gzdoom-gles/src/sound/adlmidi/adlmidi_opl3.cpp

627 lines
18 KiB
C++
Raw Normal View History

/*
* libADLMIDI is a free MIDI to WAV conversion library with OPL3 emulation
*
* Original ADLMIDI code: Copyright (c) 2010-2014 Joel Yliluoma <bisqwit@iki.fi>
* ADLMIDI Library API: Copyright (c) 2015-2018 Vitaly Novichkov <admin@wohlnet.ru>
*
* Library is based on the ADLMIDI, a MIDI player for Linux and Windows with OPL3 emulation:
* http://iki.fi/bisqwit/source/adlmidi.html
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "adlmidi_private.hpp"
#ifdef ADLMIDI_HW_OPL
static const unsigned OPLBase = 0x388;
#endif
#ifdef DISABLE_EMBEDDED_BANKS
/*
Dummy data which replaces adldata.cpp banks database
*/
const struct adldata adl[] =
{
{0, 0, (unsigned char)'\0', (unsigned char)'\0', (unsigned char)'\0', 0}
};
const struct adlinsdata adlins[] =
{
{0, 0, 0, 0, 0, 0, 0.0}
};
int maxAdlBanks()
{
return 0;
}
const unsigned short banks[][256] = {{0}};
const char *const banknames[] = {"<Embedded banks are disabled>"};
const AdlBankSetup adlbanksetup[] = {{0, 1, 1, 0, 0}};
#endif
static const unsigned short Operators[23 * 2] =
{
// Channels 0-2
0x000, 0x003, 0x001, 0x004, 0x002, 0x005, // operators 0, 3, 1, 4, 2, 5
// Channels 3-5
0x008, 0x00B, 0x009, 0x00C, 0x00A, 0x00D, // operators 6, 9, 7,10, 8,11
// Channels 6-8
0x010, 0x013, 0x011, 0x014, 0x012, 0x015, // operators 12,15, 13,16, 14,17
// Same for second card
0x100, 0x103, 0x101, 0x104, 0x102, 0x105, // operators 18,21, 19,22, 20,23
0x108, 0x10B, 0x109, 0x10C, 0x10A, 0x10D, // operators 24,27, 25,28, 26,29
0x110, 0x113, 0x111, 0x114, 0x112, 0x115, // operators 30,33, 31,34, 32,35
// Channel 18
0x010, 0x013, // operators 12,15
// Channel 19
0x014, 0xFFF, // operator 16
// Channel 19
0x012, 0xFFF, // operator 14
// Channel 19
0x015, 0xFFF, // operator 17
// Channel 19
0x011, 0xFFF
}; // operator 13
static const unsigned short Channels[23] =
{
0x000, 0x001, 0x002, 0x003, 0x004, 0x005, 0x006, 0x007, 0x008, // 0..8
0x100, 0x101, 0x102, 0x103, 0x104, 0x105, 0x106, 0x107, 0x108, // 9..17 (secondary set)
0x006, 0x007, 0x008, 0xFFF, 0xFFF
}; // <- hw percussions, 0xFFF = no support for pitch/pan
/*
In OPL3 mode:
0 1 2 6 7 8 9 10 11 16 17 18
op0 op1 op2 op12 op13 op14 op18 op19 op20 op30 op31 op32
op3 op4 op5 op15 op16 op17 op21 op22 op23 op33 op34 op35
3 4 5 13 14 15
op6 op7 op8 op24 op25 op26
op9 op10 op11 op27 op28 op29
Ports:
+0 +1 +2 +10 +11 +12 +100 +101 +102 +110 +111 +112
+3 +4 +5 +13 +14 +15 +103 +104 +105 +113 +114 +115
+8 +9 +A +108 +109 +10A
+B +C +D +10B +10C +10D
Percussion:
bassdrum = op(0): 0xBD bit 0x10, operators 12 (0x10) and 15 (0x13) / channels 6, 6b
snare = op(3): 0xBD bit 0x08, operators 16 (0x14) / channels 7b
tomtom = op(4): 0xBD bit 0x04, operators 14 (0x12) / channels 8
cym = op(5): 0xBD bit 0x02, operators 17 (0x17) / channels 8b
hihat = op(2): 0xBD bit 0x01, operators 13 (0x11) / channels 7
In OPTi mode ("extended FM" in 82C924, 82C925, 82C931 chips):
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
op0 op4 op6 op10 op12 op16 op18 op22 op24 op28 op30 op34 op36 op38 op40 op42 op44 op46
op1 op5 op7 op11 op13 op17 op19 op23 op25 op29 op31 op35 op37 op39 op41 op43 op45 op47
op2 op8 op14 op20 op26 op32
op3 op9 op15 op21 op27 op33 for a total of 6 quad + 12 dual
Ports: ???
*/
const adlinsdata &OPL3::GetAdlMetaIns(size_t n)
{
return (n & DynamicMetaInstrumentTag) ?
dynamic_metainstruments[n & ~DynamicMetaInstrumentTag]
: adlins[n];
}
size_t OPL3::GetAdlMetaNumber(size_t midiins)
{
return (AdlBank == ~0u) ?
(midiins | DynamicMetaInstrumentTag)
: banks[AdlBank][midiins];
}
const adldata &OPL3::GetAdlIns(size_t insno)
{
return (insno & DynamicInstrumentTag)
? dynamic_instruments[insno & ~DynamicInstrumentTag]
: adl[insno];
}
void OPL3::setEmbeddedBank(unsigned int bank)
{
AdlBank = bank;
//Embedded banks are supports 128:128 GM set only
dynamic_percussion_offset = 128;
dynamic_melodic_banks.clear();
dynamic_percussion_banks.clear();
}
OPL3::OPL3() :
dynamic_percussion_offset(128),
DynamicInstrumentTag(0x8000u),
DynamicMetaInstrumentTag(0x4000000u),
NumCards(1),
AdlBank(0),
NumFourOps(0),
HighTremoloMode(false),
HighVibratoMode(false),
AdlPercussionMode(false),
LogarithmicVolumes(false),
//CartoonersVolumes(false),
m_musicMode(MODE_MIDI),
m_volumeScale(VOLUME_Generic)
{}
void OPL3::Poke(size_t card, uint32_t index, uint32_t value)
{
#ifdef ADLMIDI_HW_OPL
(void)card;
unsigned o = index >> 8;
unsigned port = OPLBase + o * 2;
#ifdef __DJGPP__
outportb(port, index);
for(unsigned c = 0; c < 6; ++c) inportb(port);
outportb(port + 1, value);
for(unsigned c = 0; c < 35; ++c) inportb(port);
#endif//__DJGPP__
#ifdef __WATCOMC__
outp(port, index);
for(uint16_t c = 0; c < 6; ++c) inp(port);
outp(port + 1, value);
for(uint16_t c = 0; c < 35; ++c) inp(port);
#endif//__WATCOMC__
#else//ADLMIDI_HW_OPL
#ifdef ADLMIDI_USE_DOSBOX_OPL
cards[card].WriteReg(index, static_cast<uint8_t>(value));
#else
OPL3_WriteReg(&cards[card], static_cast<Bit16u>(index), static_cast<Bit8u>(value));
#endif
#endif//ADLMIDI_HW_OPL
}
void OPL3::PokeN(size_t card, uint16_t index, uint8_t value)
{
#ifdef ADLMIDI_HW_OPL
(void)card;
unsigned o = index >> 8;
unsigned port = OPLBase + o * 2;
#ifdef __DJGPP__
outportb(port, index);
for(unsigned c = 0; c < 6; ++c) inportb(port);
outportb(port + 1, value);
for(unsigned c = 0; c < 35; ++c) inportb(port);
#endif
#ifdef __WATCOMC__
outp(port, index);
for(uint16_t c = 0; c < 6; ++c) inp(port);
outp(port + 1, value);
for(uint16_t c = 0; c < 35; ++c) inp(port);
#endif//__WATCOMC__
#else
#ifdef ADLMIDI_USE_DOSBOX_OPL
cards[card].WriteReg(static_cast<Bit32u>(index), value);
#else
OPL3_WriteReg(&cards[card], index, value);
#endif
#endif
}
void OPL3::NoteOff(size_t c)
{
size_t card = c / 23, cc = c % 23;
if(cc >= 18)
{
regBD[card] &= ~(0x10 >> (cc - 18));
Poke(card, 0xBD, regBD[card]);
return;
}
Poke(card, 0xB0 + Channels[cc], pit[c] & 0xDF);
}
void OPL3::NoteOn(unsigned c, double hertz) // Hertz range: 0..131071
{
unsigned card = c / 23, cc = c % 23;
unsigned x = 0x2000;
if(hertz < 0 || hertz > 131071) // Avoid infinite loop
return;
while(hertz >= 1023.5)
{
hertz /= 2.0; // Calculate octave
x += 0x400;
}
x += static_cast<unsigned int>(hertz + 0.5);
unsigned chn = Channels[cc];
if(cc >= 18)
{
regBD[card] |= (0x10 >> (cc - 18));
Poke(card, 0x0BD, regBD[card]);
x &= ~0x2000u;
//x |= 0x800; // for test
}
if(chn != 0xFFF)
{
Poke(card, 0xA0 + chn, x & 0xFF);
Poke(card, 0xB0 + chn, pit[c] = static_cast<uint8_t>(x >> 8));
}
}
void OPL3::Touch_Real(unsigned c, unsigned volume, uint8_t brightness)
{
if(volume > 63)
volume = 63;
size_t card = c / 23, cc = c % 23;
size_t i = ins[c];
uint16_t o1 = Operators[cc * 2 + 0];
uint16_t o2 = Operators[cc * 2 + 1];
const adldata &adli = GetAdlIns(i);
uint8_t x = adli.modulator_40, y = adli.carrier_40;
uint16_t mode = 1; // 2-op AM
if(four_op_category[c] == 0 || four_op_category[c] == 3)
{
mode = adli.feedconn & 1; // 2-op FM or 2-op AM
}
else if(four_op_category[c] == 1 || four_op_category[c] == 2)
{
size_t i0, i1;
if(four_op_category[c] == 1)
{
i0 = i;
i1 = ins[c + 3];
mode = 2; // 4-op xx-xx ops 1&2
}
else
{
i0 = ins[c - 3];
i1 = i;
mode = 6; // 4-op xx-xx ops 3&4
}
mode += (GetAdlIns(i0).feedconn & 1) + (GetAdlIns(i1).feedconn & 1) * 2;
}
static const bool do_ops[10][2] =
{
{ false, true }, /* 2 op FM */
{ true, true }, /* 2 op AM */
{ false, false }, /* 4 op FM-FM ops 1&2 */
{ true, false }, /* 4 op AM-FM ops 1&2 */
{ false, true }, /* 4 op FM-AM ops 1&2 */
{ true, false }, /* 4 op AM-AM ops 1&2 */
{ false, true }, /* 4 op FM-FM ops 3&4 */
{ false, true }, /* 4 op AM-FM ops 3&4 */
{ false, true }, /* 4 op FM-AM ops 3&4 */
{ true, true } /* 4 op AM-AM ops 3&4 */
};
if(m_musicMode == MODE_RSXX)
{
Poke(card, 0x40 + o1, x);
if(o2 != 0xFFF)
Poke(card, 0x40 + o2, y - volume / 2);
}
else
{
bool do_modulator = do_ops[ mode ][ 0 ] || ScaleModulators;
bool do_carrier = do_ops[ mode ][ 1 ] || ScaleModulators;
uint32_t modulator = do_modulator ? (x | 63) - volume + volume * (x & 63) / 63 : x;
uint32_t carrier = do_carrier ? (y | 63) - volume + volume * (y & 63) / 63 : y;
if(brightness != 127)
{
brightness = static_cast<uint8_t>(::round(127.0 * ::sqrt((static_cast<double>(brightness)) * (1.0 / 127.0))) / 2.0);
if(!do_modulator)
modulator = (modulator | 63) - brightness + brightness * (modulator & 63) / 63;
if(!do_carrier)
carrier = (carrier | 63) - brightness + brightness * (carrier & 63) / 63;
}
Poke(card, 0x40 + o1, modulator);
if(o2 != 0xFFF)
Poke(card, 0x40 + o2, carrier);
}
// Correct formula (ST3, AdPlug):
// 63-((63-(instrvol))/63)*chanvol
// Reduces to (tested identical):
// 63 - chanvol + chanvol*instrvol/63
// Also (slower, floats):
// 63 + chanvol * (instrvol / 63.0 - 1)
}
/*
void OPL3::Touch(unsigned c, unsigned volume) // Volume maxes at 127*127*127
{
if(LogarithmicVolumes)
Touch_Real(c, volume * 127 / (127 * 127 * 127) / 2);
else
{
// The formula below: SOLVE(V=127^3 * 2^( (A-63.49999) / 8), A)
Touch_Real(c, volume > 8725 ? static_cast<unsigned int>(std::log(volume) * 11.541561 + (0.5 - 104.22845)) : 0);
// The incorrect formula below: SOLVE(V=127^3 * (2^(A/63)-1), A)
//Touch_Real(c, volume>11210 ? 91.61112 * std::log(4.8819E-7*volume + 1.0)+0.5 : 0);
}
}*/
void OPL3::Patch(uint16_t c, size_t i)
{
uint16_t card = c / 23, cc = c % 23;
static const uint8_t data[4] = {0x20, 0x60, 0x80, 0xE0};
ins[c] = i;
uint16_t o1 = Operators[cc * 2 + 0];
uint16_t o2 = Operators[cc * 2 + 1];
const adldata &adli = GetAdlIns(i);
unsigned x = adli.modulator_E862, y = adli.carrier_E862;
for(unsigned a = 0; a < 4; ++a, x >>= 8, y >>= 8)
{
Poke(card, data[a] + o1, x & 0xFF);
if(o2 != 0xFFF)
Poke(card, data[a] + o2, y & 0xFF);
}
}
void OPL3::Pan(unsigned c, unsigned value)
{
unsigned card = c / 23, cc = c % 23;
if(Channels[cc] != 0xFFF)
Poke(card, 0xC0 + Channels[cc], GetAdlIns(ins[c]).feedconn | value);
}
void OPL3::Silence() // Silence all OPL channels.
{
for(unsigned c = 0; c < NumChannels; ++c)
{
NoteOff(c);
Touch_Real(c, 0);
}
}
void OPL3::updateFlags()
{
unsigned fours = NumFourOps;
for(unsigned card = 0; card < NumCards; ++card)
{
Poke(card, 0x0BD, regBD[card] = (HighTremoloMode * 0x80
+ HighVibratoMode * 0x40
+ AdlPercussionMode * 0x20));
unsigned fours_this_card = std::min(fours, 6u);
Poke(card, 0x104, (1 << fours_this_card) - 1);
fours -= fours_this_card;
}
// Mark all channels that are reserved for four-operator function
if(AdlPercussionMode == 1)
for(unsigned a = 0; a < NumCards; ++a)
{
for(unsigned b = 0; b < 5; ++b)
four_op_category[a * 23 + 18 + b] = static_cast<char>(b + 3);
for(unsigned b = 0; b < 3; ++b)
four_op_category[a * 23 + 6 + b] = 8;
}
unsigned nextfour = 0;
for(unsigned a = 0; a < NumFourOps; ++a)
{
four_op_category[nextfour ] = 1;
four_op_category[nextfour + 3] = 2;
switch(a % 6)
{
case 0:
case 1:
nextfour += 1;
break;
case 2:
nextfour += 9 - 2;
break;
case 3:
case 4:
nextfour += 1;
break;
case 5:
nextfour += 23 - 9 - 2;
break;
}
}
}
void OPL3::updateDeepFlags()
{
for(unsigned card = 0; card < NumCards; ++card)
{
Poke(card, 0x0BD, regBD[card] = (HighTremoloMode * 0x80
+ HighVibratoMode * 0x40
+ AdlPercussionMode * 0x20));
}
}
void OPL3::ChangeVolumeRangesModel(ADLMIDI_VolumeModels volumeModel)
{
switch(volumeModel)
{
case ADLMIDI_VolumeModel_AUTO://Do nothing until restart playing
break;
case ADLMIDI_VolumeModel_Generic:
m_volumeScale = OPL3::VOLUME_Generic;
break;
case ADLMIDI_VolumeModel_CMF:
LogarithmicVolumes = true;
m_volumeScale = OPL3::VOLUME_CMF;
break;
case ADLMIDI_VolumeModel_DMX:
m_volumeScale = OPL3::VOLUME_DMX;
break;
case ADLMIDI_VolumeModel_APOGEE:
m_volumeScale = OPL3::VOLUME_APOGEE;
break;
case ADLMIDI_VolumeModel_9X:
m_volumeScale = OPL3::VOLUME_9X;
break;
}
}
void OPL3::Reset(unsigned long PCM_RATE)
{
#ifndef ADLMIDI_HW_OPL
#ifdef ADLMIDI_USE_DOSBOX_OPL
DBOPL::Handler emptyChip; //Constructors inside are will initialize necessary fields
#else
_opl3_chip emptyChip;
std::memset(&emptyChip, 0, sizeof(_opl3_chip));
#endif
cards.clear();
#endif
(void)PCM_RATE;
ins.clear();
pit.clear();
regBD.clear();
#ifndef ADLMIDI_HW_OPL
cards.resize(NumCards, emptyChip);
#endif
NumChannels = NumCards * 23;
ins.resize(NumChannels, 189);
pit.resize(NumChannels, 0);
regBD.resize(NumCards, 0);
four_op_category.resize(NumChannels, 0);
for(unsigned p = 0, a = 0; a < NumCards; ++a)
{
for(unsigned b = 0; b < 18; ++b) four_op_category[p++] = 0;
for(unsigned b = 0; b < 5; ++b) four_op_category[p++] = 8;
}
static const uint16_t data[] =
{
0x004, 96, 0x004, 128, // Pulse timer
0x105, 0, 0x105, 1, 0x105, 0, // Pulse OPL3 enable
0x001, 32, 0x105, 1 // Enable wave, OPL3 extensions
};
unsigned fours = NumFourOps;
for(unsigned card = 0; card < NumCards; ++card)
{
#ifndef ADLMIDI_HW_OPL
# ifdef ADLMIDI_USE_DOSBOX_OPL
cards[card].Init(PCM_RATE);
# else
OPL3_Reset(&cards[card], static_cast<Bit32u>(PCM_RATE));
# endif
#endif
for(unsigned a = 0; a < 18; ++a) Poke(card, 0xB0 + Channels[a], 0x00);
for(unsigned a = 0; a < sizeof(data) / sizeof(*data); a += 2)
PokeN(card, data[a], static_cast<uint8_t>(data[a + 1]));
Poke(card, 0x0BD, regBD[card] = (HighTremoloMode * 0x80
+ HighVibratoMode * 0x40
+ AdlPercussionMode * 0x20));
unsigned fours_this_card = std::min(fours, 6u);
Poke(card, 0x104, (1 << fours_this_card) - 1);
//fprintf(stderr, "Card %u: %u four-ops.\n", card, fours_this_card);
fours -= fours_this_card;
}
// Mark all channels that are reserved for four-operator function
if(AdlPercussionMode == 1)
{
for(unsigned a = 0; a < NumCards; ++a)
{
for(unsigned b = 0; b < 5; ++b) four_op_category[a * 23 + 18 + b] = static_cast<char>(b + 3);
for(unsigned b = 0; b < 3; ++b) four_op_category[a * 23 + 6 + b] = 8;
}
}
unsigned nextfour = 0;
for(unsigned a = 0; a < NumFourOps; ++a)
{
four_op_category[nextfour ] = 1;
four_op_category[nextfour + 3] = 2;
switch(a % 6)
{
case 0:
case 1:
nextfour += 1;
break;
case 2:
nextfour += 9 - 2;
break;
case 3:
case 4:
nextfour += 1;
break;
case 5:
nextfour += 23 - 9 - 2;
break;
}
}
/**/
/*
In two-op mode, channels 0..8 go as follows:
Op1[port] Op2[port]
Channel 0: 00 00 03 03
Channel 1: 01 01 04 04
Channel 2: 02 02 05 05
Channel 3: 06 08 09 0B
Channel 4: 07 09 10 0C
Channel 5: 08 0A 11 0D
Channel 6: 12 10 15 13
Channel 7: 13 11 16 14
Channel 8: 14 12 17 15
In four-op mode, channels 0..8 go as follows:
Op1[port] Op2[port] Op3[port] Op4[port]
Channel 0: 00 00 03 03 06 08 09 0B
Channel 1: 01 01 04 04 07 09 10 0C
Channel 2: 02 02 05 05 08 0A 11 0D
Channel 3: CHANNEL 0 SLAVE
Channel 4: CHANNEL 1 SLAVE
Channel 5: CHANNEL 2 SLAVE
Channel 6: 12 10 15 13
Channel 7: 13 11 16 14
Channel 8: 14 12 17 15
Same goes principally for channels 9-17 respectively.
*/
Silence();
}