gzdoom-gles/src/resourcefiles/explode.cpp

290 lines
6 KiB
C++
Raw Normal View History

/*
gunzip.c by Pasi Ojala, a1bert@iki.fi
http://www.iki.fi/a1bert/
A hopefully easier to understand guide to GZip
(deflate) decompression routine than the GZip
source code.
*/
/*----------------------------------------------------------------------*/
#include <stdlib.h>
#include "explode.h"
/****************************************************************
Bit-I/O variables and routines/macros
These routines work in the bit level because the target
environment does not have a barrel shifter. Trying to
handle several bits at once would've only made the code
slower.
If the environment supports multi-bit shifts, you should
write these routines again (see e.g. the GZIP sources).
[RH] Since the target environment is not a C64, I did as
suggested and rewrote these using zlib as a reference.
****************************************************************/
int FZipExploder::READBYTE()
{
if (InLeft)
{
unsigned char c;
InLeft--;
if (1 != In->Read(&c, 1))
throw CExplosionError("Out of input");
return c;
}
throw CExplosionError("Out of input");
}
/* Get a byte of input into the bit accumulator, or return from inflate()
if there is no input available. */
#define PULLBYTE() \
do { \
int next = READBYTE(); \
Hold += (unsigned int)(next) << Bits; \
Bits += 8; \
} while (0)
/* Assure that there are at least n bits in the bit accumulator. */
#define NEEDBITS(n) \
do { \
while (Bits < (unsigned)(n)) \
PULLBYTE(); \
} while (0)
/* Return the low n bits of the bit accumulator (n < 16) */
#define BITS(n) \
((unsigned)Hold & ((1U << (n)) - 1))
/* Remove n bits from the bit accumulator */
#define DROPBITS(n) \
do { \
Hold >>= (n); \
Bits -= (unsigned)(n); \
} while (0)
#define READBITS(c, a) \
do { \
NEEDBITS(a); \
c = BITS(a); \
DROPBITS(a); \
} while (0)
int FZipExploder::IsPat()
{
for(;;)
{
if (fpos[len] >= fmax)
return -1;
if (flens[fpos[len]] == len)
return fpos[len]++;
fpos[len]++;
}
}
/*
A recursive routine which creates the Huffman decode tables
No presorting of code lengths are needed, because a counting
sort is perfomed on the fly.
*/
/* Maximum recursion depth is equal to the maximum
Huffman code length, which is 15 in the deflate algorithm.
(16 in Inflate!) */
int FZipExploder::Rec()
{
struct HufNode *curplace = Places;
int tmp;
if(len == 17)
{
return -1;
}
Places++;
len++;
tmp = IsPat();
if(tmp >= 0) {
curplace->b0 = tmp; /* leaf cell for 0-bit */
} else {
/* Not a Leaf cell */
curplace->b0 = 0x8000;
if(Rec())
return -1;
}
tmp = IsPat();
if(tmp >= 0) {
curplace->b1 = tmp; /* leaf cell for 1-bit */
curplace->jump = NULL; /* Just for the display routine */
} else {
/* Not a Leaf cell */
curplace->b1 = 0x8000;
curplace->jump = Places;
if(Rec())
return -1;
}
len--;
return 0;
}
/* In C64 return the most significant bit in Carry */
/* The same as DecodeValue(), except that 0/1 is reversed */
int FZipExploder::DecodeSFValue(struct HufNode *currentTree)
{
struct HufNode *X = currentTree;
int c;
/* decode one symbol of the data */
for(;;)
{
READBITS(c, 1);
if(!c) { /* Only the decision is reversed! */
if(!(X->b1 & 0x8000))
return X->b1; /* If leaf node, return data */
X = X->jump;
} else {
if(!(X->b0 & 0x8000))
return X->b0; /* If leaf node, return data */
X++;
}
}
return -1;
}
/*
Note:
The tree create and distance code trees <= 32 entries
and could be represented with the shorter tree algorithm.
I.e. use a X/Y-indexed table for each struct member.
*/
int FZipExploder::CreateTree(struct HufNode *currentTree, int numval, int *lengths)
{
int i;
/* Create the Huffman decode tree/table */
Places = currentTree;
flens = lengths;
fmax = numval;
for (i=0;i<17;i++)
fpos[i] = 0;
len = 0;
if(Rec()) {
/* fprintf(stderr, "invalid huffman tree\n");*/
return -1;
}
/* fprintf(stderr, "%d table entries used (max code length %d)\n",
Places-currentTree, maxlen);*/
return 0;
}
int FZipExploder::DecodeSF(int *table)
{
int i, a, n = READBYTE() + 1, v = 0;
for (i = 0; i < n; i++) {
int nv, bl;
a = READBYTE();
nv = ((a >> 4) & 15) + 1;
bl = (a & 15) + 1;
while (nv--) {
table[v++] = bl;
}
}
return v; /* entries used */
}
/* Note: Imploding could use the lighter huffman tree routines, as the
max number of entries is 256. But too much code would need to
be duplicated.
*/
int FZipExploder::Explode(unsigned char *out, unsigned int outsize,
FileReader *in, unsigned int insize,
int flags)
{
int c, i, minMatchLen = 3, len, dist;
int ll[256];
unsigned int bIdx = 0;
Hold = 0;
Bits = 0;
In = in;
InLeft = insize;
if ((flags & 4)) {
/* 3 trees: literals, lengths, distance top 6 */
minMatchLen = 3;
if (CreateTree(LiteralTree, DecodeSF(ll), ll))
return 1;
} else {
/* 2 trees: lengths, distance top 6 */
minMatchLen = 2;
}
if (CreateTree(LengthTree, DecodeSF(ll), ll))
return 1;
if (CreateTree(DistanceTree, DecodeSF(ll), ll))
return 1;
while (bIdx < outsize)
{
READBITS(c, 1);
if (c) {
/* literal data */
if ((flags & 4)) {
c = DecodeSFValue(LiteralTree);
} else {
READBITS(c, 8);
}
out[bIdx++] = c;
} else {
if ((flags & 2)) {
/* 8k dictionary */
READBITS(dist, 7);
c = DecodeSFValue(DistanceTree);
dist |= (c<<7);
} else {
/* 4k dictionary */
READBITS(dist, 6);
c = DecodeSFValue(DistanceTree);
dist |= (c<<6);
}
len = DecodeSFValue(LengthTree);
if (len == 63) {
READBITS(c, 8);
len += c;
}
len += minMatchLen;
dist++;
if (bIdx + len > outsize) {
throw CExplosionError("Not enough output space");
}
if ((unsigned int)dist > bIdx) {
/* Anything before the first input byte is zero. */
int zeros = dist - bIdx;
if (len < zeros)
zeros = len;
for(i = zeros; i; i--)
out[bIdx++] = 0;
len -= zeros;
}
for(i = len; i; i--, bIdx++) {
out[bIdx] = out[bIdx - dist];
}
}
}
return 0;
}