diff --git a/src/oplsynth/dosbox/opl.cpp b/src/oplsynth/dosbox/opl.cpp new file mode 100644 index 000000000..535128aaf --- /dev/null +++ b/src/oplsynth/dosbox/opl.cpp @@ -0,0 +1,1453 @@ +/* + * Copyright (C) 2002-2011 The DOSBox Team + * OPL2/OPL3 emulation library + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + + +/* + * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman + * Copyright (C) 1998-2001 Ken Silverman + * Ken Silverman's official web site: "http://www.advsys.net/ken" + */ + +#include "doomtype.h" +#include "../opl.h" +#include "../muslib.h" +#include +#include "m_random.h" + +static FRandom pr_opl; + +typedef uintptr_t Bitu; +typedef intptr_t Bits; +typedef DWORD Bit32u; +typedef SDWORD Bit32s; +typedef WORD Bit16u; +typedef SWORD Bit16s; +typedef BYTE Bit8u; +typedef SBYTE Bit8s; + +#define OPLTYPE_IS_OPL3 +#undef PI + +#include "opl.h" + +#define HALF_PI (PI*0.5) +#define CENTER_PANNING_POWER 0.70710678118f + +static Bit16s wavtable[WAVEPREC*3]; // wave form table + +// key scale levels +static Bit8u kslev[8][16]; + +// key scale level lookup table +static const fltype kslmul[4] = { + 0.0, 0.5, 0.25, 1.0 // -> 0, 3, 1.5, 6 dB/oct +}; + +// frequency multiplicator lookup table +static const fltype frqmul_tab[16] = { + 0.5,1,2,3,4,5,6,7,8,9,10,10,12,12,15,15 +}; + +// map a channel number to the register offset of the modulator (=register base) +static const Bit8u modulatorbase[9] = { + 0,1,2, + 8,9,10, + 16,17,18 +}; + +// map a register base to a modulator operator number or operator number +#if defined(OPLTYPE_IS_OPL3) +static const Bit8u regbase2modop[44] = { + 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8, // first set + 18,19,20,18,19,20,0,0,21,22,23,21,22,23,0,0,24,25,26,24,25,26 // second set +}; +static const Bit8u regbase2op[44] = { + 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17, // first set + 18,19,20,27,28,29,0,0,21,22,23,30,31,32,0,0,24,25,26,33,34,35 // second set +}; +#else +static const Bit8u regbase2modop[22] = { + 0,1,2,0,1,2,0,0,3,4,5,3,4,5,0,0,6,7,8,6,7,8 +}; +static const Bit8u regbase2op[22] = { + 0,1,2,9,10,11,0,0,3,4,5,12,13,14,0,0,6,7,8,15,16,17 +}; +#endif + + +// start of the waveform +static const Bit32u waveform[8] = { + WAVEPREC, + WAVEPREC>>1, + WAVEPREC, + (WAVEPREC*3)>>2, + 0, + 0, + (WAVEPREC*5)>>2, + WAVEPREC<<1 +}; + +// length of the waveform as mask +static const Bit32u wavemask[8] = { + WAVEPREC-1, + WAVEPREC-1, + (WAVEPREC>>1)-1, + (WAVEPREC>>1)-1, + WAVEPREC-1, + ((WAVEPREC*3)>>2)-1, + WAVEPREC>>1, + WAVEPREC-1 +}; + +// where the first entry resides +static const Bit32u wavestart[8] = { + 0, + WAVEPREC>>1, + 0, + WAVEPREC>>2, + 0, + 0, + 0, + WAVEPREC>>3 +}; + +// envelope generator function constants +static const fltype attackconst[4] = { + (fltype)(1/2.82624), + (fltype)(1/2.25280), + (fltype)(1/1.88416), + (fltype)(1/1.59744) +}; +static const fltype decrelconst[4] = { + (fltype)(1/39.28064), + (fltype)(1/31.41608), + (fltype)(1/26.17344), + (fltype)(1/22.44608) +}; + + +void operator_advance(op_type* op_pt, Bit32s vib) { + op_pt->wfpos = op_pt->tcount; // waveform position + + // advance waveform time + op_pt->tcount += op_pt->tinc; + op_pt->tcount += (Bit32s)(op_pt->tinc)*vib/FIXEDPT; + + op_pt->generator_pos += generator_add; +} + +void operator_advance_drums(op_type* op_pt1, Bit32s vib1, op_type* op_pt2, Bit32s vib2, op_type* op_pt3, Bit32s vib3) { + Bit32u c1 = op_pt1->tcount/FIXEDPT; + Bit32u c3 = op_pt3->tcount/FIXEDPT; + Bit32u phasebit = (((c1 & 0x88) ^ ((c1<<5) & 0x80)) | ((c3 ^ (c3<<2)) & 0x20)) ? 0x02 : 0x00; + + Bit32u noisebit = pr_opl.GenRand32() & 1; + + Bit32u snare_phase_bit = (Bit32u)(((Bitu)((op_pt1->tcount/FIXEDPT) / 0x100))&1); + + //Hihat + Bit32u inttm = (phasebit<<8) | (0x34<<(phasebit ^ (noisebit<<1))); + op_pt1->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt1->tcount += op_pt1->tinc; + op_pt1->tcount += (Bit32s)(op_pt1->tinc)*vib1/FIXEDPT; + op_pt1->generator_pos += generator_add; + + //Snare + inttm = ((1+snare_phase_bit) ^ noisebit)<<8; + op_pt2->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt2->tcount += op_pt2->tinc; + op_pt2->tcount += (Bit32s)(op_pt2->tinc)*vib2/FIXEDPT; + op_pt2->generator_pos += generator_add; + + //Cymbal + inttm = (1+phasebit)<<8; + op_pt3->wfpos = inttm*FIXEDPT; // waveform position + // advance waveform time + op_pt3->tcount += op_pt3->tinc; + op_pt3->tcount += (Bit32s)(op_pt3->tinc)*vib3/FIXEDPT; + op_pt3->generator_pos += generator_add; +} + + +// output level is sustained, mode changes only when operator is turned off (->release) +// or when the keep-sustained bit is turned off (->sustain_nokeep) +void operator_output(op_type* op_pt, Bit32s modulator, Bit32s trem) { + if (op_pt->op_state != OF_TYPE_OFF) { + op_pt->lastcval = op_pt->cval; + Bit32u i = (Bit32u)((op_pt->wfpos+modulator)/FIXEDPT); + + // wform: -16384 to 16383 (0x4000) + // trem : 32768 to 65535 (0x10000) + // step_amp: 0.0 to 1.0 + // vol : 1/2^14 to 1/2^29 (/0x4000; /1../0x8000) + + op_pt->cval = (Bit32s)(op_pt->step_amp*op_pt->vol*op_pt->cur_wform[i&op_pt->cur_wmask]*trem/16.0); + } +} + + +// no action, operator is off +void operator_off(op_type* /*op_pt*/) { +} + +// output level is sustained, mode changes only when operator is turned off (->release) +// or when the keep-sustained bit is turned off (->sustain_nokeep) +void operator_sustain(op_type* op_pt) { + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ctcur_env_step++; + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in release mode, if output level reaches zero the operator is turned off +void operator_release(op_type* op_pt) { + // ??? boundary? + if (op_pt->amp > 0.00000001) { + // release phase + op_pt->amp *= op_pt->releasemul; + } + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ctcur_env_step++; // sample counter + if ((op_pt->cur_env_step & op_pt->env_step_r)==0) { + if (op_pt->amp <= 0.00000001) { + // release phase finished, turn off this operator + op_pt->amp = 0.0; + if (op_pt->op_state == OF_TYPE_REL) { + op_pt->op_state = OF_TYPE_OFF; + } + } + op_pt->step_amp = op_pt->amp; + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in decay mode, if sustain level is reached the output level is either +// kept (sustain level keep enabled) or the operator is switched into release mode +void operator_decay(op_type* op_pt) { + if (op_pt->amp > op_pt->sustain_level) { + // decay phase + op_pt->amp *= op_pt->decaymul; + } + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ctcur_env_step++; + if ((op_pt->cur_env_step & op_pt->env_step_d)==0) { + if (op_pt->amp <= op_pt->sustain_level) { + // decay phase finished, sustain level reached + if (op_pt->sus_keep) { + // keep sustain level (until turned off) + op_pt->op_state = OF_TYPE_SUS; + op_pt->amp = op_pt->sustain_level; + } else { + // next: release phase + op_pt->op_state = OF_TYPE_SUS_NOKEEP; + } + } + op_pt->step_amp = op_pt->amp; + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + +// operator in attack mode, if full output level is reached, +// the operator is switched into decay mode +void operator_attack(op_type* op_pt) { + op_pt->amp = ((op_pt->a3*op_pt->amp + op_pt->a2)*op_pt->amp + op_pt->a1)*op_pt->amp + op_pt->a0; + + Bit32u num_steps_add = op_pt->generator_pos/FIXEDPT; // number of (standardized) samples + for (Bit32u ct=0; ctcur_env_step++; // next sample + if ((op_pt->cur_env_step & op_pt->env_step_a)==0) { // check if next step already reached + if (op_pt->amp > 1.0) { + // attack phase finished, next: decay + op_pt->op_state = OF_TYPE_DEC; + op_pt->amp = 1.0; + op_pt->step_amp = 1.0; + } + op_pt->step_skip_pos_a <<= 1; + if (op_pt->step_skip_pos_a==0) op_pt->step_skip_pos_a = 1; + if (op_pt->step_skip_pos_a & op_pt->env_step_skip_a) { // check if required to skip next step + op_pt->step_amp = op_pt->amp; + } + } + } + op_pt->generator_pos -= num_steps_add*FIXEDPT; +} + + +typedef void (*optype_fptr)(op_type*); + +optype_fptr opfuncs[6] = { + operator_attack, + operator_decay, + operator_release, + operator_sustain, // sustain phase (keeping level) + operator_release, // sustain_nokeep phase (release-style) + operator_off +}; + +void DBOPL::change_attackrate(Bitu regbase, op_type* op_pt) { + Bits attackrate = adlibreg[ARC_ATTR_DECR+regbase]>>4; + if (attackrate) { + fltype f = (fltype)(pow(FL2,(fltype)attackrate+(op_pt->toff>>2)-1)*attackconst[op_pt->toff&3]*recipsamp); + // attack rate coefficients + op_pt->a0 = (fltype)(0.0377*f); + op_pt->a1 = (fltype)(10.73*f+1); + op_pt->a2 = (fltype)(-17.57*f); + op_pt->a3 = (fltype)(7.42*f); + + Bits step_skip = attackrate*4 + op_pt->toff; + Bits steps = step_skip >> 2; + op_pt->env_step_a = (1<<(steps<=12?12-steps:0))-1; + + Bits step_num = (step_skip<=48)?(4-(step_skip&3)):0; + static Bit8u step_skip_mask[5] = {0xff, 0xfe, 0xee, 0xba, 0xaa}; + op_pt->env_step_skip_a = step_skip_mask[step_num]; + +#if defined(OPLTYPE_IS_OPL3) + if (step_skip>=60) { +#else + if (step_skip>=62) { +#endif + op_pt->a0 = (fltype)(2.0); // something that triggers an immediate transition to amp:=1.0 + op_pt->a1 = (fltype)(0.0); + op_pt->a2 = (fltype)(0.0); + op_pt->a3 = (fltype)(0.0); + } + } else { + // attack disabled + op_pt->a0 = 0.0; + op_pt->a1 = 1.0; + op_pt->a2 = 0.0; + op_pt->a3 = 0.0; + op_pt->env_step_a = 0; + op_pt->env_step_skip_a = 0; + } +} + +void DBOPL::change_decayrate(Bitu regbase, op_type* op_pt) { + Bits decayrate = adlibreg[ARC_ATTR_DECR+regbase]&15; + // decaymul should be 1.0 when decayrate==0 + if (decayrate) { + fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); + op_pt->decaymul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(decayrate+(op_pt->toff>>2))))); + Bits steps = (decayrate*4 + op_pt->toff) >> 2; + op_pt->env_step_d = (1<<(steps<=12?12-steps:0))-1; + } else { + op_pt->decaymul = 1.0; + op_pt->env_step_d = 0; + } +} + +void DBOPL::change_releaserate(Bitu regbase, op_type* op_pt) { + Bits releaserate = adlibreg[ARC_SUSL_RELR+regbase]&15; + // releasemul should be 1.0 when releaserate==0 + if (releaserate) { + fltype f = (fltype)(-7.4493*decrelconst[op_pt->toff&3]*recipsamp); + op_pt->releasemul = (fltype)(pow(FL2,f*pow(FL2,(fltype)(releaserate+(op_pt->toff>>2))))); + Bits steps = (releaserate*4 + op_pt->toff) >> 2; + op_pt->env_step_r = (1<<(steps<=12?12-steps:0))-1; + } else { + op_pt->releasemul = 1.0; + op_pt->env_step_r = 0; + } +} + +void DBOPL::change_sustainlevel(Bitu regbase, op_type* op_pt) { + Bits sustainlevel = adlibreg[ARC_SUSL_RELR+regbase]>>4; + // sustainlevel should be 0.0 when sustainlevel==15 (max) + if (sustainlevel<15) { + op_pt->sustain_level = (fltype)(pow(FL2,(fltype)sustainlevel * (-FL05))); + } else { + op_pt->sustain_level = 0.0; + } +} + +void DBOPL::change_waveform(Bitu regbase, op_type* op_pt) { +#if defined(OPLTYPE_IS_OPL3) + if (regbase>=ARC_SECONDSET) regbase -= (ARC_SECONDSET-22); // second set starts at 22 +#endif + // waveform selection + op_pt->cur_wmask = wavemask[wave_sel[regbase]]; + op_pt->cur_wform = &wavtable[waveform[wave_sel[regbase]]]; + // (might need to be adapted to waveform type here...) +} + +void DBOPL::change_keepsustain(Bitu regbase, op_type* op_pt) { + op_pt->sus_keep = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x20)>0; + if (op_pt->op_state==OF_TYPE_SUS) { + if (!op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS_NOKEEP; + } else if (op_pt->op_state==OF_TYPE_SUS_NOKEEP) { + if (op_pt->sus_keep) op_pt->op_state = OF_TYPE_SUS; + } +} + +// enable/disable vibrato/tremolo LFO effects +void DBOPL::change_vibrato(Bitu regbase, op_type* op_pt) { + op_pt->vibrato = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x40)!=0; + op_pt->tremolo = (adlibreg[ARC_TVS_KSR_MUL+regbase]&0x80)!=0; +} + +// change amount of self-feedback +void DBOPL::change_feedback(Bitu chanbase, op_type* op_pt) { + Bits feedback = adlibreg[ARC_FEEDBACK+chanbase]&14; + if (feedback) op_pt->mfbi = (Bit32s)(pow(FL2,(fltype)((feedback>>1)+8))); + else op_pt->mfbi = 0; +} + +void DBOPL::change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt) { + // frequency + Bit32u frn = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])&3)<<8) + (Bit32u)adlibreg[ARC_FREQ_NUM+chanbase]; + // block number/octave + Bit32u oct = ((((Bit32u)adlibreg[ARC_KON_BNUM+chanbase])>>2)&7); + op_pt->freq_high = (Bit32s)((frn>>7)&7); + + // keysplit + Bit32u note_sel = (adlibreg[8]>>6)&1; + op_pt->toff = ((frn>>9)&(note_sel^1)) | ((frn>>8)¬e_sel); + op_pt->toff += (oct<<1); + + // envelope scaling (KSR) + if (!(adlibreg[ARC_TVS_KSR_MUL+regbase]&0x10)) op_pt->toff >>= 2; + + // 20+a0+b0: + op_pt->tinc = (Bit32u)((((fltype)(frn<>6]*kslev[oct][frn>>6]); + op_pt->vol = (fltype)(pow(FL2,(fltype)(vol_in * -0.125 - 14))); + + // operator frequency changed, care about features that depend on it + change_attackrate(regbase,op_pt); + change_decayrate(regbase,op_pt); + change_releaserate(regbase,op_pt); +} + +void DBOPL::enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type) { + // check if this is really an off-on transition + if (op_pt->act_state == OP_ACT_OFF) { + Bits wselbase = regbase; + if (wselbase>=ARC_SECONDSET) wselbase -= (ARC_SECONDSET-22); // second set starts at 22 + + op_pt->tcount = wavestart[wave_sel[wselbase]]*FIXEDPT; + + // start with attack mode + op_pt->op_state = OF_TYPE_ATT; + op_pt->act_state |= act_type; + } +} + +void DBOPL::disable_operator(op_type* op_pt, Bit32u act_type) { + // check if this is really an on-off transition + if (op_pt->act_state != OP_ACT_OFF) { + op_pt->act_state &= (~act_type); + if (op_pt->act_state == OP_ACT_OFF) { + if (op_pt->op_state != OF_TYPE_OFF) op_pt->op_state = OF_TYPE_REL; + } + } +} + +void DBOPL::Reset() { + Bit32u samplerate = (Bit32u)OPL_SAMPLE_RATE; + Bits i, j, oct; + + int_samplerate = samplerate; + + generator_add = (Bit32u)(INTFREQU*FIXEDPT/int_samplerate); + + + memset((void *)adlibreg,0,sizeof(adlibreg)); + memset((void *)op,0,sizeof(op_type)*MAXOPERATORS); + memset((void *)wave_sel,0,sizeof(wave_sel)); + + for (i=0;i=0;i--) { + frqmul[i] = (fltype)(frqmul_tab[i]*INTFREQU/(fltype)WAVEPREC*(fltype)FIXEDPT*recipsamp); + } + + status = 0; + opl_index = 0; + + + // create vibrato table + vib_table[0] = 8; + vib_table[1] = 4; + vib_table[2] = 0; + vib_table[3] = -4; + for (i=4; i(VIBTAB_SIZE*FIXEDPT_LFO/8192*INTFREQU/int_samplerate); + vibtab_pos = 0; + + for (i=0; i -0.5/6 to 0) + for (i=14; i<41; i++) trem_table_int[i] = Bit32s(-i+14); // downwards (26 to 0 -> 0 to -1/6) + for (i=41; i<53; i++) trem_table_int[i] = Bit32s(i-40-26); // upwards (1 to 12 -> -1/6 to -0.5/6) + + for (i=0; i>1);i++) { + wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1) )*PI*2/WAVEPREC)); + wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<1)+1)*PI*2/WAVEPREC)); + wavtable[i] = wavtable[(i<<1) +WAVEPREC]; + // alternative: (zero-less) +/* wavtable[(i<<1) +WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<2)+1)*PI/WAVEPREC)); + wavtable[(i<<1)+1+WAVEPREC] = (Bit16s)(16384*sin((fltype)((i<<2)+3)*PI/WAVEPREC)); + wavtable[i] = wavtable[(i<<1)-1+WAVEPREC]; */ + } + for (i=0;i<(WAVEPREC>>3);i++) { + wavtable[i+(WAVEPREC<<1)] = wavtable[i+(WAVEPREC>>3)]-16384; + wavtable[i+((WAVEPREC*17)>>3)] = wavtable[i+(WAVEPREC>>2)]+16384; + } + + // key scale level table verified ([table in book]*8/3) + kslev[7][0] = 0; kslev[7][1] = 24; kslev[7][2] = 32; kslev[7][3] = 37; + kslev[7][4] = 40; kslev[7][5] = 43; kslev[7][6] = 45; kslev[7][7] = 47; + kslev[7][8] = 48; + for (i=9;i<16;i++) kslev[7][i] = (Bit8u)(i+41); + for (j=6;j>=0;j--) { + for (i=0;i<16;i++) { + oct = (Bits)kslev[j+1][i]-8; + if (oct < 0) oct = 0; + kslev[j][i] = (Bit8u)oct; + } + } + } + +} + + + +void DBOPL::WriteReg(int idx, int val) { + Bit32u second_set = (Bit32u)idx&0x100; + adlibreg[idx] = val; + + switch (idx&0xf0) { + case ARC_CONTROL: + // here we check for the second set registers, too: + switch (idx) { + case 0x02: // timer1 counter + case 0x03: // timer2 counter + break; + case 0x04: + // IRQ reset, timer mask/start + if (val&0x80) { + // clear IRQ bits in status register + status &= ~0x60; + } else { + status = 0; + } + break; +#if defined(OPLTYPE_IS_OPL3) + case 0x04|ARC_SECONDSET: + // 4op enable/disable switches for each possible channel + op[0].is_4op = (val&1)>0; + op[3].is_4op_attached = op[0].is_4op; + op[1].is_4op = (val&2)>0; + op[4].is_4op_attached = op[1].is_4op; + op[2].is_4op = (val&4)>0; + op[5].is_4op_attached = op[2].is_4op; + op[18].is_4op = (val&8)>0; + op[21].is_4op_attached = op[18].is_4op; + op[19].is_4op = (val&16)>0; + op[22].is_4op_attached = op[19].is_4op; + op[20].is_4op = (val&32)>0; + op[23].is_4op_attached = op[20].is_4op; + break; + case 0x05|ARC_SECONDSET: + break; +#endif + case 0x08: + // CSW, note select + break; + default: + break; + } + break; + case ARC_TVS_KSR_MUL: + case ARC_TVS_KSR_MUL+0x10: { + // tremolo/vibrato/sustain keeping enabled; key scale rate; frequency multiplication + int num = (int)idx&7; + Bitu base = (idx-ARC_TVS_KSR_MUL)&0xff; + if ((num<6) && (base<22)) { + Bitu modop = regbase2modop[second_set?(base+22):base]; + Bitu regbase = base+second_set; + Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; + + // change tremolo/vibrato and sustain keeping of this operator + op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; + change_keepsustain(regbase,op_ptr); + change_vibrato(regbase,op_ptr); + + // change frequency calculations of this operator as + // key scale rate and frequency multiplicator can be changed +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { + // operator uses frequency of channel + change_frequency(chanbase-3,regbase,op_ptr); + } else { + change_frequency(chanbase,regbase,op_ptr); + } +#else + change_frequency(chanbase,base,op_ptr); +#endif + } + } + break; + case ARC_KSL_OUTLEV: + case ARC_KSL_OUTLEV+0x10: { + // key scale level; output rate + int num = (int)idx&7; + Bitu base = (idx-ARC_KSL_OUTLEV)&0xff; + if ((num<6) && (base<22)) { + Bitu modop = regbase2modop[second_set?(base+22):base]; + Bitu chanbase = second_set?(modop-18+ARC_SECONDSET):modop; + + // change frequency calculations of this operator as + // key scale level and output rate can be changed + op_type* op_ptr = &op[modop+((num<3) ? 0 : 9)]; +#if defined(OPLTYPE_IS_OPL3) + Bitu regbase = base+second_set; + if ((adlibreg[0x105]&1) && (op[modop].is_4op_attached)) { + // operator uses frequency of channel + change_frequency(chanbase-3,regbase,op_ptr); + } else { + change_frequency(chanbase,regbase,op_ptr); + } +#else + change_frequency(chanbase,base,op_ptr); +#endif + } + } + break; + case ARC_ATTR_DECR: + case ARC_ATTR_DECR+0x10: { + // attack/decay rates + int num = (int)idx&7; + Bitu base = (idx-ARC_ATTR_DECR)&0xff; + if ((num<6) && (base<22)) { + Bitu regbase = base+second_set; + + // change attack rate and decay rate of this operator + op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; + change_attackrate(regbase,op_ptr); + change_decayrate(regbase,op_ptr); + } + } + break; + case ARC_SUSL_RELR: + case ARC_SUSL_RELR+0x10: { + // sustain level; release rate + int num = (int)idx&7; + Bitu base = (idx-ARC_SUSL_RELR)&0xff; + if ((num<6) && (base<22)) { + Bitu regbase = base+second_set; + + // change sustain level and release rate of this operator + op_type* op_ptr = &op[regbase2op[second_set?(base+22):base]]; + change_releaserate(regbase,op_ptr); + change_sustainlevel(regbase,op_ptr); + } + } + break; + case ARC_FREQ_NUM: { + // 0xa0-0xa8 low8 frequency + Bitu base = (idx-ARC_FREQ_NUM)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; +#endif + // regbase of modulator: + Bits modbase = modulatorbase[base]+second_set; + + Bitu chanbase = base+second_set; + + change_frequency(chanbase,modbase,&op[opbase]); + change_frequency(chanbase,modbase+3,&op[opbase+9]); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are modified to the frequency of the channel + if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { + change_frequency(chanbase,modbase+8,&op[opbase+3]); + change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); + } +#endif + } + } + break; + case ARC_KON_BNUM: { + if (idx == ARC_PERC_MODE) { +#if defined(OPLTYPE_IS_OPL3) + if (second_set) return; +#endif + + if ((val&0x30) == 0x30) { // BassDrum active + enable_operator(16,&op[6],OP_ACT_PERC); + change_frequency(6,16,&op[6]); + enable_operator(16+3,&op[6+9],OP_ACT_PERC); + change_frequency(6,16+3,&op[6+9]); + } else { + disable_operator(&op[6],OP_ACT_PERC); + disable_operator(&op[6+9],OP_ACT_PERC); + } + if ((val&0x28) == 0x28) { // Snare active + enable_operator(17+3,&op[16],OP_ACT_PERC); + change_frequency(7,17+3,&op[16]); + } else { + disable_operator(&op[16],OP_ACT_PERC); + } + if ((val&0x24) == 0x24) { // TomTom active + enable_operator(18,&op[8],OP_ACT_PERC); + change_frequency(8,18,&op[8]); + } else { + disable_operator(&op[8],OP_ACT_PERC); + } + if ((val&0x22) == 0x22) { // Cymbal active + enable_operator(18+3,&op[8+9],OP_ACT_PERC); + change_frequency(8,18+3,&op[8+9]); + } else { + disable_operator(&op[8+9],OP_ACT_PERC); + } + if ((val&0x21) == 0x21) { // Hihat active + enable_operator(17,&op[7],OP_ACT_PERC); + change_frequency(7,17,&op[7]); + } else { + disable_operator(&op[7],OP_ACT_PERC); + } + + break; + } + // regular 0xb0-0xb8 + Bitu base = (idx-ARC_KON_BNUM)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && op[opbase].is_4op_attached) break; +#endif + // regbase of modulator: + Bits modbase = modulatorbase[base]+second_set; + + if (val&32) { + // operator switched on + enable_operator(modbase,&op[opbase],OP_ACT_NORMAL); // modulator (if 2op) + enable_operator(modbase+3,&op[opbase+9],OP_ACT_NORMAL); // carrier (if 2op) +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are switched on + if ((adlibreg[0x105]&1) && op[opbase].is_4op) { + // turn on chan+3 operators as well + enable_operator(modbase+8,&op[opbase+3],OP_ACT_NORMAL); + enable_operator(modbase+3+8,&op[opbase+3+9],OP_ACT_NORMAL); + } +#endif + } else { + // operator switched off + disable_operator(&op[opbase],OP_ACT_NORMAL); + disable_operator(&op[opbase+9],OP_ACT_NORMAL); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are switched off + if ((adlibreg[0x105]&1) && op[opbase].is_4op) { + // turn off chan+3 operators as well + disable_operator(&op[opbase+3],OP_ACT_NORMAL); + disable_operator(&op[opbase+3+9],OP_ACT_NORMAL); + } +#endif + } + + Bitu chanbase = base+second_set; + + // change frequency calculations of modulator and carrier (2op) as + // the frequency of the channel has changed + change_frequency(chanbase,modbase,&op[opbase]); + change_frequency(chanbase,modbase+3,&op[opbase+9]); +#if defined(OPLTYPE_IS_OPL3) + // for 4op channels all four operators are modified to the frequency of the channel + if ((adlibreg[0x105]&1) && op[second_set?(base+18):base].is_4op) { + // change frequency calculations of chan+3 operators as well + change_frequency(chanbase,modbase+8,&op[opbase+3]); + change_frequency(chanbase,modbase+3+8,&op[opbase+3+9]); + } +#endif + } + } + break; + case ARC_FEEDBACK: { + // 0xc0-0xc8 feedback/modulation type (AM/FM) + Bitu base = (idx-ARC_FEEDBACK)&0xff; + if (base<9) { + Bits opbase = second_set?(base+18):base; + Bitu chanbase = base+second_set; + change_feedback(chanbase,&op[opbase]); +#if defined(OPLTYPE_IS_OPL3) + // OPL3 panning + if (!FullPan) + { + op[opbase].left_pan = (float)((val&0x10)>>4); + op[opbase].right_pan = (float)((val&0x20)>>5); + } +#endif + } + } + break; + case ARC_WAVE_SEL: + case ARC_WAVE_SEL+0x10: { + int num = (int)idx&7; + Bitu base = (idx-ARC_WAVE_SEL)&0xff; + if ((num<6) && (base<22)) { +#if defined(OPLTYPE_IS_OPL3) + Bits wselbase = second_set?(base+22):base; // for easier mapping onto wave_sel[] + // change waveform + if (adlibreg[0x105]&1) wave_sel[wselbase] = val&7; // opl3 mode enabled, all waveforms accessible + else wave_sel[wselbase] = val&3; + op_type* op_ptr = &op[regbase2modop[wselbase]+((num<3) ? 0 : 9)]; + change_waveform(wselbase,op_ptr); +#else + if (adlibreg[0x01]&0x20) { + // wave selection enabled, change waveform + wave_sel[base] = val&3; + op_type* op_ptr = &op[regbase2modop[base]+((num<3) ? 0 : 9)]; + change_waveform(base,op_ptr); + } +#endif + } + } + break; + default: + break; + } +} + +static void OPL_INLINE clipit16(float ival, float* outval) { + *outval += ival / 10240.f; +} + + + +// be careful with this +// uses cptr and chanval, outputs into outbufl(/outbufr) +// for opl3 check if opl3-mode is enabled (which uses stereo panning) +#undef CHANVAL_OUT +#if defined(OPLTYPE_IS_OPL3) +#define CHANVAL_OUT \ + if (adlibreg[0x105]&1) { \ + outbufl[i] += chanval*cptr[0].left_pan; \ + outbufr[i] += chanval*cptr[0].right_pan; \ + } else { \ + outbufl[i] += chanval; \ + } +#else +#define CHANVAL_OUT \ + outbufl[i] += chanval; +#endif + +void DBOPL::Update(float* sndptr, int numsamples) { + Bits i, endsamples; + op_type* cptr; + + float outbufl[BLOCKBUF_SIZE]; +#if defined(OPLTYPE_IS_OPL3) + // second output buffer (right channel for opl3 stereo) + float outbufr[BLOCKBUF_SIZE]; +#endif + + // vibrato/tremolo lookup tables (global, to possibly be used by all operators) + Bit32s vib_lut[BLOCKBUF_SIZE]; + Bit32s trem_lut[BLOCKBUF_SIZE]; + + Bits samples_to_process = numsamples; + + for (Bits cursmp=0; cursmpBLOCKBUF_SIZE) endsamples = BLOCKBUF_SIZE; + + memset((void*)&outbufl,0,endsamples*sizeof(Bit32s)); +#if defined(OPLTYPE_IS_OPL3) + // clear second output buffer (opl3 stereo) + if (adlibreg[0x105]&1) memset((void*)&outbufr,0,endsamples*sizeof(Bit32s)); +#endif + + // calculate vibrato/tremolo lookup tables + Bit32s vib_tshift = ((adlibreg[ARC_PERC_MODE]&0x40)==0) ? 1 : 0; // 14cents/7cents switching + for (i=0;i=VIBTAB_SIZE) vibtab_pos-=VIBTAB_SIZE*FIXEDPT_LFO; + vib_lut[i] = vib_table[vibtab_pos/FIXEDPT_LFO]>>vib_tshift; // 14cents (14/100 of a semitone) or 7cents + + // cycle through tremolo table + tremtab_pos += tremtab_add; + if (tremtab_pos/FIXEDPT_LFO>=TREMTAB_SIZE) tremtab_pos-=TREMTAB_SIZE*FIXEDPT_LFO; + if (adlibreg[ARC_PERC_MODE]&0x80) trem_lut[i] = trem_table[tremtab_pos/FIXEDPT_LFO]; + else trem_lut[i] = trem_table[TREMTAB_SIZE+tremtab_pos/FIXEDPT_LFO]; + } + + if (adlibreg[ARC_PERC_MODE]&0x20) { + //BassDrum + cptr = &op[6]; + if (adlibreg[ARC_FEEDBACK+6]&1) { + // additive synthesis + if (cptr[9].op_state != OF_TYPE_OFF) { + if (cptr[9].vibrato) { + vibval1 = vibval_var1; + for (i=0;i=0; cur_ch--) { + // skip drum/percussion operators + if ((adlibreg[ARC_PERC_MODE]&0x20) && (cur_ch >= 6) && (cur_ch < 9)) continue; + + Bitu k = cur_ch; +#if defined(OPLTYPE_IS_OPL3) + if (cur_ch < 9) { + cptr = &op[cur_ch]; + } else { + cptr = &op[cur_ch+9]; // second set is operator18-operator35 + k += (-9+256); // second set uses registers 0x100 onwards + } + // check if this operator is part of a 4-op + if ((adlibreg[0x105]&1) && cptr->is_4op_attached) continue; +#else + cptr = &op[cur_ch]; +#endif + + // check for FM/AM + if (adlibreg[ARC_FEEDBACK+k]&1) { +#if defined(OPLTYPE_IS_OPL3) + if ((adlibreg[0x105]&1) && cptr->is_4op) { + if (adlibreg[ARC_FEEDBACK+k+3]&1) { + // AM-AM-style synthesis (op1[fb] + (op2 * op3) + op4) + if (cptr[0].op_state != OF_TYPE_OFF) { + if (cptr[0].vibrato) { + vibval1 = vibval_var1; + for (i=0;iis_4op) { + if (adlibreg[ARC_FEEDBACK+k+3]&1) { + // FM-AM-style synthesis ((op1[fb] * op2) + (op3 * op4)) + if ((cptr[0].op_state != OF_TYPE_OFF) || (cptr[9].op_state != OF_TYPE_OFF)) { + if ((cptr[0].vibrato) && (cptr[0].op_state != OF_TYPE_OFF)) { + vibval1 = vibval_var1; + for (i=0;istereo) + for (i=0;istereo) + for (i=0;i= 9) + { + c += 9; + } + // This is the MIDI-recommended pan formula. 0 and 1 are + // both hard left so that 64 can be perfectly center. + double level = (pan <= 1) ? 0 : (pan - 1) / 126.0; + op[c].left_pan = (float)cos(HALF_PI * level); + op[c].right_pan = (float)sin(HALF_PI * level); + } +} + +DBOPL::DBOPL(bool fullpan) +{ + FullPan = fullpan; + Reset(); +} + +OPLEmul *DBOPLCreate(bool fullpan) +{ + return new DBOPL(fullpan); +} diff --git a/src/oplsynth/dosbox/opl.h b/src/oplsynth/dosbox/opl.h new file mode 100644 index 000000000..ab42c54ff --- /dev/null +++ b/src/oplsynth/dosbox/opl.h @@ -0,0 +1,231 @@ +/* + * Copyright (C) 2002-2011 The DOSBox Team + * OPL2/OPL3 emulation library + * + * This library is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * This library is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with this library; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + + +/* + * Originally based on ADLIBEMU.C, an AdLib/OPL2 emulation library by Ken Silverman + * Copyright (C) 1998-2001 Ken Silverman + * Ken Silverman's official web site: "http://www.advsys.net/ken" + */ + + +#define fltype double + +/* + define Bits, Bitu, Bit32s, Bit32u, Bit16s, Bit16u, Bit8s, Bit8u here +*/ +/* +#include +typedef uintptr_t Bitu; +typedef intptr_t Bits; +typedef uint32_t Bit32u; +typedef int32_t Bit32s; +typedef uint16_t Bit16u; +typedef int16_t Bit16s; +typedef uint8_t Bit8u; +typedef int8_t Bit8s; +*/ + + +/* + define attribution that inlines/forces inlining of a function (optional) +*/ +#define OPL_INLINE inline + + +#undef NUM_CHANNELS +#if defined(OPLTYPE_IS_OPL3) +#define NUM_CHANNELS 18 +#else +#define NUM_CHANNELS 9 +#endif + +#define MAXOPERATORS (NUM_CHANNELS*2) + + +#define FL05 ((fltype)0.5) +#define FL2 ((fltype)2.0) +#define PI ((fltype)3.1415926535897932384626433832795) + + +#define FIXEDPT 0x10000 // fixed-point calculations using 16+16 +#define FIXEDPT_LFO 0x1000000 // fixed-point calculations using 8+24 + +#define WAVEPREC 1024 // waveform precision (10 bits) + +#define INTFREQU ((fltype)(14318180.0 / 288.0)) // clocking of the chip + + +#define OF_TYPE_ATT 0 +#define OF_TYPE_DEC 1 +#define OF_TYPE_REL 2 +#define OF_TYPE_SUS 3 +#define OF_TYPE_SUS_NOKEEP 4 +#define OF_TYPE_OFF 5 + +#define ARC_CONTROL 0x00 +#define ARC_TVS_KSR_MUL 0x20 +#define ARC_KSL_OUTLEV 0x40 +#define ARC_ATTR_DECR 0x60 +#define ARC_SUSL_RELR 0x80 +#define ARC_FREQ_NUM 0xa0 +#define ARC_KON_BNUM 0xb0 +#define ARC_PERC_MODE 0xbd +#define ARC_FEEDBACK 0xc0 +#define ARC_WAVE_SEL 0xe0 + +#define ARC_SECONDSET 0x100 // second operator set for OPL3 + + +#define OP_ACT_OFF 0x00 +#define OP_ACT_NORMAL 0x01 // regular channel activated (bitmasked) +#define OP_ACT_PERC 0x02 // percussion channel activated (bitmasked) + +#define BLOCKBUF_SIZE 512 + + +// vibrato constants +#define VIBTAB_SIZE 8 +#define VIBFAC 70/50000 // no braces, integer mul/div + +// tremolo constants and table +#define TREMTAB_SIZE 53 +#define TREM_FREQ ((fltype)(3.7)) // tremolo at 3.7hz + + +/* operator struct definition + For OPL2 all 9 channels consist of two operators each, carrier and modulator. + Channel x has operators x as modulator and operators (9+x) as carrier. + For OPL3 all 18 channels consist either of two operators (2op mode) or four + operators (4op mode) which is determined through register4 of the second + adlib register set. + Only the channels 0,1,2 (first set) and 9,10,11 (second set) can act as + 4op channels. The two additional operators for a channel y come from the + 2op channel y+3 so the operatorss y, (9+y), y+3, (9+y)+3 make up a 4op + channel. +*/ +typedef struct operator_struct { + Bit32s cval, lastcval; // current output/last output (used for feedback) + Bit32u tcount, wfpos, tinc; // time (position in waveform) and time increment + fltype amp, step_amp; // and amplification (envelope) + fltype vol; // volume + fltype sustain_level; // sustain level + Bit32s mfbi; // feedback amount + fltype a0, a1, a2, a3; // attack rate function coefficients + fltype decaymul, releasemul; // decay/release rate functions + Bit32u op_state; // current state of operator (attack/decay/sustain/release/off) + Bit32u toff; + Bit32s freq_high; // highest three bits of the frequency, used for vibrato calculations + Bit16s* cur_wform; // start of selected waveform + Bit32u cur_wmask; // mask for selected waveform + Bit32u act_state; // activity state (regular, percussion) + bool sus_keep; // keep sustain level when decay finished + bool vibrato,tremolo; // vibrato/tremolo enable bits + + // variables used to provide non-continuous envelopes + Bit32u generator_pos; // for non-standard sample rates we need to determine how many samples have passed + Bits cur_env_step; // current (standardized) sample position + Bits env_step_a,env_step_d,env_step_r; // number of std samples of one step (for attack/decay/release mode) + Bit8u step_skip_pos_a; // position of 8-cyclic step skipping (always 2^x to check against mask) + Bits env_step_skip_a; // bitmask that determines if a step is skipped (respective bit is zero then) + +#if defined(OPLTYPE_IS_OPL3) + bool is_4op,is_4op_attached; // base of a 4op channel/part of a 4op channel + float left_pan,right_pan; // opl3 stereo panning amount +#endif +} op_type; + +// per-chip variables +class DBOPL : public OPLEmul +{ +private: + Bitu chip_num; + op_type op[MAXOPERATORS]; + + Bits int_samplerate; + + Bit8u status; + Bit32u opl_index; +#if defined(OPLTYPE_IS_OPL3) + Bit8u adlibreg[512]; // adlib register set (including second set) + Bit8u wave_sel[44]; // waveform selection +#else + Bit8u adlibreg[256]; // adlib register set + Bit8u wave_sel[22]; // waveform selection +#endif + + fltype recipsamp; // inverse of sampling rate + + // vibrato/tremolo tables + Bit32s vib_table[VIBTAB_SIZE]; + Bit32s trem_table[TREMTAB_SIZE*2]; + + Bit32s vibval_const[BLOCKBUF_SIZE]; + Bit32s tremval_const[BLOCKBUF_SIZE]; + + // vibrato value tables (used per-operator) + Bit32s vibval_var1[BLOCKBUF_SIZE]; + Bit32s vibval_var2[BLOCKBUF_SIZE]; + + // vibrato/trmolo value table pointers + Bit32s *vibval1, *vibval2, *vibval3, *vibval4; + Bit32s *tremval1, *tremval2, *tremval3, *tremval4; + + // calculated frequency multiplication values (depend on sampling rate) + fltype frqmul[16]; + + + // vibrato/tremolo increment/counter + Bit32u vibtab_pos; + Bit32u vibtab_add; + Bit32u tremtab_pos; + Bit32u tremtab_add; + + // Enable full MIDI panning; disable OPL3 panning + bool FullPan; + + + // enable an operator + void enable_operator(Bitu regbase, op_type* op_pt, Bit32u act_type); + + void disable_operator(op_type* op_pt, Bit32u act_type); + + // functions to change parameters of an operator + void change_frequency(Bitu chanbase, Bitu regbase, op_type* op_pt); + + void change_attackrate(Bitu regbase, op_type* op_pt); + void change_decayrate(Bitu regbase, op_type* op_pt); + void change_releaserate(Bitu regbase, op_type* op_pt); + void change_sustainlevel(Bitu regbase, op_type* op_pt); + void change_waveform(Bitu regbase, op_type* op_pt); + void change_keepsustain(Bitu regbase, op_type* op_pt); + void change_vibrato(Bitu regbase, op_type* op_pt); + void change_feedback(Bitu chanbase, op_type* op_pt); + + // general functions +public: + void Reset(); + void Update(float* sndptr, int numsamples); + void WriteReg(int idx, int val); + void SetPanning(int c, int pan); + + DBOPL(bool stereo); +}; + +static Bit32u generator_add; // should be a chip parameter