Merge remote-tracking branch 'zdoom/master' into qzdoom

# Conflicts:
#	src/r_plane.cpp
#	src/r_segs.cpp
This commit is contained in:
Magnus Norddahl 2016-12-10 00:08:56 +01:00
commit 012565228d
10 changed files with 1197 additions and 783 deletions

View file

@ -828,6 +828,7 @@ set( FASTMATH_PCH_SOURCES
r_segs.cpp r_segs.cpp
r_sky.cpp r_sky.cpp
r_things.cpp r_things.cpp
r_walldraw.cpp
s_advsound.cpp s_advsound.cpp
s_environment.cpp s_environment.cpp
s_playlist.cpp s_playlist.cpp

View file

@ -1524,7 +1524,7 @@ DEFINE_ACTION_FUNCTION(AActor, A_CustomMissile)
Pitch += missile->Vel.Pitch(); Pitch += missile->Vel.Pitch();
} }
missilespeed = fabs(Pitch.Cos() * missile->Speed); missilespeed = fabs(Pitch.Cos() * missile->Speed);
missile->Vel.Z = Pitch.Sin() * missile->Speed; missile->Vel.Z = -Pitch.Sin() * missile->Speed;
} }
else else
{ {

View file

@ -639,12 +639,12 @@ void R_AddLine (seg_t *line)
if (rw_frontcz1 > rw_backcz1 || rw_frontcz2 > rw_backcz2) if (rw_frontcz1 > rw_backcz1 || rw_frontcz2 > rw_backcz2)
{ {
rw_havehigh = true; rw_havehigh = true;
WallMost (wallupper, backsector->ceilingplane, &WallC); R_CreateWallSegmentYSloped (wallupper, backsector->ceilingplane, &WallC);
} }
if (rw_frontfz1 < rw_backfz1 || rw_frontfz2 < rw_backfz2) if (rw_frontfz1 < rw_backfz1 || rw_frontfz2 < rw_backfz2)
{ {
rw_havelow = true; rw_havelow = true;
WallMost (walllower, backsector->floorplane, &WallC); R_CreateWallSegmentYSloped (walllower, backsector->floorplane, &WallC);
} }
// Portal // Portal
@ -745,8 +745,8 @@ void R_AddLine (seg_t *line)
} }
else else
{ {
rw_ceilstat = WallMost (walltop, frontsector->ceilingplane, &WallC); rw_ceilstat = R_CreateWallSegmentYSloped (walltop, frontsector->ceilingplane, &WallC);
rw_floorstat = WallMost (wallbottom, frontsector->floorplane, &WallC); rw_floorstat = R_CreateWallSegmentYSloped (wallbottom, frontsector->floorplane, &WallC);
// [RH] treat off-screen walls as solid // [RH] treat off-screen walls as solid
#if 0 // Maybe later... #if 0 // Maybe later...

View file

@ -133,10 +133,7 @@ namespace swrenderer
bool R_GetTransMaskDrawers(fixed_t(**tmvline1)(), void(**tmvline4)()); bool R_GetTransMaskDrawers(fixed_t(**tmvline1)(), void(**tmvline4)());
const uint8_t *R_GetColumn(FTexture *tex, int col); const uint8_t *R_GetColumn(FTexture *tex, int col);
void wallscan(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const uint8_t *(*getcol)(FTexture *tex, int col) = R_GetColumn);
void maskwallscan(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const uint8_t *(*getcol)(FTexture *tex, int col) = R_GetColumn);
void transmaskwallscan(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const uint8_t *(*getcol)(FTexture *tex, int col) = R_GetColumn);
void rt_initcols(uint8_t *buffer = nullptr); void rt_initcols(uint8_t *buffer = nullptr);
void rt_span_coverage(int x, int start, int stop); void rt_span_coverage(int x, int start, int stop);
void rt_draw4cols(int sx); void rt_draw4cols(int sx);

View file

@ -1081,8 +1081,8 @@ CCMD (clearwallcycles)
bestwallcycles = HUGE_VAL; bestwallcycles = HUGE_VAL;
} }
#if 1 #if 0
// To use these, also uncomment the clock/unclock in wallscan // The replacement code for Build's wallscan doesn't have any timing calls so this does not work anymore.
static double bestscancycles = HUGE_VAL; static double bestscancycles = HUGE_VAL;
ADD_STAT (scancycles) ADD_STAT (scancycles)

View file

@ -152,6 +152,7 @@ static double xstepscale, ystepscale;
static double basexfrac, baseyfrac; static double basexfrac, baseyfrac;
void R_DrawSinglePlane (visplane_t *, fixed_t alpha, bool additive, bool masked); void R_DrawSinglePlane (visplane_t *, fixed_t alpha, bool additive, bool masked);
void R_DrawSkySegment(visplane_t *vis, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const uint8_t *(*getcol)(FTexture *tex, int col));
//========================================================================== //==========================================================================
// //
@ -635,7 +636,7 @@ extern FTexture *rw_pic;
// Allow for layer skies up to 512 pixels tall. This is overkill, // Allow for layer skies up to 512 pixels tall. This is overkill,
// since the most anyone can ever see of the sky is 500 pixels. // since the most anyone can ever see of the sky is 500 pixels.
// We need 4 skybufs because wallscan can draw up to 4 columns at a time. // We need 4 skybufs because R_DrawSkySegment can draw up to 4 columns at a time.
// Need two versions - one for true color and one for palette // Need two versions - one for true color and one for palette
#define MAXSKYBUF 3072 #define MAXSKYBUF 3072
static BYTE skybuf[4][512]; static BYTE skybuf[4][512];
@ -997,7 +998,7 @@ static void R_DrawSky (visplane_t *pl)
lastskycol[x] = 0xffffffff; lastskycol[x] = 0xffffffff;
lastskycol_bgra[x] = 0xffffffff; lastskycol_bgra[x] = 0xffffffff;
} }
wallscan (pl->left, pl->right, (short *)pl->top, (short *)pl->bottom, swall, lwall, R_DrawSkySegment (pl, (short *)pl->top, (short *)pl->bottom, swall, lwall,
frontyScale, backskytex == NULL ? R_GetOneSkyColumn : R_GetTwoSkyColumns); frontyScale, backskytex == NULL ? R_GetOneSkyColumn : R_GetTwoSkyColumns);
} }
else else
@ -1035,7 +1036,7 @@ static void R_DrawSkyStriped (visplane_t *pl)
lastskycol[x] = 0xffffffff; lastskycol[x] = 0xffffffff;
lastskycol_bgra[x] = 0xffffffff; lastskycol_bgra[x] = 0xffffffff;
} }
wallscan (pl->left, pl->right, top, bot, swall, lwall, rw_pic->Scale.Y, R_DrawSkySegment (pl, top, bot, swall, lwall, rw_pic->Scale.Y,
backskytex == NULL ? R_GetOneSkyColumn : R_GetTwoSkyColumns); backskytex == NULL ? R_GetOneSkyColumn : R_GetTwoSkyColumns);
yl = yh; yl = yh;
yh += drawheight; yh += drawheight;

View file

@ -50,7 +50,7 @@
#define WALLYREPEAT 8 #define WALLYREPEAT 8
CVAR(Bool, r_np2, true, 0)
CVAR(Bool, r_fogboundary, true, 0) CVAR(Bool, r_fogboundary, true, 0)
CVAR(Bool, r_drawmirrors, true, 0) CVAR(Bool, r_drawmirrors, true, 0)
EXTERN_CVAR(Bool, r_fullbrightignoresectorcolor); EXTERN_CVAR(Bool, r_fullbrightignoresectorcolor);
@ -60,6 +60,9 @@ namespace swrenderer
{ {
using namespace drawerargs; using namespace drawerargs;
void R_DrawWallSegment(FTexture *rw_pic, int x1, int x2, short *walltop, short *wallbottom, float *swall, fixed_t *lwall, double yscale, double top, double bottom, bool mask);
void R_DrawDrawSeg(drawseg_t *ds, int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat);
#define HEIGHTBITS 12 #define HEIGHTBITS 12
#define HEIGHTSHIFT (FRACBITS-HEIGHTBITS) #define HEIGHTSHIFT (FRACBITS-HEIGHTBITS)
@ -135,9 +138,6 @@ static fixed_t *maskedtexturecol;
static void R_RenderDecal (side_t *wall, DBaseDecal *first, drawseg_t *clipper, int pass); static void R_RenderDecal (side_t *wall, DBaseDecal *first, drawseg_t *clipper, int pass);
static void WallSpriteColumn (void (*drawfunc)(const BYTE *column, const FTexture::Span *spans)); static void WallSpriteColumn (void (*drawfunc)(const BYTE *column, const FTexture::Span *spans));
void wallscan_np2(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, double top, double bot, bool mask);
static void wallscan_np2_ds(drawseg_t *ds, int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat);
static void call_wallscan(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, bool mask);
inline bool IsFogBoundary (sector_t *front, sector_t *back) inline bool IsFogBoundary (sector_t *front, sector_t *back)
{ {
@ -186,13 +186,13 @@ void ClipMidtex(int x1, int x2)
{ {
short most[MAXWIDTH]; short most[MAXWIDTH];
WallMost(most, curline->frontsector->ceilingplane, &WallC); R_CreateWallSegmentYSloped(most, curline->frontsector->ceilingplane, &WallC);
for (int i = x1; i < x2; ++i) for (int i = x1; i < x2; ++i)
{ {
if (wallupper[i] < most[i]) if (wallupper[i] < most[i])
wallupper[i] = most[i]; wallupper[i] = most[i];
} }
WallMost(most, curline->frontsector->floorplane, &WallC); R_CreateWallSegmentYSloped(most, curline->frontsector->floorplane, &WallC);
for (int i = x1; i < x2; ++i) for (int i = x1; i < x2; ++i)
{ {
if (walllower[i] > most[i]) if (walllower[i] > most[i])
@ -374,19 +374,19 @@ void R_RenderMaskedSegRange (drawseg_t *ds, int x1, int x2)
if (fake3D & FAKE3D_CLIPTOP) if (fake3D & FAKE3D_CLIPTOP)
{ {
OWallMost(wallupper, textop < sclipTop - ViewPos.Z ? textop : sclipTop - ViewPos.Z, &WallC); R_CreateWallSegmentY(wallupper, textop < sclipTop - ViewPos.Z ? textop : sclipTop - ViewPos.Z, &WallC);
} }
else else
{ {
OWallMost(wallupper, textop, &WallC); R_CreateWallSegmentY(wallupper, textop, &WallC);
} }
if (fake3D & FAKE3D_CLIPBOTTOM) if (fake3D & FAKE3D_CLIPBOTTOM)
{ {
OWallMost(walllower, textop - texheight > sclipBottom - ViewPos.Z ? textop - texheight : sclipBottom - ViewPos.Z, &WallC); R_CreateWallSegmentY(walllower, textop - texheight > sclipBottom - ViewPos.Z ? textop - texheight : sclipBottom - ViewPos.Z, &WallC);
} }
else else
{ {
OWallMost(walllower, textop - texheight, &WallC); R_CreateWallSegmentY(walllower, textop - texheight, &WallC);
} }
for (i = x1; i < x2; i++) for (i = x1; i < x2; i++)
@ -489,7 +489,7 @@ void R_RenderMaskedSegRange (drawseg_t *ds, int x1, int x2)
if (fake3D & FAKE3D_CLIPTOP) if (fake3D & FAKE3D_CLIPTOP)
{ {
OWallMost(wallupper, sclipTop - ViewPos.Z, &WallC); R_CreateWallSegmentY(wallupper, sclipTop - ViewPos.Z, &WallC);
for (i = x1; i < x2; i++) for (i = x1; i < x2; i++)
{ {
if (wallupper[i] < mceilingclip[i]) if (wallupper[i] < mceilingclip[i])
@ -499,7 +499,7 @@ void R_RenderMaskedSegRange (drawseg_t *ds, int x1, int x2)
} }
if (fake3D & FAKE3D_CLIPBOTTOM) if (fake3D & FAKE3D_CLIPBOTTOM)
{ {
OWallMost(walllower, sclipBottom - ViewPos.Z, &WallC); R_CreateWallSegmentY(walllower, sclipBottom - ViewPos.Z, &WallC);
for (i = x1; i < x2; i++) for (i = x1; i < x2; i++)
{ {
if (walllower[i] > mfloorclip[i]) if (walllower[i] > mfloorclip[i])
@ -510,7 +510,7 @@ void R_RenderMaskedSegRange (drawseg_t *ds, int x1, int x2)
rw_offset = 0; rw_offset = 0;
rw_pic = tex; rw_pic = tex;
wallscan_np2_ds(ds, x1, x2, mceilingclip, mfloorclip, MaskedSWall, maskedtexturecol, ds->yscale); R_DrawDrawSeg(ds, x1, x2, mceilingclip, mfloorclip, MaskedSWall, maskedtexturecol, ds->yscale);
} }
clearfog: clearfog:
@ -623,8 +623,8 @@ void R_RenderFakeWall(drawseg_t *ds, int x1, int x2, F3DFloor *rover)
WallC.tright.Y = ds->cy + ds->cdy; WallC.tright.Y = ds->cy + ds->cdy;
WallT = ds->tmapvals; WallT = ds->tmapvals;
OWallMost(wallupper, sclipTop - ViewPos.Z, &WallC); R_CreateWallSegmentY(wallupper, sclipTop - ViewPos.Z, &WallC);
OWallMost(walllower, sclipBottom - ViewPos.Z, &WallC); R_CreateWallSegmentY(walllower, sclipBottom - ViewPos.Z, &WallC);
for (i = x1; i < x2; i++) for (i = x1; i < x2; i++)
{ {
@ -638,7 +638,7 @@ void R_RenderFakeWall(drawseg_t *ds, int x1, int x2, F3DFloor *rover)
} }
PrepLWall (lwall, curline->sidedef->TexelLength*xscale, ds->sx1, ds->sx2); PrepLWall (lwall, curline->sidedef->TexelLength*xscale, ds->sx1, ds->sx2);
wallscan_np2_ds(ds, x1, x2, wallupper, walllower, MaskedSWall, lwall, yscale); R_DrawDrawSeg(ds, x1, x2, wallupper, walllower, MaskedSWall, lwall, yscale);
R_FinishSetPatchStyle(); R_FinishSetPatchStyle();
} }
@ -1044,719 +1044,12 @@ void R_RenderFakeWallRange (drawseg_t *ds, int x1, int x2)
return; return;
} }
struct WallscanSampler
{
WallscanSampler() { }
WallscanSampler(int y1, float swal, double yrepeat, fixed_t xoffset, double xmagnitude, FTexture *texture, const BYTE*(*getcol)(FTexture *texture, int x));
uint32_t uv_pos;
uint32_t uv_step;
uint32_t uv_max;
const BYTE *source;
const BYTE *source2;
uint32_t texturefracx;
uint32_t height;
};
WallscanSampler::WallscanSampler(int y1, float swal, double yrepeat, fixed_t xoffset, double xmagnitude, FTexture *texture, const BYTE*(*getcol)(FTexture *texture, int x))
{
xoffset += FLOAT2FIXED(xmagnitude * 0.5);
if (!r_swtruecolor)
{
height = texture->GetHeight();
int uv_fracbits = 32 - texture->HeightBits;
if (uv_fracbits != 32)
{
uv_max = height << uv_fracbits;
// Find start uv in [0-base_height[ range.
// Not using xs_ToFixed because it rounds the result and we need something that always rounds down to stay within the range.
double uv_stepd = swal * yrepeat;
double v = (dc_texturemid + uv_stepd * (y1 - CenterY + 0.5)) / height;
v = v - floor(v);
v *= height;
v *= (1 << uv_fracbits);
uv_pos = (uint32_t)v;
uv_step = xs_ToFixed(uv_fracbits, uv_stepd);
if (uv_step == 0) // To prevent divide by zero elsewhere
uv_step = 1;
}
else
{ // Hack for one pixel tall textures
uv_pos = 0;
uv_step = 0;
uv_max = 1;
}
source = getcol(texture, xoffset >> FRACBITS);
source2 = nullptr;
texturefracx = 0;
}
else
{
// Normalize to 0-1 range:
double uv_stepd = swal * yrepeat;
double v = (dc_texturemid + uv_stepd * (y1 - CenterY + 0.5)) / texture->GetHeight();
v = v - floor(v);
double v_step = uv_stepd / texture->GetHeight();
if (isnan(v) || isnan(v_step)) // this should never happen, but it apparently does..
{
uv_stepd = 0.0;
v = 0.0;
v_step = 0.0;
}
// Convert to uint32:
uv_pos = (uint32_t)(v * 0x100000000LL);
uv_step = (uint32_t)(v_step * 0x100000000LL);
uv_max = 0;
// Texture mipmap and filter selection:
if (getcol != R_GetColumn)
{
source = getcol(texture, xoffset >> FRACBITS);
source2 = nullptr;
height = texture->GetHeight();
texturefracx = 0;
}
else
{
double ymagnitude = fabs(uv_stepd);
double magnitude = MAX(ymagnitude, xmagnitude);
double min_lod = -1000.0;
double lod = MAX(log2(magnitude) + r_lod_bias, min_lod);
bool magnifying = lod < 0.0f;
int mipmap_offset = 0;
int mip_width = texture->GetWidth();
int mip_height = texture->GetHeight();
if (r_mipmap && texture->Mipmapped() && mip_width > 1 && mip_height > 1)
{
uint32_t xpos = (uint32_t)((((uint64_t)xoffset) << FRACBITS) / mip_width);
int level = (int)lod;
while (level > 0 && mip_width > 1 && mip_height > 1)
{
mipmap_offset += mip_width * mip_height;
level--;
mip_width = MAX(mip_width >> 1, 1);
mip_height = MAX(mip_height >> 1, 1);
}
xoffset = (xpos >> FRACBITS) * mip_width;
}
const uint32_t *pixels = texture->GetPixelsBgra() + mipmap_offset;
bool filter_nearest = (magnifying && !r_magfilter) || (!magnifying && !r_minfilter);
if (filter_nearest)
{
int tx = (xoffset >> FRACBITS) % mip_width;
if (tx < 0)
tx += mip_width;
source = (BYTE*)(pixels + tx * mip_height);
source2 = nullptr;
height = mip_height;
texturefracx = 0;
}
else
{
xoffset -= FRACUNIT / 2;
int tx0 = (xoffset >> FRACBITS) % mip_width;
if (tx0 < 0)
tx0 += mip_width;
int tx1 = (tx0 + 1) % mip_width;
source = (BYTE*)(pixels + tx0 * mip_height);
source2 = (BYTE*)(pixels + tx1 * mip_height);
height = mip_height;
texturefracx = (xoffset >> (FRACBITS - 4)) & 15;
}
}
}
}
// Draw a column with support for non-power-of-two ranges
void wallscan_drawcol1(int x, int y1, int y2, WallscanSampler &sampler, DWORD(*draw1column)())
{
if (r_swtruecolor)
{
int count = y2 - y1;
dc_source = sampler.source;
dc_source2 = sampler.source2;
dc_texturefracx = sampler.texturefracx;
dc_dest = (ylookup[y1] + x) * 4 + dc_destorg;
dc_count = count;
dc_iscale = sampler.uv_step;
dc_texturefrac = sampler.uv_pos;
dc_textureheight = sampler.height;
draw1column();
uint64_t step64 = sampler.uv_step;
uint64_t pos64 = sampler.uv_pos;
sampler.uv_pos = (uint32_t)(pos64 + step64 * count);
}
else
{
if (sampler.uv_max == 0 || sampler.uv_step == 0) // power of two
{
int count = y2 - y1;
dc_source = sampler.source;
dc_source2 = sampler.source2;
dc_texturefracx = sampler.texturefracx;
dc_dest = (ylookup[y1] + x) + dc_destorg;
dc_count = count;
dc_iscale = sampler.uv_step;
dc_texturefrac = sampler.uv_pos;
draw1column();
uint64_t step64 = sampler.uv_step;
uint64_t pos64 = sampler.uv_pos;
sampler.uv_pos = (uint32_t)(pos64 + step64 * count);
}
else
{
uint32_t uv_pos = sampler.uv_pos;
uint32_t left = y2 - y1;
while (left > 0)
{
uint32_t available = sampler.uv_max - uv_pos;
uint32_t next_uv_wrap = available / sampler.uv_step;
if (available % sampler.uv_step != 0)
next_uv_wrap++;
uint32_t count = MIN(left, next_uv_wrap);
dc_source = sampler.source;
dc_source2 = sampler.source2;
dc_texturefracx = sampler.texturefracx;
dc_dest = (ylookup[y1] + x) + dc_destorg;
dc_count = count;
dc_iscale = sampler.uv_step;
dc_texturefrac = uv_pos;
draw1column();
left -= count;
uv_pos += sampler.uv_step * count;
if (uv_pos >= sampler.uv_max)
uv_pos -= sampler.uv_max;
}
sampler.uv_pos = uv_pos;
}
}
}
// Draw four columns with support for non-power-of-two ranges
void wallscan_drawcol4(int x, int y1, int y2, WallscanSampler *sampler, void(*draw4columns)())
{
if (r_swtruecolor)
{
int count = y2 - y1;
for (int i = 0; i < 4; i++)
{
bufplce[i] = sampler[i].source;
bufplce2[i] = sampler[i].source2;
buftexturefracx[i] = sampler[i].texturefracx;
bufheight[i] = sampler[i].height;
vplce[i] = sampler[i].uv_pos;
vince[i] = sampler[i].uv_step;
uint64_t step64 = sampler[i].uv_step;
uint64_t pos64 = sampler[i].uv_pos;
sampler[i].uv_pos = (uint32_t)(pos64 + step64 * count);
}
dc_dest = (ylookup[y1] + x) * 4 + dc_destorg;
dc_count = count;
draw4columns();
}
else
{
if (sampler[0].uv_max == 0 || sampler[0].uv_step == 0) // power of two, no wrap handling needed
{
int count = y2 - y1;
for (int i = 0; i < 4; i++)
{
bufplce[i] = sampler[i].source;
bufplce2[i] = sampler[i].source2;
buftexturefracx[i] = sampler[i].texturefracx;
vplce[i] = sampler[i].uv_pos;
vince[i] = sampler[i].uv_step;
uint64_t step64 = sampler[i].uv_step;
uint64_t pos64 = sampler[i].uv_pos;
sampler[i].uv_pos = (uint32_t)(pos64 + step64 * count);
}
dc_dest = (ylookup[y1] + x) + dc_destorg;
dc_count = count;
draw4columns();
}
else
{
dc_dest = (ylookup[y1] + x) + dc_destorg;
for (int i = 0; i < 4; i++)
{
bufplce[i] = sampler[i].source;
bufplce2[i] = sampler[i].source2;
buftexturefracx[i] = sampler[i].texturefracx;
}
uint32_t left = y2 - y1;
while (left > 0)
{
// Find which column wraps first
uint32_t count = left;
for (int i = 0; i < 4; i++)
{
uint32_t available = sampler[i].uv_max - sampler[i].uv_pos;
uint32_t next_uv_wrap = available / sampler[i].uv_step;
if (available % sampler[i].uv_step != 0)
next_uv_wrap++;
count = MIN(next_uv_wrap, count);
}
// Draw until that column wraps
for (int i = 0; i < 4; i++)
{
vplce[i] = sampler[i].uv_pos;
vince[i] = sampler[i].uv_step;
}
dc_count = count;
draw4columns();
// Wrap the uv position
for (int i = 0; i < 4; i++)
{
sampler[i].uv_pos += sampler[i].uv_step * count;
if (sampler[i].uv_pos >= sampler[i].uv_max)
sampler[i].uv_pos -= sampler[i].uv_max;
}
left -= count;
}
}
}
}
typedef DWORD(*Draw1ColumnFuncPtr)();
typedef void(*Draw4ColumnsFuncPtr)();
void wallscan_any(
int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat,
const BYTE *(*getcol)(FTexture *tex, int x),
void(setupwallscan(int bits, Draw1ColumnFuncPtr &draw1, Draw4ColumnsFuncPtr &draw2)))
{
if (rw_pic->UseType == FTexture::TEX_Null)
return;
fixed_t xoffset = rw_offset;
rw_pic->GetHeight(); // To ensure that rw_pic->HeightBits has been set
int fracbits = 32 - rw_pic->HeightBits;
if (fracbits == 32)
{ // Hack for one pixel tall textures
fracbits = 0;
yrepeat = 0;
dc_texturemid = 0;
}
DWORD(*draw1column)();
void(*draw4columns)();
setupwallscan(r_swtruecolor ? FRACBITS : fracbits, draw1column, draw4columns);
bool fixed = (fixedcolormap != NULL || fixedlightlev >= 0);
if (fixed)
{
palookupoffse[0] = dc_colormap;
palookupoffse[1] = dc_colormap;
palookupoffse[2] = dc_colormap;
palookupoffse[3] = dc_colormap;
palookuplight[0] = 0;
palookuplight[1] = 0;
palookuplight[2] = 0;
palookuplight[3] = 0;
}
if (fixedcolormap)
R_SetColorMapLight(fixedcolormap, 0, 0);
else
R_SetColorMapLight(basecolormap, 0, 0);
float light = rw_light;
// Calculate where 4 column alignment begins and ends:
int aligned_x1 = clamp((x1 + 3) / 4 * 4, x1, x2);
int aligned_x2 = clamp(x2 / 4 * 4, x1, x2);
double xmagnitude = 1.0;
// First unaligned columns:
for (int x = x1; x < aligned_x1; x++, light += rw_lightstep)
{
int y1 = uwal[x];
int y2 = dwal[x];
if (y2 <= y1)
continue;
if (!fixed)
R_SetColorMapLight(basecolormap, light, wallshade);
if (x + 1 < x2) xmagnitude = fabs(FIXED2DBL(lwal[x + 1]) - FIXED2DBL(lwal[x]));
WallscanSampler sampler(y1, swal[x], yrepeat, lwal[x] + xoffset, xmagnitude, rw_pic, getcol);
wallscan_drawcol1(x, y1, y2, sampler, draw1column);
}
// The aligned columns
for (int x = aligned_x1; x < aligned_x2; x += 4)
{
// Find y1, y2, light and uv values for four columns:
int y1[4] = { uwal[x], uwal[x + 1], uwal[x + 2], uwal[x + 3] };
int y2[4] = { dwal[x], dwal[x + 1], dwal[x + 2], dwal[x + 3] };
float lights[4];
for (int i = 0; i < 4; i++)
{
lights[i] = light;
light += rw_lightstep;
}
WallscanSampler sampler[4];
for (int i = 0; i < 4; i++)
{
if (x + i + 1 < x2) xmagnitude = fabs(FIXED2DBL(lwal[x + i + 1]) - FIXED2DBL(lwal[x + i]));
sampler[i] = WallscanSampler(y1[i], swal[x + i], yrepeat, lwal[x + i] + xoffset, xmagnitude, rw_pic, getcol);
}
// Figure out where we vertically can start and stop drawing 4 columns in one go
int middle_y1 = y1[0];
int middle_y2 = y2[0];
for (int i = 1; i < 4; i++)
{
middle_y1 = MAX(y1[i], middle_y1);
middle_y2 = MIN(y2[i], middle_y2);
}
// If we got an empty column in our set we cannot draw 4 columns in one go:
bool empty_column_in_set = false;
int bilinear_count = 0;
for (int i = 0; i < 4; i++)
{
if (y2[i] <= y1[i])
empty_column_in_set = true;
if (sampler[i].source2)
bilinear_count++;
}
if (empty_column_in_set || middle_y2 <= middle_y1 || (bilinear_count > 0 && bilinear_count < 4))
{
for (int i = 0; i < 4; i++)
{
if (y2[i] <= y1[i])
continue;
if (!fixed)
R_SetColorMapLight(basecolormap, lights[i], wallshade);
wallscan_drawcol1(x + i, y1[i], y2[i], sampler[i], draw1column);
}
continue;
}
// Draw the first rows where not all 4 columns are active
for (int i = 0; i < 4; i++)
{
if (!fixed)
R_SetColorMapLight(basecolormap, lights[i], wallshade);
if (y1[i] < middle_y1)
wallscan_drawcol1(x + i, y1[i], middle_y1, sampler[i], draw1column);
}
// Draw the area where all 4 columns are active
if (!fixed)
{
for (int i = 0; i < 4; i++)
{
if (r_swtruecolor)
{
palookupoffse[i] = basecolormap->Maps;
palookuplight[i] = LIGHTSCALE(lights[i], wallshade);
}
else
{
palookupoffse[i] = basecolormap->Maps + (GETPALOOKUP(lights[i], wallshade) << COLORMAPSHIFT);
palookuplight[i] = 0;
}
}
}
wallscan_drawcol4(x, middle_y1, middle_y2, sampler, draw4columns);
// Draw the last rows where not all 4 columns are active
for (int i = 0; i < 4; i++)
{
if (!fixed)
R_SetColorMapLight(basecolormap, lights[i], wallshade);
if (middle_y2 < y2[i])
wallscan_drawcol1(x + i, middle_y2, y2[i], sampler[i], draw1column);
}
}
// The last unaligned columns:
for (int x = aligned_x2; x < x2; x++, light += rw_lightstep)
{
int y1 = uwal[x];
int y2 = dwal[x];
if (y2 <= y1)
continue;
if (!fixed)
R_SetColorMapLight(basecolormap, light, wallshade);
if (x + 1 < x2) xmagnitude = fabs(FIXED2DBL(lwal[x + 1]) - FIXED2DBL(lwal[x]));
WallscanSampler sampler(y1, swal[x], yrepeat, lwal[x] + xoffset, xmagnitude, rw_pic, getcol);
wallscan_drawcol1(x, y1, y2, sampler, draw1column);
}
NetUpdate ();
}
void wallscan(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const BYTE *(*getcol)(FTexture *tex, int x))
{
wallscan_any(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol, [](int bits, Draw1ColumnFuncPtr &line1, Draw4ColumnsFuncPtr &line4)
{
setupvline(bits);
line1 = dovline1;
line4 = dovline4;
});
}
void maskwallscan(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const BYTE *(*getcol)(FTexture *tex, int x))
{
if (!rw_pic->bMasked) // Textures that aren't masked can use the faster wallscan.
{
wallscan(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol);
}
else
{
wallscan_any(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol, [](int bits, Draw1ColumnFuncPtr &line1, Draw4ColumnsFuncPtr &line4)
{
setupmvline(bits);
line1 = domvline1;
line4 = domvline4;
});
}
}
void transmaskwallscan(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, const BYTE *(*getcol)(FTexture *tex, int x))
{
static fixed_t(*tmvline1)();
static void(*tmvline4)();
if (!R_GetTransMaskDrawers(&tmvline1, &tmvline4))
{
// The current translucency is unsupported, so draw with regular maskwallscan instead.
maskwallscan(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol);
}
else
{
wallscan_any(x1, x2, uwal, dwal, swal, lwal, yrepeat, getcol, [](int bits, Draw1ColumnFuncPtr &line1, Draw4ColumnsFuncPtr &line4)
{
setuptmvline(bits);
line1 = reinterpret_cast<DWORD(*)()>(tmvline1);
line4 = tmvline4;
});
}
}
void wallscan_striped (int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat)
{
FDynamicColormap *startcolormap = basecolormap;
int startshade = wallshade;
bool fogginess = foggy;
short most1[MAXWIDTH], most2[MAXWIDTH], most3[MAXWIDTH];
short *up, *down;
up = uwal;
down = most1;
assert(WallC.sx1 <= x1);
assert(WallC.sx2 >= x2);
// kg3D - fake floors instead of zdoom light list
for (unsigned int i = 0; i < frontsector->e->XFloor.lightlist.Size(); i++)
{
int j = WallMost (most3, frontsector->e->XFloor.lightlist[i].plane, &WallC);
if (j != 3)
{
for (int j = x1; j < x2; ++j)
{
down[j] = clamp (most3[j], up[j], dwal[j]);
}
wallscan (x1, x2, up, down, swal, lwal, yrepeat);
up = down;
down = (down == most1) ? most2 : most1;
}
lightlist_t *lit = &frontsector->e->XFloor.lightlist[i];
basecolormap = lit->extra_colormap;
wallshade = LIGHT2SHADE(curline->sidedef->GetLightLevel(fogginess,
*lit->p_lightlevel, lit->lightsource != NULL) + r_actualextralight);
}
wallscan (x1, x2, up, dwal, swal, lwal, yrepeat);
basecolormap = startcolormap;
wallshade = startshade;
}
static void call_wallscan(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, bool mask)
{
if (mask)
{
if (colfunc == basecolfunc)
{
maskwallscan(x1, x2, uwal, dwal, swal, lwal, yrepeat);
}
else
{
transmaskwallscan(x1, x2, uwal, dwal, swal, lwal, yrepeat);
}
}
else
{
if (fixedcolormap != NULL || fixedlightlev >= 0 || !(frontsector->e && frontsector->e->XFloor.lightlist.Size()))
{
wallscan(x1, x2, uwal, dwal, swal, lwal, yrepeat);
}
else
{
wallscan_striped(x1, x2, uwal, dwal, swal, lwal, yrepeat);
}
}
}
//=============================================================================
//
// wallscan_np2
//
// This is a wrapper around wallscan that helps it tile textures whose heights
// are not powers of 2. It divides the wall into texture-sized strips and calls
// wallscan for each of those. Since only one repetition of the texture fits
// in each strip, wallscan will not tile.
//
//=============================================================================
void wallscan_np2(int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat, double top, double bot, bool mask)
{
if (!r_np2)
{
call_wallscan(x1, x2, uwal, dwal, swal, lwal, yrepeat, mask);
}
else
{
short most1[MAXWIDTH], most2[MAXWIDTH], most3[MAXWIDTH];
short *up, *down;
double texheight = rw_pic->GetHeight();
double partition;
double scaledtexheight = texheight / yrepeat;
if (yrepeat >= 0)
{ // normal orientation: draw strips from top to bottom
partition = top - fmod(top - dc_texturemid / yrepeat - ViewPos.Z, scaledtexheight);
if (partition == top)
{
partition -= scaledtexheight;
}
up = uwal;
down = most1;
dc_texturemid = (partition - ViewPos.Z) * yrepeat + texheight;
while (partition > bot)
{
int j = OWallMost(most3, partition - ViewPos.Z, &WallC);
if (j != 3)
{
for (int j = x1; j < x2; ++j)
{
down[j] = clamp(most3[j], up[j], dwal[j]);
}
call_wallscan(x1, x2, up, down, swal, lwal, yrepeat, mask);
up = down;
down = (down == most1) ? most2 : most1;
}
partition -= scaledtexheight;
dc_texturemid -= texheight;
}
call_wallscan(x1, x2, up, dwal, swal, lwal, yrepeat, mask);
}
else
{ // upside down: draw strips from bottom to top
partition = bot - fmod(bot - dc_texturemid / yrepeat - ViewPos.Z, scaledtexheight);
up = most1;
down = dwal;
dc_texturemid = (partition - ViewPos.Z) * yrepeat + texheight;
while (partition < top)
{
int j = OWallMost(most3, partition - ViewPos.Z, &WallC);
if (j != 12)
{
for (int j = x1; j < x2; ++j)
{
up[j] = clamp(most3[j], uwal[j], down[j]);
}
call_wallscan(x1, x2, up, down, swal, lwal, yrepeat, mask);
down = up;
up = (up == most1) ? most2 : most1;
}
partition -= scaledtexheight;
dc_texturemid -= texheight;
}
call_wallscan(x1, x2, uwal, down, swal, lwal, yrepeat, mask);
}
}
}
static void wallscan_np2_ds(drawseg_t *ds, int x1, int x2, short *uwal, short *dwal, float *swal, fixed_t *lwal, double yrepeat)
{
if (rw_pic->GetHeight() != 1 << rw_pic->HeightBits)
{
double frontcz1 = ds->curline->frontsector->ceilingplane.ZatPoint(ds->curline->v1);
double frontfz1 = ds->curline->frontsector->floorplane.ZatPoint(ds->curline->v1);
double frontcz2 = ds->curline->frontsector->ceilingplane.ZatPoint(ds->curline->v2);
double frontfz2 = ds->curline->frontsector->floorplane.ZatPoint(ds->curline->v2);
double top = MAX(frontcz1, frontcz2);
double bot = MIN(frontfz1, frontfz2);
if (fake3D & FAKE3D_CLIPTOP)
{
top = MIN(top, sclipTop);
}
if (fake3D & FAKE3D_CLIPBOTTOM)
{
bot = MAX(bot, sclipBottom);
}
wallscan_np2(x1, x2, uwal, dwal, swal, lwal, yrepeat, top, bot, true);
}
else
{
call_wallscan(x1, x2, uwal, dwal, swal, lwal, yrepeat, true);
}
}
// //
// R_RenderSegLoop // R_RenderSegLoop
// Draws zero, one, or two textures for walls. // Draws zero, one, or two textures for walls.
// Can draw or mark the starting pixel of floor and ceiling textures. // Can draw or mark the starting pixel of floor and ceiling textures.
// CALLED: CORE LOOPING ROUTINE. // CALLED: CORE LOOPING ROUTINE.
// //
// [RH] Rewrote this to use Build's wallscan, so it's quite far
// removed from the original Doom routine.
//
void R_RenderSegLoop () void R_RenderSegLoop ()
{ {
@ -1872,14 +1165,7 @@ void R_RenderSegLoop ()
{ {
rw_offset = -rw_offset; rw_offset = -rw_offset;
} }
if (rw_pic->GetHeight() != 1 << rw_pic->HeightBits) R_DrawWallSegment(rw_pic, x1, x2, walltop, wallbottom, swall, lwall, yscale, MAX(rw_frontcz1, rw_frontcz2), MIN(rw_frontfz1, rw_frontfz2), false);
{
wallscan_np2(x1, x2, walltop, wallbottom, swall, lwall, yscale, MAX(rw_frontcz1, rw_frontcz2), MIN(rw_frontfz1, rw_frontfz2), false);
}
else
{
call_wallscan(x1, x2, walltop, wallbottom, swall, lwall, yscale, false);
}
} }
fillshort (ceilingclip+x1, x2-x1, viewheight); fillshort (ceilingclip+x1, x2-x1, viewheight);
fillshort (floorclip+x1, x2-x1, 0xffff); fillshort (floorclip+x1, x2-x1, 0xffff);
@ -1915,14 +1201,7 @@ void R_RenderSegLoop ()
{ {
rw_offset = -rw_offset; rw_offset = -rw_offset;
} }
if (rw_pic->GetHeight() != 1 << rw_pic->HeightBits) R_DrawWallSegment(rw_pic, x1, x2, walltop, wallupper, swall, lwall, yscale, MAX(rw_frontcz1, rw_frontcz2), MIN(rw_backcz1, rw_backcz2), false);
{
wallscan_np2(x1, x2, walltop, wallupper, swall, lwall, yscale, MAX(rw_frontcz1, rw_frontcz2), MIN(rw_backcz1, rw_backcz2), false);
}
else
{
call_wallscan(x1, x2, walltop, wallupper, swall, lwall, yscale, false);
}
} }
memcpy (ceilingclip+x1, wallupper+x1, (x2-x1)*sizeof(short)); memcpy (ceilingclip+x1, wallupper+x1, (x2-x1)*sizeof(short));
} }
@ -1961,14 +1240,7 @@ void R_RenderSegLoop ()
{ {
rw_offset = -rw_offset; rw_offset = -rw_offset;
} }
if (rw_pic->GetHeight() != 1 << rw_pic->HeightBits) R_DrawWallSegment(rw_pic, x1, x2, walllower, wallbottom, swall, lwall, yscale, MAX(rw_backfz1, rw_backfz2), MIN(rw_frontfz1, rw_frontfz2), false);
{
wallscan_np2(x1, x2, walllower, wallbottom, swall, lwall, yscale, MAX(rw_backfz1, rw_backfz2), MIN(rw_frontfz1, rw_frontfz2), false);
}
else
{
call_wallscan(x1, x2, walllower, wallbottom, swall, lwall, yscale, false);
}
} }
memcpy (floorclip+x1, walllower+x1, (x2-x1)*sizeof(short)); memcpy (floorclip+x1, walllower+x1, (x2-x1)*sizeof(short));
} }
@ -2079,7 +1351,7 @@ void R_NewWall (bool needlights)
// wall but nothing to draw for it. // wall but nothing to draw for it.
// Recalculate walltop so that the wall is clipped by the back sector's // Recalculate walltop so that the wall is clipped by the back sector's
// ceiling instead of the front sector's ceiling. // ceiling instead of the front sector's ceiling.
WallMost (walltop, backsector->ceilingplane, &WallC); R_CreateWallSegmentYSloped (walltop, backsector->ceilingplane, &WallC);
} }
// Putting sky ceilings on the front and back of a line alters the way unpegged // Putting sky ceilings on the front and back of a line alters the way unpegged
// positioning works. // positioning works.
@ -2654,19 +1926,19 @@ void R_StoreWallRange (int start, int stop)
ds_p++; ds_p++;
} }
int WallMostAny(short *mostbuf, double z1, double z2, const FWallCoords *wallc) int R_CreateWallSegmentY(short *outbuf, double z1, double z2, const FWallCoords *wallc)
{ {
float y1 = (float)(CenterY - z1 * InvZtoScale / wallc->sz1); float y1 = (float)(CenterY - z1 * InvZtoScale / wallc->sz1);
float y2 = (float)(CenterY - z2 * InvZtoScale / wallc->sz2); float y2 = (float)(CenterY - z2 * InvZtoScale / wallc->sz2);
if (y1 < 0 && y2 < 0) // entire line is above screen if (y1 < 0 && y2 < 0) // entire line is above screen
{ {
memset(&mostbuf[wallc->sx1], 0, (wallc->sx2 - wallc->sx1) * sizeof(mostbuf[0])); memset(&outbuf[wallc->sx1], 0, (wallc->sx2 - wallc->sx1) * sizeof(outbuf[0]));
return 3; return 3;
} }
else if (y1 > viewheight && y2 > viewheight) // entire line is below screen else if (y1 > viewheight && y2 > viewheight) // entire line is below screen
{ {
fillshort(&mostbuf[wallc->sx1], wallc->sx2 - wallc->sx1, viewheight); fillshort(&outbuf[wallc->sx1], wallc->sx2 - wallc->sx1, viewheight);
return 12; return 12;
} }
@ -2680,7 +1952,7 @@ int WallMostAny(short *mostbuf, double z1, double z2, const FWallCoords *wallc)
{ {
float t = (x - wallc->sx1) * rcp_delta; float t = (x - wallc->sx1) * rcp_delta;
float y = y1 * (1.0f - t) + y2 * t; float y = y1 * (1.0f - t) + y2 * t;
mostbuf[x] = (short)xs_RoundToInt(y); outbuf[x] = (short)xs_RoundToInt(y);
} }
} }
else else
@ -2689,23 +1961,18 @@ int WallMostAny(short *mostbuf, double z1, double z2, const FWallCoords *wallc)
{ {
float t = (x - wallc->sx1) * rcp_delta; float t = (x - wallc->sx1) * rcp_delta;
float y = y1 * (1.0f - t) + y2 * t; float y = y1 * (1.0f - t) + y2 * t;
mostbuf[x] = (short)clamp(xs_RoundToInt(y), 0, viewheight); outbuf[x] = (short)clamp(xs_RoundToInt(y), 0, viewheight);
} }
} }
return 0; return 0;
} }
int OWallMost(short *mostbuf, double z, const FWallCoords *wallc) int R_CreateWallSegmentYSloped(short *outbuf, const secplane_t &plane, const FWallCoords *wallc)
{
return WallMostAny(mostbuf, z, z, wallc);
}
int WallMost(short *mostbuf, const secplane_t &plane, const FWallCoords *wallc)
{ {
if (!plane.isSlope()) if (!plane.isSlope())
{ {
return OWallMost(mostbuf, plane.Zat0() - ViewPos.Z, wallc); return R_CreateWallSegmentY(outbuf, plane.Zat0() - ViewPos.Z, wallc);
} }
else else
{ {
@ -2770,7 +2037,7 @@ int WallMost(short *mostbuf, const secplane_t &plane, const FWallCoords *wallc)
} }
} }
return WallMostAny(mostbuf, z1, z2, wallc); return R_CreateWallSegmentY(outbuf, z1, z2, wallc);
} }
} }

View file

@ -34,8 +34,13 @@ extern short *openings;
extern ptrdiff_t lastopening; extern ptrdiff_t lastopening;
extern size_t maxopenings; extern size_t maxopenings;
int OWallMost (short *mostbuf, double z, const FWallCoords *wallc); int R_CreateWallSegmentY (short *outbuf, double z1, double z2, const FWallCoords *wallc);
int WallMost (short *mostbuf, const secplane_t &plane, const FWallCoords *wallc); int R_CreateWallSegmentYSloped (short *outbuf, const secplane_t &plane, const FWallCoords *wallc);
inline int R_CreateWallSegmentY(short *outbuf, double z, const FWallCoords *wallc)
{
return R_CreateWallSegmentY(outbuf, z, z, wallc);
}
void PrepWall (float *swall, fixed_t *lwall, double walxrepeat, int x1, int x2); void PrepWall (float *swall, fixed_t *lwall, double walxrepeat, int x1, int x2);
void PrepLWall (fixed_t *lwall, double walxrepeat, int x1, int x2); void PrepLWall (fixed_t *lwall, double walxrepeat, int x1, int x2);

1137
src/r_walldraw.cpp Normal file

File diff suppressed because it is too large Load diff

View file

@ -1583,12 +1583,19 @@ PType *ZCCCompiler::ResolveUserType(ZCC_BasicType *type, PSymbolTable *symt)
PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PSymbolTable *sym) PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize, PSymbolTable *sym)
{ {
// The duplicate Simplify call is necessary because if the head node gets replaced there is no way to detect the end of the list otherwise. TArray<ZCC_Expression *> indices;
arraysize = Simplify(arraysize, sym, true);
ZCC_Expression *val; // Simplify is too broken to resolve this inside the ring list so unravel the list into an array before starting to simplify its components.
auto node = arraysize;
do do
{ {
val = Simplify(arraysize, sym, true); indices.Push(node);
node = static_cast<ZCC_Expression*>(node->SiblingNext);
} while (node != arraysize);
for (auto node : indices)
{
auto val = Simplify(node, sym, true);
if (val->Operation != PEX_ConstValue || !val->Type->IsA(RUNTIME_CLASS(PInt))) if (val->Operation != PEX_ConstValue || !val->Type->IsA(RUNTIME_CLASS(PInt)))
{ {
Error(arraysize, "Array index must be an integer constant"); Error(arraysize, "Array index must be an integer constant");
@ -1601,8 +1608,7 @@ PType *ZCCCompiler::ResolveArraySize(PType *baseType, ZCC_Expression *arraysize,
return TypeError; return TypeError;
} }
baseType = NewArray(baseType, size); baseType = NewArray(baseType, size);
val = static_cast<ZCC_Expression *>(val->SiblingNext); }
} while (val != arraysize);
return baseType; return baseType;
} }