockwise == (sum > 0)) {
|
||||
for (i = 0; i < len; i++) last = insertNode(vertices + i, points[i], last);
|
||||
} else {
|
||||
for (i = len; i-- > 0;) last = insertNode(vertices + i, points[i], last);
|
||||
}
|
||||
|
||||
if (last && equals(last, last->next)) {
|
||||
removeNode(last);
|
||||
last = last->next;
|
||||
}
|
||||
|
||||
vertices += len;
|
||||
|
||||
return last;
|
||||
}
|
||||
|
||||
// eliminate colinear or duplicate points
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::filterPoints(Node* start, Node* end) {
|
||||
if (!end) end = start;
|
||||
|
||||
Node* p = start;
|
||||
bool again;
|
||||
do {
|
||||
again = false;
|
||||
|
||||
if (!p->steiner && (equals(p, p->next) /*|| area(p->prev, p, p->next) == 0*/))
|
||||
{
|
||||
removeNode(p);
|
||||
p = end = p->prev;
|
||||
|
||||
if (p == p->next) break;
|
||||
again = true;
|
||||
|
||||
} else {
|
||||
p = p->next;
|
||||
}
|
||||
} while (again || p != end);
|
||||
|
||||
return end;
|
||||
}
|
||||
|
||||
// main ear slicing loop which triangulates a polygon (given as a linked list)
|
||||
template <typename N>
|
||||
void Earcut<N>::earcutLinked(Node* ear, int pass) {
|
||||
if (!ear) return;
|
||||
|
||||
// interlink polygon nodes in z-order
|
||||
if (!pass && hashing) indexCurve(ear);
|
||||
|
||||
Node* stop = ear;
|
||||
Node* prev;
|
||||
Node* next;
|
||||
|
||||
int iterations = 0;
|
||||
|
||||
// iterate through ears, slicing them one by one
|
||||
while (ear->prev != ear->next) {
|
||||
iterations++;
|
||||
prev = ear->prev;
|
||||
next = ear->next;
|
||||
|
||||
if (hashing ? isEarHashed(ear) : isEar(ear)) {
|
||||
// cut off the triangle
|
||||
indices.emplace_back(prev->i);
|
||||
indices.emplace_back(ear->i);
|
||||
indices.emplace_back(next->i);
|
||||
|
||||
removeNode(ear);
|
||||
|
||||
// skipping the next vertice leads to less sliver triangles
|
||||
ear = next->next;
|
||||
stop = next->next;
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
ear = next;
|
||||
|
||||
// if we looped through the whole remaining polygon and can't find any more ears
|
||||
if (ear == stop) {
|
||||
// try filtering points and slicing again
|
||||
if (!pass) earcutLinked(filterPoints(ear), 1);
|
||||
|
||||
// if this didn't work, try curing all small self-intersections locally
|
||||
else if (pass == 1) {
|
||||
ear = cureLocalIntersections(ear);
|
||||
earcutLinked(ear, 2);
|
||||
|
||||
// as a last resort, try splitting the remaining polygon into two
|
||||
} else if (pass == 2) splitEarcut(ear);
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// check whether a polygon node forms a valid ear with adjacent nodes
|
||||
template <typename N>
|
||||
bool Earcut<N>::isEar(Node* ear) {
|
||||
const Node* a = ear->prev;
|
||||
const Node* b = ear;
|
||||
const Node* c = ear->next;
|
||||
|
||||
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
||||
|
||||
// now make sure we don't have other points inside the potential ear
|
||||
Node* p = ear->next->next;
|
||||
|
||||
while (p != ear->prev) {
|
||||
if (pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
||||
area(p->prev, p, p->next) >= 0) return false;
|
||||
p = p->next;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename N>
|
||||
bool Earcut<N>::isEarHashed(Node* ear) {
|
||||
const Node* a = ear->prev;
|
||||
const Node* b = ear;
|
||||
const Node* c = ear->next;
|
||||
|
||||
if (area(a, b, c) >= 0) return false; // reflex, can't be an ear
|
||||
|
||||
// triangle bbox; min & max are calculated like this for speed
|
||||
const double minTX = std::min<double>(a->x, std::min<double>(b->x, c->x));
|
||||
const double minTY = std::min<double>(a->y, std::min<double>(b->y, c->y));
|
||||
const double maxTX = std::max<double>(a->x, std::max<double>(b->x, c->x));
|
||||
const double maxTY = std::max<double>(a->y, std::max<double>(b->y, c->y));
|
||||
|
||||
// z-order range for the current triangle bbox;
|
||||
const int32_t minZ = zOrder(minTX, minTY);
|
||||
const int32_t maxZ = zOrder(maxTX, maxTY);
|
||||
|
||||
// first look for points inside the triangle in increasing z-order
|
||||
Node* p = ear->nextZ;
|
||||
|
||||
while (p && p->z <= maxZ) {
|
||||
if (p != ear->prev && p != ear->next &&
|
||||
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
||||
area(p->prev, p, p->next) >= 0) return false;
|
||||
p = p->nextZ;
|
||||
}
|
||||
|
||||
// then look for points in decreasing z-order
|
||||
p = ear->prevZ;
|
||||
|
||||
while (p && p->z >= minZ) {
|
||||
if (p != ear->prev && p != ear->next &&
|
||||
pointInTriangle(a->x, a->y, b->x, b->y, c->x, c->y, p->x, p->y) &&
|
||||
area(p->prev, p, p->next) >= 0) return false;
|
||||
p = p->prevZ;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
// go through all polygon nodes and cure small local self-intersections
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::cureLocalIntersections(Node* start) {
|
||||
Node* p = start;
|
||||
do {
|
||||
Node* a = p->prev;
|
||||
Node* b = p->next->next;
|
||||
|
||||
// a self-intersection where edge (v[i-1],v[i]) intersects (v[i+1],v[i+2])
|
||||
if (!equals(a, b) && intersects(a, p, p->next, b) && locallyInside(a, b) && locallyInside(b, a)) {
|
||||
indices.emplace_back(a->i);
|
||||
indices.emplace_back(p->i);
|
||||
indices.emplace_back(b->i);
|
||||
|
||||
// remove two nodes involved
|
||||
removeNode(p);
|
||||
removeNode(p->next);
|
||||
|
||||
p = start = b;
|
||||
}
|
||||
p = p->next;
|
||||
} while (p != start);
|
||||
|
||||
return p;
|
||||
}
|
||||
|
||||
// try splitting polygon into two and triangulate them independently
|
||||
template <typename N>
|
||||
void Earcut<N>::splitEarcut(Node* start) {
|
||||
// look for a valid diagonal that divides the polygon into two
|
||||
Node* a = start;
|
||||
do {
|
||||
Node* b = a->next->next;
|
||||
while (b != a->prev) {
|
||||
if (a->i != b->i && isValidDiagonal(a, b)) {
|
||||
// split the polygon in two by the diagonal
|
||||
Node* c = splitPolygon(a, b);
|
||||
|
||||
// filter colinear points around the cuts
|
||||
a = filterPoints(a, a->next);
|
||||
c = filterPoints(c, c->next);
|
||||
|
||||
// run earcut on each half
|
||||
earcutLinked(a);
|
||||
earcutLinked(c);
|
||||
return;
|
||||
}
|
||||
b = b->next;
|
||||
}
|
||||
a = a->next;
|
||||
} while (a != start);
|
||||
}
|
||||
|
||||
// link every hole into the outer loop, producing a single-ring polygon without holes
|
||||
template <typename N> template <typename Polygon>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::eliminateHoles(const Polygon& points, Node* outerNode) {
|
||||
const size_t len = points.size();
|
||||
|
||||
std::vector<Node*> queue;
|
||||
for (size_t i = 1; i < len; i++) {
|
||||
Node* list = linkedList(points[i], false);
|
||||
if (list) {
|
||||
if (list == list->next) list->steiner = true;
|
||||
queue.push_back(getLeftmost(list));
|
||||
}
|
||||
}
|
||||
std::sort(queue.begin(), queue.end(), [](const Node* a, const Node* b) {
|
||||
return a->x < b->x;
|
||||
});
|
||||
|
||||
// process holes from left to right
|
||||
for (size_t i = 0; i < queue.size(); i++) {
|
||||
eliminateHole(queue[i], outerNode);
|
||||
outerNode = filterPoints(outerNode, outerNode->next);
|
||||
}
|
||||
|
||||
return outerNode;
|
||||
}
|
||||
|
||||
// find a bridge between vertices that connects hole with an outer ring and and link it
|
||||
template <typename N>
|
||||
void Earcut<N>::eliminateHole(Node* hole, Node* outerNode) {
|
||||
outerNode = findHoleBridge(hole, outerNode);
|
||||
if (outerNode) {
|
||||
Node* b = splitPolygon(outerNode, hole);
|
||||
filterPoints(b, b->next);
|
||||
}
|
||||
}
|
||||
|
||||
// David Eberly's algorithm for finding a bridge between hole and outer polygon
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::findHoleBridge(Node* hole, Node* outerNode) {
|
||||
Node* p = outerNode;
|
||||
double hx = hole->x;
|
||||
double hy = hole->y;
|
||||
double qx = -std::numeric_limits<double>::infinity();
|
||||
Node* m = nullptr;
|
||||
|
||||
// find a segment intersected by a ray from the hole's leftmost Vertex to the left;
|
||||
// segment's endpoint with lesser x will be potential connection Vertex
|
||||
do {
|
||||
if (hy <= p->y && hy >= p->next->y && p->next->y != p->y) {
|
||||
double x = p->x + (hy - p->y) * (p->next->x - p->x) / (p->next->y - p->y);
|
||||
if (x <= hx && x > qx) {
|
||||
qx = x;
|
||||
if (x == hx) {
|
||||
if (hy == p->y) return p;
|
||||
if (hy == p->next->y) return p->next;
|
||||
}
|
||||
m = p->x < p->next->x ? p : p->next;
|
||||
}
|
||||
}
|
||||
p = p->next;
|
||||
} while (p != outerNode);
|
||||
|
||||
if (!m) return 0;
|
||||
|
||||
if (hx == qx) return m->prev;
|
||||
|
||||
// look for points inside the triangle of hole Vertex, segment intersection and endpoint;
|
||||
// if there are no points found, we have a valid connection;
|
||||
// otherwise choose the Vertex of the minimum angle with the ray as connection Vertex
|
||||
|
||||
const Node* stop = m;
|
||||
double tanMin = std::numeric_limits<double>::infinity();
|
||||
double tanCur = 0;
|
||||
|
||||
p = m->next;
|
||||
double mx = m->x;
|
||||
double my = m->y;
|
||||
|
||||
while (p != stop) {
|
||||
if (hx >= p->x && p->x >= mx && hx != p->x &&
|
||||
pointInTriangle(hy < my ? hx : qx, hy, mx, my, hy < my ? qx : hx, hy, p->x, p->y)) {
|
||||
|
||||
tanCur = std::abs(hy - p->y) / (hx - p->x); // tangential
|
||||
|
||||
if ((tanCur < tanMin || (tanCur == tanMin && p->x > m->x)) && locallyInside(p, hole)) {
|
||||
m = p;
|
||||
tanMin = tanCur;
|
||||
}
|
||||
}
|
||||
|
||||
p = p->next;
|
||||
}
|
||||
|
||||
return m;
|
||||
}
|
||||
|
||||
// interlink polygon nodes in z-order
|
||||
template <typename N>
|
||||
void Earcut<N>::indexCurve(Node* start) {
|
||||
assert(start);
|
||||
Node* p = start;
|
||||
|
||||
do {
|
||||
p->z = p->z ? p->z : zOrder(p->x, p->y);
|
||||
p->prevZ = p->prev;
|
||||
p->nextZ = p->next;
|
||||
p = p->next;
|
||||
} while (p != start);
|
||||
|
||||
p->prevZ->nextZ = nullptr;
|
||||
p->prevZ = nullptr;
|
||||
|
||||
sortLinked(p);
|
||||
}
|
||||
|
||||
// Simon Tatham's linked list merge sort algorithm
|
||||
// http://www.chiark.greenend.org.uk/~sgtatham/algorithms/listsort.html
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::sortLinked(Node* list) {
|
||||
assert(list);
|
||||
Node* p;
|
||||
Node* q;
|
||||
Node* e;
|
||||
Node* tail;
|
||||
int i, numMerges, pSize, qSize;
|
||||
int inSize = 1;
|
||||
|
||||
for (;;) {
|
||||
p = list;
|
||||
list = nullptr;
|
||||
tail = nullptr;
|
||||
numMerges = 0;
|
||||
|
||||
while (p) {
|
||||
numMerges++;
|
||||
q = p;
|
||||
pSize = 0;
|
||||
for (i = 0; i < inSize; i++) {
|
||||
pSize++;
|
||||
q = q->nextZ;
|
||||
if (!q) break;
|
||||
}
|
||||
|
||||
qSize = inSize;
|
||||
|
||||
while (pSize > 0 || (qSize > 0 && q)) {
|
||||
|
||||
if (pSize == 0) {
|
||||
e = q;
|
||||
q = q->nextZ;
|
||||
qSize--;
|
||||
} else if (qSize == 0 || !q) {
|
||||
e = p;
|
||||
p = p->nextZ;
|
||||
pSize--;
|
||||
} else if (p->z <= q->z) {
|
||||
e = p;
|
||||
p = p->nextZ;
|
||||
pSize--;
|
||||
} else {
|
||||
e = q;
|
||||
q = q->nextZ;
|
||||
qSize--;
|
||||
}
|
||||
|
||||
if (tail) tail->nextZ = e;
|
||||
else list = e;
|
||||
|
||||
e->prevZ = tail;
|
||||
tail = e;
|
||||
}
|
||||
|
||||
p = q;
|
||||
}
|
||||
|
||||
tail->nextZ = nullptr;
|
||||
|
||||
if (numMerges <= 1) return list;
|
||||
|
||||
inSize *= 2;
|
||||
}
|
||||
}
|
||||
|
||||
// z-order of a Vertex given coords and size of the data bounding box
|
||||
template <typename N>
|
||||
int32_t Earcut<N>::zOrder(const double x_, const double y_) {
|
||||
// coords are transformed into non-negative 15-bit integer range
|
||||
int32_t x = static_cast<int32_t>(32767.0 * (x_ - minX) * inv_size);
|
||||
int32_t y = static_cast<int32_t>(32767.0 * (y_ - minY) * inv_size);
|
||||
|
||||
x = (x | (x << 8)) & 0x00FF00FF;
|
||||
x = (x | (x << 4)) & 0x0F0F0F0F;
|
||||
x = (x | (x << 2)) & 0x33333333;
|
||||
x = (x | (x << 1)) & 0x55555555;
|
||||
|
||||
y = (y | (y << 8)) & 0x00FF00FF;
|
||||
y = (y | (y << 4)) & 0x0F0F0F0F;
|
||||
y = (y | (y << 2)) & 0x33333333;
|
||||
y = (y | (y << 1)) & 0x55555555;
|
||||
|
||||
return x | (y << 1);
|
||||
}
|
||||
|
||||
// find the leftmost node of a polygon ring
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::getLeftmost(Node* start) {
|
||||
Node* p = start;
|
||||
Node* leftmost = start;
|
||||
do {
|
||||
if (p->x < leftmost->x) leftmost = p;
|
||||
p = p->next;
|
||||
} while (p != start);
|
||||
|
||||
return leftmost;
|
||||
}
|
||||
|
||||
// check if a point lies within a convex triangle
|
||||
template <typename N>
|
||||
bool Earcut<N>::pointInTriangle(double ax, double ay, double bx, double by, double cx, double cy, double px, double py) const {
|
||||
return (cx - px) * (ay - py) - (ax - px) * (cy - py) >= 0 &&
|
||||
(ax - px) * (by - py) - (bx - px) * (ay - py) >= 0 &&
|
||||
(bx - px) * (cy - py) - (cx - px) * (by - py) >= 0;
|
||||
}
|
||||
|
||||
// check if a diagonal between two polygon nodes is valid (lies in polygon interior)
|
||||
template <typename N>
|
||||
bool Earcut<N>::isValidDiagonal(Node* a, Node* b) {
|
||||
return a->next->i != b->i && a->prev->i != b->i && !intersectsPolygon(a, b) &&
|
||||
locallyInside(a, b) && locallyInside(b, a) && middleInside(a, b);
|
||||
}
|
||||
|
||||
// signed area of a triangle
|
||||
template <typename N>
|
||||
double Earcut<N>::area(const Node* p, const Node* q, const Node* r) const {
|
||||
return (q->y - p->y) * (r->x - q->x) - (q->x - p->x) * (r->y - q->y);
|
||||
}
|
||||
|
||||
// check if two points are equal
|
||||
template <typename N>
|
||||
bool Earcut<N>::equals(const Node* p1, const Node* p2) {
|
||||
return p1->x == p2->x && p1->y == p2->y;
|
||||
}
|
||||
|
||||
// check if two segments intersect
|
||||
template <typename N>
|
||||
bool Earcut<N>::intersects(const Node* p1, const Node* q1, const Node* p2, const Node* q2) {
|
||||
if ((equals(p1, q1) && equals(p2, q2)) ||
|
||||
(equals(p1, q2) && equals(p2, q1))) return true;
|
||||
return (area(p1, q1, p2) > 0) != (area(p1, q1, q2) > 0) &&
|
||||
(area(p2, q2, p1) > 0) != (area(p2, q2, q1) > 0);
|
||||
}
|
||||
|
||||
// check if a polygon diagonal intersects any polygon segments
|
||||
template <typename N>
|
||||
bool Earcut<N>::intersectsPolygon(const Node* a, const Node* b) {
|
||||
const Node* p = a;
|
||||
do {
|
||||
if (p->i != a->i && p->next->i != a->i && p->i != b->i && p->next->i != b->i &&
|
||||
intersects(p, p->next, a, b)) return true;
|
||||
p = p->next;
|
||||
} while (p != a);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// check if a polygon diagonal is locally inside the polygon
|
||||
template <typename N>
|
||||
bool Earcut<N>::locallyInside(const Node* a, const Node* b) {
|
||||
return area(a->prev, a, a->next) < 0 ?
|
||||
area(a, b, a->next) >= 0 && area(a, a->prev, b) >= 0 :
|
||||
area(a, b, a->prev) < 0 || area(a, a->next, b) < 0;
|
||||
}
|
||||
|
||||
// check if the middle Vertex of a polygon diagonal is inside the polygon
|
||||
template <typename N>
|
||||
bool Earcut<N>::middleInside(const Node* a, const Node* b) {
|
||||
const Node* p = a;
|
||||
bool inside = false;
|
||||
double px = (a->x + b->x) / 2;
|
||||
double py = (a->y + b->y) / 2;
|
||||
do {
|
||||
if (((p->y > py) != (p->next->y > py)) && p->next->y != p->y &&
|
||||
(px < (p->next->x - p->x) * (py - p->y) / (p->next->y - p->y) + p->x))
|
||||
inside = !inside;
|
||||
p = p->next;
|
||||
} while (p != a);
|
||||
|
||||
return inside;
|
||||
}
|
||||
|
||||
// link two polygon vertices with a bridge; if the vertices belong to the same ring, it splits
|
||||
// polygon into two; if one belongs to the outer ring and another to a hole, it merges it into a
|
||||
// single ring
|
||||
template <typename N>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::splitPolygon(Node* a, Node* b) {
|
||||
Node* a2 = nodes.construct(a->i, a->x, a->y);
|
||||
Node* b2 = nodes.construct(b->i, b->x, b->y);
|
||||
Node* an = a->next;
|
||||
Node* bp = b->prev;
|
||||
|
||||
a->next = b;
|
||||
b->prev = a;
|
||||
|
||||
a2->next = an;
|
||||
an->prev = a2;
|
||||
|
||||
b2->next = a2;
|
||||
a2->prev = b2;
|
||||
|
||||
bp->next = b2;
|
||||
b2->prev = bp;
|
||||
|
||||
return b2;
|
||||
}
|
||||
|
||||
// create a node and util::optionally link it with previous one (in a circular doubly linked list)
|
||||
template <typename N> template <typename Point>
|
||||
typename Earcut<N>::Node*
|
||||
Earcut<N>::insertNode(std::size_t i, const Point& pt, Node* last) {
|
||||
Node* p = nodes.construct(static_cast<N>(i), util::nth<0, Point>::get(pt), util::nth<1, Point>::get(pt));
|
||||
|
||||
if (!last) {
|
||||
p->prev = p;
|
||||
p->next = p;
|
||||
|
||||
} else {
|
||||
assert(last);
|
||||
p->next = last->next;
|
||||
p->prev = last;
|
||||
last->next->prev = p;
|
||||
last->next = p;
|
||||
}
|
||||
return p;
|
||||
}
|
||||
|
||||
template <typename N>
|
||||
void Earcut<N>::removeNode(Node* p) {
|
||||
p->next->prev = p->prev;
|
||||
p->prev->next = p->next;
|
||||
|
||||
if (p->prevZ) p->prevZ->nextZ = p->nextZ;
|
||||
if (p->nextZ) p->nextZ->prevZ = p->prevZ;
|
||||
}
|
||||
}
|
||||
|
||||
template <typename N = uint32_t, typename Polygon>
|
||||
std::vector<N> earcut(const Polygon& poly) {
|
||||
mapbox::detail::Earcut<N> earcut;
|
||||
earcut(poly);
|
||||
return std::move(earcut.indices);
|
||||
}
|
||||
}
|
|
@ -35,14 +35,6 @@
|
|||
#include "hwrenderer/data/buffers.h"
|
||||
#include "hwrenderer/scene/hw_renderstate.h"
|
||||
|
||||
namespace VertexBuilder
|
||||
{
|
||||
TArray<VertexContainer> BuildVertices();
|
||||
}
|
||||
|
||||
using VertexContainers = TArray<VertexContainer>;
|
||||
|
||||
|
||||
//==========================================================================
|
||||
//
|
||||
//
|
||||
|
@ -179,7 +171,7 @@ int FFlatVertexBuffer::CreateIndexedSectorVertices(sector_t *sec, const secplane
|
|||
vbo_shadowdata[vi + i].z += diff;
|
||||
}
|
||||
|
||||
int rt = ibo_data.size();
|
||||
int rt = ibo_data.Size();
|
||||
ibo_data.Append(verts.indices);
|
||||
return rt;
|
||||
}
|
||||
|
@ -190,20 +182,20 @@ int FFlatVertexBuffer::CreateIndexedSectorVertices(sector_t *sec, const secplane
|
|||
//
|
||||
//==========================================================================
|
||||
|
||||
int FFlatVertexBuffer::CreateIndexedVertices(int h, sector_t *sec, const secplane_t &plane, int floor, VertexContainers &verts)
|
||||
int FFlatVertexBuffer::CreateIndexedVertices(int h, sector_t *sec, const secplane_t &plane, int floor, VertexContainer &verts)
|
||||
{
|
||||
sec->vboindex[h] = vbo_shadowdata.Size();
|
||||
// First calculate the vertices for the sector itself
|
||||
sec->vboheight[h] = sec->GetPlaneTexZ(h);
|
||||
sec->ibocount = verts.indices.Size();
|
||||
sec->iboindex[h] = CreateIndexedSectorVertices(sec, plane, floor, verts[sec->Index()]);
|
||||
sec->iboindex[h] = CreateIndexedSectorVertices(sec, plane, floor, verts);
|
||||
|
||||
// Next are all sectors using this one as heightsec
|
||||
TArray<sector_t *> &fakes = sec->e->FakeFloor.Sectors;
|
||||
for (unsigned g = 0; g < fakes.Size(); g++)
|
||||
{
|
||||
sector_t *fsec = fakes[g];
|
||||
fsec->iboindex[2 + h] = CreateIndexedSectorVertices(fsec, plane, false, verts[fsec->Index()]);
|
||||
fsec->iboindex[2 + h] = CreateIndexedSectorVertices(fsec, plane, false, verts);
|
||||
}
|
||||
|
||||
// and finally all attached 3D floors
|
||||
|
@ -220,7 +212,7 @@ int FFlatVertexBuffer::CreateIndexedVertices(int h, sector_t *sec, const secplan
|
|||
|
||||
if (dotop || dobottom)
|
||||
{
|
||||
auto ndx = CreateIndexedSectorVertices(fsec, plane, false, verts[fsec->Index()]);
|
||||
auto ndx = CreateIndexedSectorVertices(fsec, plane, false, verts);
|
||||
if (dotop) ffloor->top.vindex = ndx;
|
||||
if (dobottom) ffloor->bottom.vindex = ndx;
|
||||
}
|
||||
|
@ -239,13 +231,32 @@ int FFlatVertexBuffer::CreateIndexedVertices(int h, sector_t *sec, const secplan
|
|||
|
||||
void FFlatVertexBuffer::CreateIndexedFlatVertices()
|
||||
{
|
||||
auto verts = VertexBuilder::BuildVertices();
|
||||
auto verts = BuildVertices();
|
||||
|
||||
int i = 0;
|
||||
for (auto &vert : verts)
|
||||
{
|
||||
Printf(PRINT_LOG, "Sector %d\n", i);
|
||||
Printf(PRINT_LOG, "%d vertices, %d indices\n", vert.vertices.Size(), vert.indices.Size());
|
||||
int j = 0;
|
||||
for (auto &v : vert.vertices)
|
||||
{
|
||||
Printf(PRINT_LOG, " %d: (%2.3f, %2.3f)\n", j++, v.vertex->fX(), v.vertex->fY());
|
||||
}
|
||||
for (unsigned i=0;i<vert.indices.Size();i+=3)
|
||||
{
|
||||
Printf(PRINT_LOG, " %d, %d, %d\n", vert.indices[i], vert.indices[i + 1], vert.indices[i + 2]);
|
||||
}
|
||||
|
||||
i++;
|
||||
}
|
||||
|
||||
|
||||
for (int h = sector_t::floor; h <= sector_t::ceiling; h++)
|
||||
{
|
||||
for (auto &sec : level.sectors)
|
||||
{
|
||||
CreateIndexedVertices(h, &sec, sec.GetSecPlane(h), h == sector_t::floor, verts);
|
||||
CreateIndexedVertices(h, &sec, sec.GetSecPlane(h), h == sector_t::floor, verts[sec.Index()]);
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
|
||||
#include "tarray.h"
|
||||
#include "hwrenderer/data/buffers.h"
|
||||
#include "hw_vertexbuilder.h"
|
||||
#include <atomic>
|
||||
#include <mutex>
|
||||
|
||||
|
@ -117,7 +118,7 @@ public:
|
|||
private:
|
||||
int CreateIndexedSectionVertices(subsector_t *sub, const secplane_t &plane, int floor, VertexContainer &cont);
|
||||
int CreateIndexedSectorVertices(sector_t *sec, const secplane_t &plane, int floor, VertexContainer &cont);
|
||||
int CreateIndexedVertices(int h, sector_t *sec, const secplane_t &plane, int floor, VertexContainers &cont);
|
||||
int CreateIndexedVertices(int h, sector_t *sec, const secplane_t &plane, int floor, VertexContainer &cont);
|
||||
void CreateIndexedFlatVertices();
|
||||
|
||||
void UpdatePlaneVertices(sector_t *sec, int plane);
|
||||
|
|
|
@ -47,16 +47,6 @@ template<> struct THashTraits<DoublePoint>
|
|||
int Compare(const DoublePoint &left, const DoublePoint &right) { return left != right; }
|
||||
};
|
||||
|
||||
template<> struct THashTraits<FSectionVertex>
|
||||
{
|
||||
hash_t Hash(const FSectionVertex &key)
|
||||
{
|
||||
return (int)(((intptr_t)key.vertex) >> 4) ^ (key.qualifier << 16);
|
||||
}
|
||||
int Compare(const FSectionVertex &left, const FSectionVertex &right) { return left.vertex != right.vertex && left.qualifier != right.qualifier; }
|
||||
};
|
||||
|
||||
|
||||
struct WorkSectionLine
|
||||
{
|
||||
vertex_t *start;
|
||||
|
@ -77,6 +67,7 @@ struct WorkSection
|
|||
bool hasminisegs;
|
||||
TArray<WorkSectionLine*>segments;
|
||||
TArray<side_t *> originalSides; // The segs will lose some of these while working on them.
|
||||
TArray<int> subsectors;
|
||||
};
|
||||
|
||||
struct TriangleWorkData
|
||||
|
@ -107,7 +98,6 @@ class FSectionCreator
|
|||
|
||||
bool verbose = false;
|
||||
TMap<int, TArray<int>> subsectormap;
|
||||
TArray<TArray<int>> rawsections; // list of unprocessed subsectors. Sector and mapsection can be retrieved from the elements so aren't stored.
|
||||
TArray<WorkSection> sections;
|
||||
|
||||
TArray<TriangleWorkData> triangles;
|
||||
|
@ -185,16 +175,18 @@ public:
|
|||
//
|
||||
//==========================================================================
|
||||
|
||||
void CompileSections()
|
||||
TArray < TArray<int>> CompileSections()
|
||||
{
|
||||
TMap<int, TArray<int>>::Pair *pair;
|
||||
TMap<int, TArray<int>>::Iterator it(subsectormap);
|
||||
TArray<TArray<int>> rawsections; // list of unprocessed subsectors. Sector and mapsection can be retrieved from the elements so aren't stored.
|
||||
|
||||
while (it.NextPair(pair))
|
||||
{
|
||||
CompileSections(pair->Value);
|
||||
CompileSections(pair->Value, rawsections);
|
||||
}
|
||||
subsectormap.Clear();
|
||||
return rawsections;
|
||||
}
|
||||
|
||||
//==========================================================================
|
||||
|
@ -203,7 +195,7 @@ public:
|
|||
//
|
||||
//==========================================================================
|
||||
|
||||
void CompileSections(TArray<int> &list)
|
||||
void CompileSections(TArray<int> &list, TArray<TArray<int>>&rawsections)
|
||||
{
|
||||
TArray<int> sublist;
|
||||
TArray<seg_t *> seglist;
|
||||
|
@ -255,12 +247,15 @@ public:
|
|||
|
||||
void MakeOutlines()
|
||||
{
|
||||
auto rawsections = CompileSections();
|
||||
TArray<WorkSectionLine *> lineForSeg(level.segs.Size(), true);
|
||||
memset(lineForSeg.Data(), 0, sizeof(WorkSectionLine*) * level.segs.Size());
|
||||
for (auto &list : rawsections)
|
||||
{
|
||||
MakeOutline(list, lineForSeg);
|
||||
}
|
||||
rawsections.Clear();
|
||||
rawsections.ShrinkToFit();
|
||||
|
||||
// Assign partners after everything has been collected
|
||||
for (auto §ion : sections)
|
||||
|
@ -403,8 +398,14 @@ public:
|
|||
*sectionlines[i] = { nullptr, nullptr, nullptr, nullptr, -1, (int)sections.Size(), nullptr };
|
||||
}
|
||||
}
|
||||
|
||||
sections.Push({ sector, mapsec, hasminisegs, std::move(sectionlines), std::move(foundsides) });
|
||||
sections.Reserve(1);
|
||||
auto §ion = sections.Last();
|
||||
section.sectorindex = sector;
|
||||
section.mapsection = mapsec;
|
||||
section.hasminisegs = hasminisegs;
|
||||
section.originalSides = std::move(foundsides);
|
||||
section.segments = std::move(sectionlines);
|
||||
section.subsectors = std::move(rawsection);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -547,8 +548,8 @@ public:
|
|||
{
|
||||
groupForSection[workingSet[0].index] = groups.Size();
|
||||
Group g;
|
||||
g.subsectors = std::move(workingSet[0].section->subsectors);
|
||||
g.groupedSections = std::move(workingSet);
|
||||
g.subsectors = std::move(rawsections[workingSet[0].index]);
|
||||
groups.Push(std::move(g));
|
||||
return;
|
||||
}
|
||||
|
@ -558,7 +559,7 @@ public:
|
|||
build.Clear();
|
||||
build.Push(workingSet[0]);
|
||||
groupForSection[workingSet[0].index] = groups.Size();
|
||||
subsectorcopy = std::move(rawsections[workingSet[0].index]);
|
||||
subsectorcopy = std::move(workingSet[0].section->subsectors);
|
||||
workingSet.Delete(0);
|
||||
|
||||
|
||||
|
@ -574,7 +575,7 @@ public:
|
|||
{
|
||||
build.Push(workingSet[i]);
|
||||
groupForSection[workingSet[i].index] = groups.Size();
|
||||
subsectorcopy.Append(rawsections[workingSet[i].index]);
|
||||
subsectorcopy.Append(workingSet[i].section->subsectors);
|
||||
workingSet.Delete(i);
|
||||
i--;
|
||||
continue;
|
||||
|
@ -585,7 +586,7 @@ public:
|
|||
{
|
||||
build.Push(workingSet[i]);
|
||||
groupForSection[workingSet[i].index] = groups.Size();
|
||||
subsectorcopy.Append(rawsections[workingSet[i].index]);
|
||||
subsectorcopy.Append(workingSet[i].section->subsectors);
|
||||
workingSet.Delete(i);
|
||||
i--;
|
||||
continue;
|
||||
|
@ -693,6 +694,8 @@ public:
|
|||
if (output.firstSectionForSectorPtr[dest.sector->Index()] == -1)
|
||||
output.firstSectionForSectorPtr[dest.sector->Index()] = curgroup;
|
||||
|
||||
output.numberOfSectionForSectorPtr[dest.sector->Index()]++;
|
||||
|
||||
for (auto &segment : group.segments)
|
||||
{
|
||||
// Use the indices calculated above to store these elements.
|
||||
|
@ -711,13 +714,11 @@ public:
|
|||
output.allSides[numsides++] = &level.sides[pair->Key];
|
||||
output.sectionForSidedefPtr[pair->Key] = curgroup;
|
||||
}
|
||||
memcpy(&output.allSubsectors[numsubsectors], &group.subsectors[0], group.subsectors.Size() * sizeof(subsector_t*));
|
||||
for (auto ssi : group.subsectors)
|
||||
{
|
||||
output.allSubsectors[numsubsectors++] = &level.subsectors[ssi];
|
||||
output.sectionForSubsectorPtr[ssi] = curgroup;
|
||||
}
|
||||
numsubsectors += group.subsectors.Size();
|
||||
CreateVerticesForSection(output, dest, true);
|
||||
curgroup++;
|
||||
}
|
||||
}
|
||||
|
@ -783,7 +784,6 @@ void CreateSections(FSectionContainer &container)
|
|||
{
|
||||
FSectionCreator creat;
|
||||
creat.GroupSubsectors();
|
||||
creat.CompileSections();
|
||||
creat.MakeOutlines();
|
||||
creat.MergeLines();
|
||||
creat.FindOuterLoops();
|
||||
|
@ -797,183 +797,3 @@ CCMD(printsections)
|
|||
}
|
||||
|
||||
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
// One sector's vertex data.
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
struct VertexContainer
|
||||
{
|
||||
TArray<FSectionVertex> vertices;
|
||||
TMap<FSectionVertex *, uint32_t> vertexmap;
|
||||
bool perSubsector = false;
|
||||
|
||||
TArray<uint32_t> indices;
|
||||
|
||||
uint32_t AddVertex(FSectionVertex *vert)
|
||||
{
|
||||
auto check = vertexmap.CheckKey(vert);
|
||||
if (check != nullptr) return *check;
|
||||
auto index = vertices.Push(*vert);
|
||||
vertexmap[vert] = index;
|
||||
return index;
|
||||
}
|
||||
|
||||
uint32_t AddVertex(vertex_t *vert, int qualifier)
|
||||
{
|
||||
FSectionVertex vertx = { vert, qualifier};
|
||||
return AddVertex(&vertx);
|
||||
}
|
||||
|
||||
uint32_t GetIndex(FSectionVertex *vert)
|
||||
{
|
||||
auto check = vertexmap.CheckKey(vert);
|
||||
if (check != nullptr) return *check;
|
||||
return ~0u;
|
||||
}
|
||||
|
||||
uint32_t GetIndex(vertex_t *vert, int qualifier)
|
||||
{
|
||||
FSectionVertex vertx = { vert, qualifier};
|
||||
return GetIndex(&vertx);
|
||||
}
|
||||
|
||||
uint32_t AddIndexForVertex(FSectionVertex *vert)
|
||||
{
|
||||
return indices.Push(GetIndex(vert));
|
||||
}
|
||||
|
||||
uint32_t AddIndexForVertex(vertex_t *vert, int qualifier)
|
||||
{
|
||||
return indices.Push(GetIndex(vert, qualifier));
|
||||
}
|
||||
|
||||
uint32_t AddIndex(uint32_t indx)
|
||||
{
|
||||
return indices.Push(indx);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
// Creates vertex meshes for sector planes
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
namespace VertexBuilder
|
||||
{
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
//
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
static void CreateVerticesForSubsector(subsector_t *sub, VertexContainer &gen, int qualifier)
|
||||
{
|
||||
if (sub->numlines < 3) return;
|
||||
|
||||
uint32_t startindex = gen.indices.Size();
|
||||
|
||||
if ((sub->flags & SSECF_HOLE) && sub->numlines > 3)
|
||||
{
|
||||
// Hole filling "subsectors" are not necessarily convex so they require real triangulation.
|
||||
// These things are extremely rare so performance is secondary here.
|
||||
|
||||
using Point = std::pair<double, double>;
|
||||
std::vector<std::vector<Point>> polygon;
|
||||
std::vector<Point> *curPoly;
|
||||
|
||||
for (unsigned i = 0; i < sub->numlines; i++)
|
||||
{
|
||||
polygon.resize(1);
|
||||
curPoly = &polygon.back();
|
||||
curPoly->push_back({ sub->firstline[i].v1->fX(), sub->firstline[i].v1->fY() });
|
||||
}
|
||||
auto indices = mapbox::earcut(polygon);
|
||||
for (auto vti : indices)
|
||||
{
|
||||
gen.AddIndexForVertex(sub->firstline[vti].v1, qualifier);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int firstndx = gen.GetIndex(sub->firstline[0].v1, qualifier);
|
||||
int secondndx = gen.GetIndex(sub->firstline[1].v1, qualifier);
|
||||
for (unsigned int k = 2; k < sub->numlines; k++)
|
||||
{
|
||||
gen.AddIndex(firstndx);
|
||||
gen.AddIndex(secondndx);
|
||||
auto ndx = gen.GetIndex(sub->firstline[k].v1, qualifier);
|
||||
gen.AddIndex(ndx);
|
||||
secondndx = ndx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
//
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
static void TriangulateSection(FSection §, VertexContainer &gen, int qualifier)
|
||||
{
|
||||
if (sect.segments.Size() < 3) return;
|
||||
|
||||
// todo
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
//
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
|
||||
static void CreateVerticesForSection(FSection §ion, VertexContainer &gen, bool useSubsectors)
|
||||
{
|
||||
section.vertexindex = gen.indices.Size();
|
||||
|
||||
if (useSubsectors)
|
||||
{
|
||||
for (auto sub : section.subsectors)
|
||||
{
|
||||
CreateVerticesForSubsector(sub, gen, -1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
TriangulateSection(section, gen, -1);
|
||||
}
|
||||
section.vertexcount = gen.indices.Size() - section.vertexindex;
|
||||
}
|
||||
|
||||
//==========================================================================
|
||||
//
|
||||
// Creates the vertices for one plane in one subsector
|
||||
//
|
||||
//==========================================================================
|
||||
|
||||
static void CreateVerticesForSector(sector_t *sec, VertexContainer gen)
|
||||
{
|
||||
auto sections = level.sections.SectionsForSector(sec);
|
||||
for (auto §ion :sections)
|
||||
{
|
||||
CreateVerticesForSection( section, gen, true);
|
||||
}
|
||||
}
|
||||
|
||||
TArray<VertexContainer> BuildVertices()
|
||||
{
|
||||
TArray<VertexContainer> verticesPerSector(level.sectors.Size(), true);
|
||||
for (unsigned i=0; i<level.sectors.Size(); i++)
|
||||
{
|
||||
CreateVerticesForSector(&level.sectors[i], verticesPerSector[i]);
|
||||
}
|
||||
}
|
||||
|
||||
};
|
||||
|
|
|
@ -76,12 +76,6 @@ struct FSectionLine
|
|||
side_t *sidedef;
|
||||
};
|
||||
|
||||
struct FSectionVertex
|
||||
{
|
||||
vertex_t *vertex; // index into vertex array
|
||||
int qualifier; // some index to prevent vertices in different groups from being merged together.
|
||||
};
|
||||
|
||||
struct FSection
|
||||
{
|
||||
// tbd: Do we need a list of subsectors here? Ideally the subsectors should not be used anywhere anymore except for finding out where a location is.
|
||||
|
|
146
src/hwrenderer/data/hw_vertexbuilder.cpp
Normal file
146
src/hwrenderer/data/hw_vertexbuilder.cpp
Normal file
|
@ -0,0 +1,146 @@
|
|||
//
|
||||
//---------------------------------------------------------------------------
|
||||
//
|
||||
// Copyright(C) 2015-2018 Christoph Oelckers
|
||||
// All rights reserved.
|
||||
//
|
||||
// This program is free software: you can redistribute it and/or modify
|
||||
// it under the terms of the GNU Lesser General Public License as published by
|
||||
// the Free Software Foundation, either version 3 of the License, or
|
||||
// (at your option) any later version.
|
||||
//
|
||||
// This program is distributed in the hope that it will be useful,
|
||||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
// GNU Lesser General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public License
|
||||
// along with this program. If not, see http://www.gnu.org/licenses/
|
||||
//
|
||||
//--------------------------------------------------------------------------
|
||||
//
|
||||
|
||||
|
||||
|
||||
#include "g_levellocals.h"
|
||||
#include "hw_vertexbuilder.h"
|
||||
#include "earcut.hpp"
|
||||
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
// Creates vertex meshes for sector planes
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
//
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
static void CreateVerticesForSubsector(subsector_t *sub, VertexContainer &gen, int qualifier)
|
||||
{
|
||||
if (sub->numlines < 3) return;
|
||||
|
||||
uint32_t startindex = gen.indices.Size();
|
||||
|
||||
if ((sub->flags & SSECF_HOLE) && sub->numlines > 3)
|
||||
{
|
||||
// Hole filling "subsectors" are not necessarily convex so they require real triangulation.
|
||||
// These things are extremely rare so performance is secondary here.
|
||||
|
||||
using Point = std::pair<double, double>;
|
||||
std::vector<std::vector<Point>> polygon;
|
||||
std::vector<Point> *curPoly;
|
||||
|
||||
for (unsigned i = 0; i < sub->numlines; i++)
|
||||
{
|
||||
polygon.resize(1);
|
||||
curPoly = &polygon.back();
|
||||
curPoly->push_back({ sub->firstline[i].v1->fX(), sub->firstline[i].v1->fY() });
|
||||
}
|
||||
auto indices = mapbox::earcut(polygon);
|
||||
for (auto vti : indices)
|
||||
{
|
||||
gen.AddIndexForVertex(sub->firstline[vti].v1, qualifier);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
int firstndx = gen.AddVertex(sub->firstline[0].v1, qualifier);
|
||||
int secondndx = gen.AddVertex(sub->firstline[1].v1, qualifier);
|
||||
for (unsigned int k = 2; k < sub->numlines; k++)
|
||||
{
|
||||
gen.AddIndex(firstndx);
|
||||
gen.AddIndex(secondndx);
|
||||
auto ndx = gen.AddVertex(sub->firstline[k].v1, qualifier);
|
||||
gen.AddIndex(ndx);
|
||||
secondndx = ndx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
//
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
static void TriangulateSection(FSection §, VertexContainer &gen, int qualifier)
|
||||
{
|
||||
if (sect.segments.Size() < 3) return;
|
||||
|
||||
// todo
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
//
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
|
||||
static void CreateVerticesForSection(FSection §ion, VertexContainer &gen, bool useSubsectors)
|
||||
{
|
||||
section.vertexindex = gen.indices.Size();
|
||||
|
||||
if (useSubsectors)
|
||||
{
|
||||
for (auto sub : section.subsectors)
|
||||
{
|
||||
CreateVerticesForSubsector(sub, gen, -1);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
TriangulateSection(section, gen, -1);
|
||||
}
|
||||
section.vertexcount = gen.indices.Size() - section.vertexindex;
|
||||
}
|
||||
|
||||
//==========================================================================
|
||||
//
|
||||
// Creates the vertices for one plane in one subsector
|
||||
//
|
||||
//==========================================================================
|
||||
|
||||
static void CreateVerticesForSector(sector_t *sec, VertexContainer &gen)
|
||||
{
|
||||
auto sections = level.sections.SectionsForSector(sec);
|
||||
for (auto §ion :sections)
|
||||
{
|
||||
CreateVerticesForSection( section, gen, true);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
TArray<VertexContainer> BuildVertices()
|
||||
{
|
||||
TArray<VertexContainer> verticesPerSector(level.sectors.Size(), true);
|
||||
for (unsigned i=0; i<level.sectors.Size(); i++)
|
||||
{
|
||||
CreateVerticesForSector(&level.sectors[i], verticesPerSector[i]);
|
||||
}
|
||||
return verticesPerSector;
|
||||
}
|
69
src/hwrenderer/data/hw_vertexbuilder.h
Normal file
69
src/hwrenderer/data/hw_vertexbuilder.h
Normal file
|
@ -0,0 +1,69 @@
|
|||
|
||||
#include "tarray.h"
|
||||
struct vertex_t;
|
||||
|
||||
struct FQualifiedVertex
|
||||
{
|
||||
vertex_t *vertex; // index into vertex array
|
||||
int qualifier; // some index to prevent vertices in different groups from being merged together.
|
||||
};
|
||||
|
||||
template<> struct THashTraits<FQualifiedVertex>
|
||||
{
|
||||
hash_t Hash(const FQualifiedVertex &key)
|
||||
{
|
||||
return (int)(((intptr_t)key.vertex) >> 4) ^ (key.qualifier << 16);
|
||||
}
|
||||
int Compare(const FQualifiedVertex &left, const FQualifiedVertex &right) { return left.vertex != right.vertex || left.qualifier != right.qualifier; }
|
||||
};
|
||||
|
||||
//=============================================================================
|
||||
//
|
||||
// One sector's vertex data.
|
||||
//
|
||||
//=============================================================================
|
||||
|
||||
struct VertexContainer
|
||||
{
|
||||
TArray<FQualifiedVertex> vertices;
|
||||
TMap<FQualifiedVertex, uint32_t> vertexmap;
|
||||
bool perSubsector = false;
|
||||
|
||||
TArray<uint32_t> indices;
|
||||
|
||||
uint32_t AddVertex(FQualifiedVertex *vert)
|
||||
{
|
||||
auto check = vertexmap.CheckKey(*vert);
|
||||
if (check != nullptr) return *check;
|
||||
auto index = vertices.Push(*vert);
|
||||
vertexmap[*vert] = index;
|
||||
return index;
|
||||
}
|
||||
|
||||
uint32_t AddVertex(vertex_t *vert, int qualifier)
|
||||
{
|
||||
FQualifiedVertex vertx = { vert, qualifier};
|
||||
return AddVertex(&vertx);
|
||||
}
|
||||
|
||||
uint32_t AddIndexForVertex(FQualifiedVertex *vert)
|
||||
{
|
||||
return indices.Push(AddVertex(vert));
|
||||
}
|
||||
|
||||
uint32_t AddIndexForVertex(vertex_t *vert, int qualifier)
|
||||
{
|
||||
return indices.Push(AddVertex(vert, qualifier));
|
||||
}
|
||||
|
||||
uint32_t AddIndex(uint32_t indx)
|
||||
{
|
||||
return indices.Push(indx);
|
||||
}
|
||||
};
|
||||
|
||||
using VertexContainers = TArray<VertexContainer>;
|
||||
|
||||
VertexContainers BuildVertices();
|
||||
|
||||
|
|
@ -4067,6 +4067,8 @@ void P_SetupLevel (const char *lumpname, int position, bool newGame)
|
|||
for (i = 0; i < BODYQUESIZE; i++)
|
||||
bodyque[i] = NULL;
|
||||
|
||||
CreateSections(level.sections);
|
||||
|
||||
if (!buildmap)
|
||||
{
|
||||
// [RH] Spawn slope creating things first.
|
||||
|
|
|
@ -532,8 +532,6 @@ static void PrepareSegs()
|
|||
|
||||
void InitRenderInfo()
|
||||
{
|
||||
CreateSections(level.sections);
|
||||
|
||||
PrepareSegs();
|
||||
PrepareSectorData();
|
||||
InitVertexData();
|
||||
|
|
|
@ -162,6 +162,10 @@ public:
|
|||
Most = max;
|
||||
Count = reserve? max : 0;
|
||||
Array = (T *)M_Malloc (sizeof(T)*max);
|
||||
if (reserve)
|
||||
{
|
||||
for (unsigned i = 0; i < Count; i++) ::new(&Array[i]) T();
|
||||
}
|
||||
}
|
||||
TArray (const TArray<T,TT> &other)
|
||||
{
|
||||
|
|
Loading…
Reference in a new issue