gzdoom-gles/src/v_font.cpp

1963 lines
47 KiB
C++
Raw Normal View History

/*
** v_font.cpp
** Font management
**
**---------------------------------------------------------------------------
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
** Copyright 1998-2008 Randy Heit
** All rights reserved.
**
** Redistribution and use in source and binary forms, with or without
** modification, are permitted provided that the following conditions
** are met:
**
** 1. Redistributions of source code must retain the above copyright
** notice, this list of conditions and the following disclaimer.
** 2. Redistributions in binary form must reproduce the above copyright
** notice, this list of conditions and the following disclaimer in the
** documentation and/or other materials provided with the distribution.
** 3. The name of the author may not be used to endorse or promote products
** derived from this software without specific prior written permission.
**
** THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
** IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
** OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
** IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
** INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
** NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
** DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
** THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
** (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
** THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
**---------------------------------------------------------------------------
**
*/
// HEADER FILES ------------------------------------------------------------
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <ctype.h>
#include "templates.h"
#include "doomtype.h"
#include "m_swap.h"
#include "v_font.h"
#include "v_video.h"
#include "w_wad.h"
#include "r_data.h"
#include "i_system.h"
#include "gi.h"
#include "cmdlib.h"
#include "sc_man.h"
#include "hu_stuff.h"
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
#include "r_draw.h"
#include "r_translate.h"
// MACROS ------------------------------------------------------------------
2007-01-09 04:40:58 +00:00
#define DEFAULT_LOG_COLOR PalEntry(223,223,223)
// TYPES -------------------------------------------------------------------
// This structure is used by BuildTranslations() to hold color information.
struct TranslationParm
{
short RangeStart; // First level for this range
short RangeEnd; // Last level for this range
BYTE Start[3]; // Start color for this range
BYTE End[3]; // End color for this range
};
struct TranslationMap
{
FName Name;
int Number;
};
// This is a font character that loads a texture and recolors it.
class FFontChar1 : public FTexture
{
public:
FFontChar1 (int sourcelump, const BYTE *sourceremap);
const BYTE *GetColumn (unsigned int column, const Span **spans_out);
const BYTE *GetPixels ();
void Unload ();
~FFontChar1 ();
protected:
void MakeTexture ();
FTexture *BaseTexture;
BYTE *Pixels;
const BYTE *SourceRemap;
};
// This is a font character that reads RLE compressed data.
class FFontChar2 : public FTexture
{
public:
FFontChar2 (int sourcelump, const BYTE *sourceremap, int sourcepos, int width, int height);
~FFontChar2 ();
const BYTE *GetColumn (unsigned int column, const Span **spans_out);
const BYTE *GetPixels ();
void Unload ();
protected:
int SourceLump;
int SourcePos;
BYTE *Pixels;
Span **Spans;
const BYTE *SourceRemap;
void MakeTexture ();
};
struct TempParmInfo
{
unsigned int StartParm[2];
unsigned int ParmLen[2];
int Index;
};
struct TempColorInfo
{
FName Name;
unsigned int ParmInfo;
2007-01-09 04:40:58 +00:00
PalEntry LogColor;
};
// EXTERNAL FUNCTION PROTOTYPES --------------------------------------------
// PUBLIC FUNCTION PROTOTYPES ----------------------------------------------
// PRIVATE FUNCTION PROTOTYPES ---------------------------------------------
static int STACK_ARGS TranslationMapCompare (const void *a, const void *b);
// EXTERNAL DATA DECLARATIONS ----------------------------------------------
// PUBLIC DATA DEFINITIONS -------------------------------------------------
FFont *FFont::FirstFont = NULL;
2006-08-31 00:16:12 +00:00
int NumTextColors;
// PRIVATE DATA DEFINITIONS ------------------------------------------------
static const BYTE myislower[256] =
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0
};
static TArray<TranslationParm> TranslationParms[2];
static TArray<TranslationMap> TranslationLookup;
2007-01-09 04:40:58 +00:00
static TArray<PalEntry> TranslationColors;
// CODE --------------------------------------------------------------------
FFont * V_GetFont(const char *name)
{
FFont *font = FFont::FindFont (name);
if (font == NULL)
{
int lump = -1;
FString fullname;
if (strlen(name) > 8)
{
fullname.Format("%s.fon", name);
lump = Wads.CheckNumForFullName(fullname);
}
else
{
lump = Wads.CheckNumForName (name);
}
if (lump != -1)
{
char head[3];
{
FWadLump lumpy = Wads.OpenLumpNum (lump);
lumpy.Read (head, 3);
}
if (head[0] == 'F' && head[1] == 'O' && head[2] == 'N')
{
font = new FSingleLumpFont (name, lump);
}
}
if (font == NULL)
{
int picnum = TexMan.CheckForTexture (name, FTexture::TEX_Any);
if (picnum <= 0)
{
picnum = TexMan.AddPatch (name);
}
if (picnum > 0)
{
font = new FSingleLumpFont (name, -1);
}
}
}
return font;
}
//==========================================================================
//
// SerializeFFontPtr
//
//==========================================================================
FArchive &SerializeFFontPtr (FArchive &arc, FFont* &font)
{
if (arc.IsStoring ())
{
arc << font->Name;
}
else
{
char *name = NULL;
arc << name;
font = V_GetFont(name);
if (font == NULL)
{
Printf ("Could not load font %s\n", name);
font = SmallFont;
}
delete[] name;
}
return arc;
}
//==========================================================================
//
// FFont :: FFont
//
// Loads a multi-texture font.
//
//==========================================================================
FFont::FFont (const char *name, const char *nametemplate, int first, int count, int start)
{
int i, lump;
char buffer[12];
int *charlumps;
BYTE usedcolors[256], identity[256];
double *luminosity;
int maxyoffs;
bool doomtemplate = gameinfo.gametype == GAME_Doom ? strncmp (nametemplate, "STCFN", 5) == 0 : false;
Chars = new CharData[count];
charlumps = new int[count];
PatchRemap = new BYTE[256];
FirstChar = first;
LastChar = first + count - 1;
FontHeight = 0;
GlobalKerning = false;
memset (usedcolors, 0, 256);
Name = copystring (name);
Next = FirstFont;
FirstFont = this;
maxyoffs = 0;
for (i = 0; i < count; i++)
{
sprintf (buffer, nametemplate, i + start);
lump = Wads.CheckNumForName (buffer, ns_graphics);
if (doomtemplate && lump >= 0 && i + start == 121)
{ // HACKHACK: Don't load STCFN121 in doom(2), because
// it's not really a lower-case 'y' but an upper-case 'I'.
// Because a lot of wads with their own font seem to foolishly
// copy STCFN121 and make it an 'I' themselves, wads must
// provide STCFN120 (x) and STCFN122 (z) for STCFN121 to load.
if (Wads.CheckNumForName ("STCFN120", ns_graphics) == -1 ||
Wads.CheckNumForName ("STCFN122", ns_graphics) == -1)
{
lump = -1;
}
}
charlumps[i] = lump;
if (lump >= 0)
{
FTexture *pic = TexMan[TexMan.AddPatch (buffer)];
int height = pic->GetScaledHeight();
int yoffs = pic->GetScaledTopOffset();
if (yoffs > maxyoffs)
{
maxyoffs = yoffs;
}
height += abs (yoffs);
if (height > FontHeight)
{
FontHeight = height;
}
RecordTextureColors (pic, usedcolors);
}
}
ActiveColors = SimpleTranslation (usedcolors, PatchRemap, identity, &luminosity);
for (i = 0; i < count; i++)
{
if (charlumps[i] >= 0)
{
Chars[i].Pic = new FFontChar1 (charlumps[i], PatchRemap);
}
else
{
Chars[i].Pic = NULL;
}
}
if ('N'-first>=0 && 'N'-first<count && Chars['N' - first].Pic)
{
SpaceWidth = (Chars['N' - first].Pic->GetScaledWidth() + 1) / 2;
}
else
{
SpaceWidth = 4;
}
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
BuildTranslations (luminosity, identity, &TranslationParms[0][0], ActiveColors);
delete[] luminosity;
delete[] charlumps;
}
//==========================================================================
//
// FFont :: ~FFont
//
//==========================================================================
FFont::~FFont ()
{
if (Chars)
{
int count = LastChar - FirstChar + 1;
for (int i = 0; i < count; ++i)
{
- Fixed: The names in the Depths array in m_options.cpp were never freed. - Fixed: FDoomEdMap needed a destructor. - Fixed: Decal animators were never freed. - Fixed: Colormaps were never freed. - Fixed: Memory allocated in R_InitTranslationTables() was never freed. - Fixed: R_InitParticles() allocated way more memory than it needed to. (And the particle memory was never freed, either.) - Fixed: FMetaTable::FreeMeta() should use delete[] to free string metadata. - Fixed: FConfigFile::ClearCurrentSection() must cast the entry to a char * before deleting it, because that's the way it was allocated. - Fixed definitions of DeadZombieMan and DeadShotgunGuy in doom/deadthings.txt. Skip_super resets the dropitem list, so having it after "DropItem None" is pointless. - Fixed: Decorate DropItem information was never freed. - Fixed: FinishStates() allocated even 0-entry state arrays. - Fixed: Default actor instances were never freed. - Fixed: FRandomSoundList never freed its sound list. - Fixed: Level and cluster strings read from MAPINFO were never freed. - Fixed: Episode names were never freed. - Fixed: InverseColormap and GoldColormap were never freed. Since they're always allocated, they can just be arrays rather than pointers. - Fixed: FFont destructor never freed any of the character data or the font's name. - Fixed: Fonts were not freed at exit. - Fixed: FStringTable::LoadLanguage() did not call SC_Close(). - Fixed: When using the -iwad parameter, IdentifyVersion() did not release the buffer it created to hold the parameter's path. SVN r88 (trunk)
2006-05-09 03:40:15 +00:00
if (Chars[i].Pic != NULL && Chars[i].Pic->Name[0] == 0)
{
delete Chars[i].Pic;
}
}
delete[] Chars;
Chars = NULL;
}
if (PatchRemap)
{
delete[] PatchRemap;
PatchRemap = NULL;
}
- Fixed: The names in the Depths array in m_options.cpp were never freed. - Fixed: FDoomEdMap needed a destructor. - Fixed: Decal animators were never freed. - Fixed: Colormaps were never freed. - Fixed: Memory allocated in R_InitTranslationTables() was never freed. - Fixed: R_InitParticles() allocated way more memory than it needed to. (And the particle memory was never freed, either.) - Fixed: FMetaTable::FreeMeta() should use delete[] to free string metadata. - Fixed: FConfigFile::ClearCurrentSection() must cast the entry to a char * before deleting it, because that's the way it was allocated. - Fixed definitions of DeadZombieMan and DeadShotgunGuy in doom/deadthings.txt. Skip_super resets the dropitem list, so having it after "DropItem None" is pointless. - Fixed: Decorate DropItem information was never freed. - Fixed: FinishStates() allocated even 0-entry state arrays. - Fixed: Default actor instances were never freed. - Fixed: FRandomSoundList never freed its sound list. - Fixed: Level and cluster strings read from MAPINFO were never freed. - Fixed: Episode names were never freed. - Fixed: InverseColormap and GoldColormap were never freed. Since they're always allocated, they can just be arrays rather than pointers. - Fixed: FFont destructor never freed any of the character data or the font's name. - Fixed: Fonts were not freed at exit. - Fixed: FStringTable::LoadLanguage() did not call SC_Close(). - Fixed: When using the -iwad parameter, IdentifyVersion() did not release the buffer it created to hold the parameter's path. SVN r88 (trunk)
2006-05-09 03:40:15 +00:00
if (Name)
{
delete[] Name;
Name = NULL;
}
FFont **prev = &FirstFont;
FFont *font = *prev;
while (font != NULL && font != this)
{
prev = &font->Next;
font = *prev;
}
if (font != NULL)
{
*prev = font->Next;
}
}
//==========================================================================
//
// FFont :: FindFont
//
// Searches for the named font in the list of loaded fonts, returning the
// font if it was found. The disk is not checked if it cannot be found.
//
//==========================================================================
FFont *FFont::FindFont (const char *name)
{
if (name == NULL)
{
return NULL;
}
FFont *font = FirstFont;
while (font != NULL)
{
if (stricmp (font->Name, name) == 0)
break;
font = font->Next;
}
return font;
}
//==========================================================================
//
// RecordTextureColors
//
// Given a 256 entry buffer, sets every entry that corresponds to a color
// used by the texture to 1.
//
//==========================================================================
void RecordTextureColors (FTexture *pic, BYTE *usedcolors)
{
int x;
for (x = pic->GetWidth() - 1; x >= 0; x--)
{
const FTexture::Span *spans;
const BYTE *column = pic->GetColumn (x, &spans);
while (spans->Length != 0)
{
const BYTE *source = column + spans->TopOffset;
int count = spans->Length;
do
{
usedcolors[*source++] = 1;
} while (--count);
spans++;
}
}
}
//==========================================================================
//
// compare
//
// Used for sorting colors by brightness.
//
//==========================================================================
static int STACK_ARGS compare (const void *arg1, const void *arg2)
{
if (RPART(GPalette.BaseColors[*((BYTE *)arg1)]) * 299 +
GPART(GPalette.BaseColors[*((BYTE *)arg1)]) * 587 +
BPART(GPalette.BaseColors[*((BYTE *)arg1)]) * 114 <
RPART(GPalette.BaseColors[*((BYTE *)arg2)]) * 299 +
GPART(GPalette.BaseColors[*((BYTE *)arg2)]) * 587 +
BPART(GPalette.BaseColors[*((BYTE *)arg2)]) * 114)
return -1;
else
return 1;
}
//==========================================================================
//
// FFont :: SimpleTranslation
//
// Colorsused, translation, and reverse must all be 256 entry buffers.
// Colorsused must already be filled out.
// Translation be set to remap the source colors to a new range of
// consecutive colors based at 1 (0 is transparent).
// Reverse will be just the opposite of translation: It maps the new color
// range to the original colors.
// *Luminosity will be an array just large enough to hold the brightness
// levels of all the used colors, in consecutive order. It is sorted from
// darkest to lightest and scaled such that the darkest color is 0.0 and
// the brightest color is 1.0.
// The return value is the number of used colors and thus the number of
// entries in *luminosity.
//
//==========================================================================
int FFont::SimpleTranslation (BYTE *colorsused, BYTE *translation, BYTE *reverse, double **luminosity)
{
double min, max, diver;
int i, j;
memset (translation, 0, 256);
reverse[0] = 0;
2006-04-11 16:27:41 +00:00
for (i = 1, j = 1; i < 256; i++)
{
if (colorsused[i])
{
reverse[j++] = i;
}
}
qsort (reverse+1, j-1, 1, compare);
*luminosity = new double[j];
max = 0.0;
min = 100000000.0;
for (i = 1; i < j; i++)
{
translation[reverse[i]] = i;
(*luminosity)[i] = RPART(GPalette.BaseColors[reverse[i]]) * 0.299 +
GPART(GPalette.BaseColors[reverse[i]]) * 0.587 +
BPART(GPalette.BaseColors[reverse[i]]) * 0.114;
if ((*luminosity)[i] > max)
max = (*luminosity)[i];
if ((*luminosity)[i] < min)
min = (*luminosity)[i];
}
diver = 1.0 / (max - min);
2006-04-11 16:27:41 +00:00
for (i = 1; i < j; i++)
{
(*luminosity)[i] = ((*luminosity)[i] - min) * diver;
}
return j;
}
//==========================================================================
//
// FFont :: BuildTranslations
//
// Build color translations for this font. Luminosity is an array of
// brightness levels. The ActiveColors member must be set to indicate how
// large this array is. Identity is an array that remaps the colors to
// their original values; it is only used for CR_UNTRANSLATED. Ranges
// is an array of TranslationParm structs defining the ranges for every
// possible color, in order.
//
//==========================================================================
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
void FFont::BuildTranslations (const double *luminosity, const BYTE *identity,
const void *ranges, int total_colors)
{
int i, j;
const TranslationParm *parmstart = (const TranslationParm *)ranges;
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
FRemapTable remap(total_colors);
// Create different translations for different color ranges
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
Ranges.Clear();
for (i = 0; i < NumTextColors; i++)
{
if (i == CR_UNTRANSLATED)
{
if (identity != NULL)
{
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
memcpy (remap.Remap, identity, ActiveColors);
for (j = 0; j < ActiveColors; ++j)
{
remap.Palette[j] = GPalette.BaseColors[identity[j]];
}
}
else
{
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
remap = Ranges[0];
}
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
Ranges.Push(remap);
continue;
}
assert(parmstart->RangeStart >= 0);
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
remap.Remap[0] = 0;
remap.Palette[0] = 0;
for (j = 1; j < ActiveColors; j++)
{
int v = int(luminosity[j] * 256.0);
// Find the color range that this luminosity value lies within.
const TranslationParm *parms = parmstart - 1;
do
{
parms++;
if (parms->RangeStart <= v && parms->RangeEnd >= v)
break;
}
while (parms[1].RangeStart > parms[0].RangeEnd);
// Linearly interpolate to find out which color this luminosity level gets.
int rangev = ((v - parms->RangeStart) << 8) / (parms->RangeEnd - parms->RangeStart);
int r = ((parms->Start[0] << 8) + rangev * (parms->End[0] - parms->Start[0])) >> 8; // red
int g = ((parms->Start[1] << 8) + rangev * (parms->End[1] - parms->Start[1])) >> 8; // green
int b = ((parms->Start[2] << 8) + rangev * (parms->End[2] - parms->Start[2])) >> 8; // blue
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
r = clamp(r, 0, 255);
g = clamp(g, 0, 255);
b = clamp(b, 0, 255);
remap.Remap[j] = ColorMatcher.Pick(r, g, b);
remap.Palette[j] = PalEntry(255,r,g,b);
}
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
Ranges.Push(remap);
// Advance to the next color range.
while (parmstart[1].RangeStart > parmstart[0].RangeEnd)
{
parmstart++;
}
parmstart++;
}
}
//==========================================================================
//
// FFont :: GetColorTranslation
//
//==========================================================================
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
FRemapTable *FFont::GetColorTranslation (EColorRange range) const
{
if (ActiveColors == 0)
return NULL;
else if (range >= NumTextColors)
range = CR_UNTRANSLATED;
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
return &Ranges[range];
}
//==========================================================================
//
// FFont :: GetChar
//
//==========================================================================
FTexture *FFont::GetChar (int code, int *const width) const
{
if (code < FirstChar ||
code > LastChar ||
Chars[code - FirstChar].Pic == NULL)
{
if (myislower[code])
{
code -= 32;
if (code < FirstChar ||
code > LastChar ||
Chars[code - FirstChar].Pic == NULL)
{
*width = SpaceWidth;
return NULL;
}
}
else
{
*width = SpaceWidth;
return NULL;
}
}
code -= FirstChar;
*width = Chars[code].Pic->GetScaledWidth();
return Chars[code].Pic;
}
//==========================================================================
//
// FFont :: GetCharWidth
//
//==========================================================================
int FFont::GetCharWidth (int code) const
{
if (code < FirstChar ||
code > LastChar ||
Chars[code - FirstChar].Pic == NULL)
{
if (myislower[code])
{
code -= 32;
if (code < FirstChar ||
code > LastChar ||
Chars[code - FirstChar].Pic == NULL)
{
return SpaceWidth;
}
}
else
{
return SpaceWidth;
}
}
return Chars[code - FirstChar].Pic->GetScaledWidth();
}
//==========================================================================
//
// FFont :: FFont - default constructor
//
//==========================================================================
FFont::FFont ()
{
Chars = NULL;
PatchRemap = NULL;
- Fixed: The names in the Depths array in m_options.cpp were never freed. - Fixed: FDoomEdMap needed a destructor. - Fixed: Decal animators were never freed. - Fixed: Colormaps were never freed. - Fixed: Memory allocated in R_InitTranslationTables() was never freed. - Fixed: R_InitParticles() allocated way more memory than it needed to. (And the particle memory was never freed, either.) - Fixed: FMetaTable::FreeMeta() should use delete[] to free string metadata. - Fixed: FConfigFile::ClearCurrentSection() must cast the entry to a char * before deleting it, because that's the way it was allocated. - Fixed definitions of DeadZombieMan and DeadShotgunGuy in doom/deadthings.txt. Skip_super resets the dropitem list, so having it after "DropItem None" is pointless. - Fixed: Decorate DropItem information was never freed. - Fixed: FinishStates() allocated even 0-entry state arrays. - Fixed: Default actor instances were never freed. - Fixed: FRandomSoundList never freed its sound list. - Fixed: Level and cluster strings read from MAPINFO were never freed. - Fixed: Episode names were never freed. - Fixed: InverseColormap and GoldColormap were never freed. Since they're always allocated, they can just be arrays rather than pointers. - Fixed: FFont destructor never freed any of the character data or the font's name. - Fixed: Fonts were not freed at exit. - Fixed: FStringTable::LoadLanguage() did not call SC_Close(). - Fixed: When using the -iwad parameter, IdentifyVersion() did not release the buffer it created to hold the parameter's path. SVN r88 (trunk)
2006-05-09 03:40:15 +00:00
Name = NULL;
}
//==========================================================================
//
// FSingleLumpFont :: FSingleLumpFont
//
// Loads a FON1 or FON2 font resource or a single texture.
//
//==========================================================================
FSingleLumpFont::FSingleLumpFont (const char *name, int lump)
{
Name = copystring (name);
// If lump is -1, then the font name is really a texture name, so
// the font should be a redirect to the texture.
// If lump is >= 0, then the font is really a font.
if (lump < 0)
{
int picnum = TexMan.CheckForTexture (name, FTexture::TEX_Any);
if (picnum > 0)
{
CreateFontFromPic (picnum);
}
else
{
I_FatalError ("%s is not a font or texture", name);
}
}
else
{
FMemLump data1 = Wads.ReadLump (lump);
const BYTE *data = (const BYTE *)data1.GetMem();
if (data[0] != 'F' || data[1] != 'O' || data[2] != 'N' ||
(data[3] != '1' && data[3] != '2'))
{
I_FatalError ("%s is not a recognizable font", name);
}
else
{
switch (data[3])
{
case '1':
LoadFON1 (lump, data);
break;
case '2':
LoadFON2 (lump, data);
break;
}
}
}
Next = FirstFont;
FirstFont = this;
}
//==========================================================================
//
// FSingleLumpFont :: CreateFontFromPic
//
//==========================================================================
void FSingleLumpFont::CreateFontFromPic (int picnum)
{
FTexture *pic = TexMan[picnum];
FontHeight = pic->GetHeight ();
SpaceWidth = pic->GetWidth ();
GlobalKerning = 0;
FirstChar = LastChar = 'A';
Chars = new CharData[1];
Chars->Pic = pic;
// Only one color range. Don't bother with the others.
ActiveColors = 0;
}
//==========================================================================
//
// FSingleLumpFont :: LoadFON1
//
// FON1 is used for the console font.
//
//==========================================================================
void FSingleLumpFont::LoadFON1 (int lump, const BYTE *data)
{
double luminosity[256];
int w, h;
Chars = new CharData[256];
w = data[4] + data[5]*256;
h = data[6] + data[7]*256;
FontHeight = h;
SpaceWidth = w;
FirstChar = 0;
LastChar = 255;
GlobalKerning = 0;
PatchRemap = new BYTE[256];
CheckFON1Chars (lump, data, luminosity);
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
BuildTranslations (luminosity, NULL, &TranslationParms[1][0], ActiveColors);
}
//==========================================================================
//
// FSingleLumpFont :: LoadFON2
//
// FON2 is used for everything but the console font. The console font should
// probably use FON2 as well, but oh well.
//
//==========================================================================
void FSingleLumpFont::LoadFON2 (int lump, const BYTE *data)
{
int count, i, totalwidth;
int *widths2;
BYTE identity[256];
double luminosity[256];
WORD *widths;
const BYTE *palette;
const BYTE *data_p;
FontHeight = data[4] + data[5]*256;
FirstChar = data[6];
LastChar = data[7];
ActiveColors = data[10];
count = LastChar - FirstChar + 1;
Chars = new CharData[count];
widths2 = new int[count];
if (data[11] & 1)
{
GlobalKerning = LittleShort(*(SWORD *)&data[12]);
widths = (WORD *)(data + 14);
}
else
{
GlobalKerning = 0;
widths = (WORD *)(data + 12);
}
totalwidth = 0;
if (data[8])
{
totalwidth = LittleShort(widths[0]);
for (i = 0; i < count; ++i)
{
widths2[i] = totalwidth;
}
totalwidth *= count;
palette = (BYTE *)&widths[1];
}
else
{
for (i = 0; i < count; ++i)
{
widths2[i] = LittleShort(widths[i]);
totalwidth += widths2[i];
}
palette = (BYTE *)(widths + i);
}
if (FirstChar <= ' ' && LastChar >= ' ')
{
SpaceWidth = widths2[' '-FirstChar];
}
else if (FirstChar <= 'N' && LastChar >= 'N')
{
SpaceWidth = (widths2['N' - FirstChar] + 1) / 2;
}
else
{
SpaceWidth = totalwidth * 2 / (3 * count);
}
FixupPalette (identity, luminosity, palette, data[9] == 0);
data_p = palette + (ActiveColors+1)*3;
for (i = 0; i < count; ++i)
{
int destSize = widths2[i] * FontHeight;
if (destSize <= 0)
{
Chars[i].Pic = NULL;
}
else
{
Chars[i].Pic = new FFontChar2 (lump, NULL, data_p - data, widths2[i], FontHeight);
do
{
SBYTE code = *data_p++;
if (code >= 0)
{
data_p += code+1;
destSize -= code+1;
}
else if (code != -128)
{
data_p++;
destSize -= (-code)+1;
}
} while (destSize > 0);
}
if (destSize < 0)
{
i += FirstChar;
I_FatalError ("Overflow decompressing char %d (%c) of %s", i, i, Name);
}
}
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
BuildTranslations (luminosity, identity, &TranslationParms[0][0], ActiveColors);
delete[] widths2;
}
//==========================================================================
//
// FSingleLumpFont :: CheckFON1Chars
//
// Scans a FON1 resource for all the color values it uses and sets up
// some tables like SimpleTranslation. Data points to the RLE data for
// the characters. Also sets up the character textures.
//
//==========================================================================
void FSingleLumpFont::CheckFON1Chars (int lump, const BYTE *data, double *luminosity)
{
BYTE used[256], reverse[256];
const BYTE *data_p;
int i, j;
memset (used, 0, 256);
data_p = data + 8;
for (i = 0; i < 256; ++i)
{
int destSize = SpaceWidth * FontHeight;
Chars[i].Pic = new FFontChar2 (lump, PatchRemap, data_p - data, SpaceWidth, FontHeight);
// Advance to next char's data and count the used colors.
do
{
SBYTE code = *data_p++;
if (code >= 0)
{
destSize -= code+1;
while (code-- >= 0)
{
used[*data_p++] = 1;
}
}
else if (code != -128)
{
used[*data_p++] = 1;
destSize -= 1 - code;
}
} while (destSize > 0);
}
memset (PatchRemap, 0, 256);
reverse[0] = 0;
for (i = 1, j = 1; i < 256; ++i)
{
if (used[i])
{
reverse[j++] = i;
}
}
for (i = 1; i < j; ++i)
{
PatchRemap[reverse[i]] = i;
luminosity[i] = (reverse[i] - 1) / 254.0;
}
ActiveColors = j;
}
//==========================================================================
//
// FSingleLumpFont :: FixupPalette
//
// Finds the best matches for the colors used by a FON2 font and sets up
// some tables like SimpleTranslation.
//
//==========================================================================
void FSingleLumpFont::FixupPalette (BYTE *identity, double *luminosity, const BYTE *palette, bool rescale)
{
int i;
double maxlum = 0.0;
double minlum = 100000000.0;
double diver;
identity[0] = 0;
palette += 3; // Skip the transparent color
for (i = 1; i <= ActiveColors; ++i)
{
int r = palette[0];
int g = palette[1];
int b = palette[2];
double lum = r*0.299 + g*0.587 + b*0.114;
palette += 3;
identity[i] = ColorMatcher.Pick (r, g, b);
luminosity[i] = lum;
if (lum > maxlum)
maxlum = lum;
if (lum < minlum)
minlum = lum;
}
if (rescale)
{
diver = 1.0 / (maxlum - minlum);
}
else
{
diver = 1.0 / 255.0;
}
for (i = 1; i <= ActiveColors; ++i)
{
luminosity[i] = (luminosity[i] - minlum) * diver;
}
}
//==========================================================================
//
// FFontChar1 :: FFontChar1
//
// Used by fonts made from textures.
//
//==========================================================================
FFontChar1::FFontChar1 (int sourcelump, const BYTE *sourceremap)
: SourceRemap (sourceremap)
{
UseType = FTexture::TEX_FontChar;
Wads.GetLumpName(Name, sourcelump);
Name[8] = 0;
BaseTexture = TexMan[Name]; // it has already been added!
Name[0] = 0; // Make this texture unnamed
// now copy all the properties from the base texture
CopySize(BaseTexture);
Pixels = NULL;
}
//==========================================================================
//
// FFontChar1 :: GetPixels
//
//==========================================================================
const BYTE *FFontChar1::GetPixels ()
{
if (Pixels == NULL)
{
MakeTexture ();
}
return Pixels;
}
//==========================================================================
//
// FFontChar1 :: MakeTexture
//
//==========================================================================
void FFontChar1::MakeTexture ()
{
// Make the texture as normal, then remap it so that all the colors
// are at the low end of the palette
Pixels = new BYTE[Width*Height];
const BYTE *pix = BaseTexture->GetPixels();
for (int x = 0; x < Width*Height; ++x)
{
Pixels[x] = SourceRemap[pix[x]];
}
}
//==========================================================================
//
// FFontChar1 :: GetColumn
//
//==========================================================================
const BYTE *FFontChar1::GetColumn (unsigned int column, const Span **spans_out)
{
if (Pixels == NULL)
{
MakeTexture ();
}
BaseTexture->GetColumn(column, spans_out);
return Pixels + column*Height;
}
//==========================================================================
//
// FFontChar1 :: Unload
//
//==========================================================================
void FFontChar1::Unload ()
{
if (Pixels != NULL)
{
delete[] Pixels;
Pixels = NULL;
}
}
//==========================================================================
//
// FFontChar1 :: ~FFontChar1
//
//==========================================================================
FFontChar1::~FFontChar1 ()
{
Unload ();
}
//==========================================================================
//
// FFontChar2 :: FFontChar2
//
// Used by FON1 and FON2 fonts.
//
//==========================================================================
FFontChar2::FFontChar2 (int sourcelump, const BYTE *sourceremap, int sourcepos, int width, int height)
: SourceLump (sourcelump), SourcePos (sourcepos), Pixels (0), Spans (0), SourceRemap(sourceremap)
{
UseType = TEX_FontChar;
Width = width;
Height = height;
TopOffset = 0;
LeftOffset = 0;
CalcBitSize ();
}
//==========================================================================
//
// FFontChar2 :: ~FFontChar2
//
//==========================================================================
FFontChar2::~FFontChar2 ()
{
Unload ();
if (Spans != NULL)
{
FreeSpans (Spans);
Spans = NULL;
}
}
//==========================================================================
//
// FFontChar2 :: Unload
//
//==========================================================================
void FFontChar2::Unload ()
{
if (Pixels != NULL)
{
delete[] Pixels;
Pixels = NULL;
}
}
//==========================================================================
//
// FFontChar2 :: GetPixels
//
//==========================================================================
const BYTE *FFontChar2::GetPixels ()
{
if (Pixels == NULL)
{
MakeTexture ();
}
return Pixels;
}
//==========================================================================
//
// FFontChar2 :: GetColumn
//
//==========================================================================
const BYTE *FFontChar2::GetColumn (unsigned int column, const Span **spans_out)
{
if (Pixels == NULL)
{
MakeTexture ();
}
if (column >= Width)
{
column = WidthMask;
}
if (spans_out != NULL)
{
*spans_out = Spans[column];
}
return Pixels + column*Height;
}
//==========================================================================
//
// FFontChar2 :: MakeTexture
//
//==========================================================================
void FFontChar2::MakeTexture ()
{
FWadLump lump = Wads.OpenLumpNum (SourceLump);
int destSize = Width * Height;
BYTE max = 255;
// This is to "fix" bad fonts
{
BYTE buff[8];
lump.Read (buff, 4);
if (buff[3] == '2')
{
lump.Read (buff, 7);
max = buff[6];
lump.Seek (SourcePos - 11, SEEK_CUR);
}
else
{
lump.Seek (SourcePos - 4, SEEK_CUR);
}
}
Pixels = new BYTE[destSize];
int runlen = 0, setlen = 0;
BYTE setval = 0; // Shut up, GCC!
BYTE *dest_p = Pixels;
int dest_adv = Height;
int dest_rew = destSize - 1;
for (int y = Height; y != 0; --y)
{
for (int x = Width; x != 0; )
{
if (runlen != 0)
{
BYTE color;
lump >> color;
*dest_p = MIN (color, max);
if (SourceRemap != NULL)
{
*dest_p = SourceRemap[*dest_p];
}
dest_p += dest_adv;
x--;
runlen--;
}
else if (setlen != 0)
{
*dest_p = setval;
dest_p += dest_adv;
x--;
setlen--;
}
else
{
SBYTE code;
lump >> code;
if (code >= 0)
{
runlen = code + 1;
}
else if (code != -128)
{
BYTE color;
lump >> color;
setlen = (-code) + 1;
setval = MIN (color, max);
if (SourceRemap != NULL)
{
setval = SourceRemap[setval];
}
}
}
}
dest_p -= dest_rew;
}
if (destSize < 0)
{
char name[9];
Wads.GetLumpName (name, SourceLump);
name[8] = 0;
I_FatalError ("The font %s is corrupt", name);
}
if (Spans == NULL)
{
Spans = CreateSpans (Pixels);
}
}
//===========================================================================
//
// Essentially a normal multilump font but
// with an explicit list of character patches
//
//===========================================================================
class FSpecialFont : public FFont
{
public:
FSpecialFont (const char *name, int first, int count, int *lumplist, const bool *notranslate);
};
//==========================================================================
//
// FSpecialFont :: FSpecialFont
//
//==========================================================================
FSpecialFont::FSpecialFont (const char *name, int first, int count, int *lumplist, const bool *notranslate)
{
int i, j, lump;
char buffer[12];
int *charlumps;
BYTE usedcolors[256], identity[256];
double *luminosity;
int maxyoffs;
int TotalColors;
Name=copystring(name);
Chars = new CharData[count];
charlumps = new int[count];
PatchRemap = new BYTE[256];
FirstChar = first;
LastChar = first + count - 1;
FontHeight = 0;
GlobalKerning = false;
memset (usedcolors, 0, 256);
Next = FirstFont;
FirstFont = this;
maxyoffs = 0;
for (i = 0; i < count; i++)
{
lump = charlumps[i] = lumplist[i];
if (lump >= 0)
{
Wads.GetLumpName(buffer, lump);
FTexture *pic = TexMan[TexMan.AddPatch (buffer)];
int height = pic->GetScaledHeight();
int yoffs = pic->GetScaledTopOffset();
if (yoffs > maxyoffs)
{
maxyoffs = yoffs;
}
height += abs (yoffs);
if (height > FontHeight)
{
FontHeight = height;
}
RecordTextureColors (pic, usedcolors);
}
}
// exclude the non-translated colors from the translation calculation
if (notranslate != NULL)
{
for (i = 0; i < 256; i++)
if (notranslate[i])
usedcolors[i] = false;
}
TotalColors = ActiveColors = SimpleTranslation (usedcolors, PatchRemap, identity, &luminosity);
// Map all untranslated colors into the table of used colors
if (notranslate != NULL)
{
for (i = 0; i < 256; i++)
{
if (notranslate[i])
{
PatchRemap[i] = TotalColors;
identity[TotalColors] = i;
TotalColors++;
}
}
}
for (i = 0; i < count; i++)
{
if (charlumps[i] >= 0)
{
Chars[i].Pic = new FFontChar1 (charlumps[i], PatchRemap);
}
else
{
Chars[i].Pic = NULL;
}
}
// Special fonts normally don't have all characters so be careful here!
if ('N'-first>=0 && 'N'-first<count && Chars['N' - first].Pic)
{
SpaceWidth = (Chars['N' - first].Pic->GetScaledWidth() + 1) / 2;
}
else
{
SpaceWidth = 4;
}
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
BuildTranslations (luminosity, identity, &TranslationParms[0][0], TotalColors);
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
// add the untranslated colors to the Ranges tables
if (ActiveColors < TotalColors)
{
for (i = 0; i < NumTextColors; i++)
{
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
FRemapTable *remap = &Ranges[i];
for (j = ActiveColors; j < TotalColors; ++j)
{
- Discovered that Shader Model 1.4 clamps my constants, so I can't use palettes smaller than 256 entries with the shader I wrote for it. Is there a list of gotchas like this listed some where? I'd really like to see it. Well, when compiled with SM2.0, the PalTex shader seems to be every-so- slightly faster on my GF7950GT than the SM1.4 version, so I guess it's a minor win for cards that support it. - Fixed: ST_Endoom() failed to free the bitmap it used. - Added the DTA_ColorOverlay attribute to blend a color with the texture being drawn. For software, this (currently) only works with black. For hardware, it works with any color. The motiviation for this was so I could rewrite the status bar calls that passed DIM_MAP to DTA_Translation to draw darker icons into something that didn't require making a whole new remap table. - After having an "OMG! How could I have been so stupid?" moment, I have removed the off-by-one check from D3DFB. I had thought the off-by-one error was caused by rounding errors by the shader hardware. Not so. Rather, I wasn't sampling what I thought I was sampling. A texture that uses palette index 255 passes the value 1.0 to the shader. The shader needs to adjust the range of its palette indexes, or it will end up trying to read color 256 from the palette texture when it should be reading color 255. Doh! - The TranslationToTable() function has been added to map from translation numbers used by actors to the tables those numbers represent. This function performs validation for the input and returns NULL if the input value is invalid. - Major changes to the way translation tables work: No longer are they each a 256-byte array. Instead, the FRemapTable structure is used to represent each one. It includes a remap array for the software renderer, a palette array for a hardware renderer, and a native texture pointer for D3DFB. The translationtables array itself is now an array of TArrays that point to the real tables. The DTA_Translation attribute must also be passed a pointer to a FRemapTable, not a byte array as previously. - Modified DFrameBuffer::DrawRateStuff() so that it can do its thing properly for D3DFB's 2D mode. Before, any fullscreen graphics (like help images) covered it up. SVN r640 (trunk)
2007-12-26 04:42:15 +00:00
remap->Remap[j] = identity[j];
remap->Palette[j] = GPalette.BaseColors[j];
}
}
}
ActiveColors = TotalColors;
delete[] luminosity;
delete[] charlumps;
}
//==========================================================================
//
// V_InitCustomFonts
//
// Initialize a list of custom multipatch fonts
//
//==========================================================================
void V_InitCustomFonts()
{
int lumplist[256];
bool notranslate[256];
char namebuffer[16], templatebuf[16];
int i;
2006-04-23 09:02:19 +00:00
int llump,lastlump=0;
int format;
int start;
int first;
int count;
while ((llump = Wads.FindLump ("FONTDEFS", &lastlump)) != -1)
{
SC_OpenLumpNum (llump, "FONTDEFS");
while (SC_GetString())
{
memset (lumplist, -1, sizeof(lumplist));
memset (notranslate, 0, sizeof(notranslate));
strncpy (namebuffer, sc_String, 15);
namebuffer[15] = 0;
format = 0;
start = 33;
first = 33;
count = 223;
SC_MustGetStringName ("{");
while (!SC_CheckString ("}"))
{
SC_MustGetString();
if (SC_Compare ("TEMPLATE"))
{
if (format == 2) goto wrong;
SC_MustGetString();
strncpy (templatebuf, sc_String, 16);
templatebuf[15] = 0;
format = 1;
}
else if (SC_Compare ("BASE"))
{
if (format == 2) goto wrong;
SC_MustGetNumber();
start = sc_Number;
format = 1;
}
else if (SC_Compare ("FIRST"))
{
if (format == 2) goto wrong;
SC_MustGetNumber();
first = sc_Number;
format = 1;
}
else if (SC_Compare ("COUNT"))
{
if (format == 2) goto wrong;
SC_MustGetNumber();
count = sc_Number;
format = 1;
}
else if (SC_Compare ("NOTRANSLATION"))
{
if (format == 1) goto wrong;
while (SC_CheckNumber() && !sc_Crossed)
{
if (sc_Number >= 0 && sc_Number < 256)
notranslate[sc_Number] = true;
}
format=2;
}
else
{
if (format == 1) goto wrong;
int *p = &lumplist[*(unsigned char*)sc_String];
SC_MustGetString();
*p = Wads.CheckNumForName (sc_String);
format=2;
}
}
if (format==1)
{
new FFont (namebuffer, templatebuf, first, count, start);
}
else if (format==2)
{
for (i = 0; i < 256; i++)
{
if (lumplist[i] != -1)
{
first = i;
break;
}
}
for (i = 255; i >= 0; i--)
{
if (lumplist[i] != -1)
{
count = i - first + 1;
break;
}
}
if (count>0)
{
new FSpecialFont (namebuffer, first, count, &lumplist[first], notranslate);
}
}
else goto wrong;
}
SC_Close ();
}
return;
wrong:
SC_ScriptError ("Invalid combination of properties in font '%s'", namebuffer);
}
//==========================================================================
//
// V_InitFontColors
//
// Reads the list of color translation definitions into memory.
//
//==========================================================================
void V_InitFontColors ()
{
TArray<FName> names;
int lump, lastlump = 0;
TranslationParm tparm = { 0 }; // Silence GCC
TArray<TranslationParm> parms;
TArray<TempParmInfo> parminfo;
TArray<TempColorInfo> colorinfo;
int c, parmchoice;
TempParmInfo info;
TempColorInfo cinfo;
2007-01-09 04:40:58 +00:00
PalEntry logcolor;
unsigned int i, j;
int k, index;
info.Index = -1;
while ((lump = Wads.FindLump ("TEXTCOLO", &lastlump)) != -1)
{
SC_OpenLumpNum (lump, "textcolors.txt");
while (SC_GetString())
{
names.Clear();
2007-01-09 04:40:58 +00:00
logcolor = DEFAULT_LOG_COLOR;
// Everything until the '{' is considered a valid name for the
// color range.
names.Push (sc_String);
while (SC_MustGetString(), !SC_Compare ("{"))
{
if (names[0] == NAME_Untranslated)
{
SC_ScriptError ("The \"untranslated\" color may not have any other names");
}
names.Push (sc_String);
}
parmchoice = 0;
info.StartParm[0] = parms.Size();
info.StartParm[1] = 0;
info.ParmLen[1] = info.ParmLen[0] = 0;
tparm.RangeEnd = tparm.RangeStart = -1;
while (SC_MustGetString(), !SC_Compare ("}"))
{
if (SC_Compare ("Console:"))
{
if (parmchoice == 1)
{
SC_ScriptError ("Each color may only have one set of console ranges");
}
parmchoice = 1;
info.StartParm[1] = parms.Size();
info.ParmLen[0] = info.StartParm[1] - info.StartParm[0];
tparm.RangeEnd = tparm.RangeStart = -1;
}
2007-01-09 04:40:58 +00:00
else if (SC_Compare ("Flat:"))
{
SC_MustGetString();
logcolor = V_GetColor (NULL, sc_String);
}
else
{
// Get first color
c = V_GetColor (NULL, sc_String);
tparm.Start[0] = RPART(c);
tparm.Start[1] = GPART(c);
tparm.Start[2] = BPART(c);
// Get second color
SC_MustGetString();
c = V_GetColor (NULL, sc_String);
tparm.End[0] = RPART(c);
tparm.End[1] = GPART(c);
tparm.End[2] = BPART(c);
// Check for range specifier
if (SC_CheckNumber())
{
if (tparm.RangeStart == -1 && sc_Number != 0)
{
SC_ScriptError ("The first color range must start at position 0");
}
if (sc_Number < 0 || sc_Number > 256)
{
SC_ScriptError ("The color range must be within positions [0,256]");
}
if (sc_Number <= tparm.RangeEnd)
{
SC_ScriptError ("The color range must not start before the previous one ends");
}
tparm.RangeStart = sc_Number;
SC_MustGetNumber();
if (sc_Number < 0 || sc_Number > 256)
{
SC_ScriptError ("The color range must be within positions [0,256]");
}
if (sc_Number <= tparm.RangeStart)
{
SC_ScriptError ("The color range end position must be larger than the start position");
}
tparm.RangeEnd = sc_Number;
}
else
{
tparm.RangeStart = tparm.RangeEnd + 1;
tparm.RangeEnd = 256;
if (tparm.RangeStart >= tparm.RangeEnd)
{
SC_ScriptError ("The color has too many ranges");
}
}
parms.Push (tparm);
}
}
info.ParmLen[parmchoice] = parms.Size() - info.StartParm[parmchoice];
if (info.ParmLen[0] == 0)
{
if (names[0] != NAME_Untranslated)
{
SC_ScriptError ("There must be at least one normal range for a color");
}
}
else
{
if (names[0] == NAME_Untranslated)
{
SC_ScriptError ("The \"untranslated\" color must be left undefined");
}
}
if (info.ParmLen[1] == 0 && names[0] != NAME_Untranslated)
{ // If a console translation is unspecified, make it white, since the console
// font has no color information stored with it.
tparm.RangeStart = 0;
tparm.RangeEnd = 256;
tparm.Start[2] = tparm.Start[1] = tparm.Start[0] = 0;
tparm.End[2] = tparm.End[1] = tparm.End[0] = 255;
info.StartParm[1] = parms.Push (tparm);
info.ParmLen[1] = 1;
}
cinfo.ParmInfo = parminfo.Push (info);
// Record this color information for each name it goes by
for (i = 0; i < names.Size(); ++i)
{
// Redefine duplicates in-place
for (j = 0; j < colorinfo.Size(); ++j)
{
if (colorinfo[j].Name == names[i])
{
colorinfo[j].ParmInfo = cinfo.ParmInfo;
2007-01-09 04:40:58 +00:00
colorinfo[j].LogColor = logcolor;
break;
}
}
if (j == colorinfo.Size())
{
cinfo.Name = names[i];
2007-01-09 04:40:58 +00:00
cinfo.LogColor = logcolor;
colorinfo.Push (cinfo);
}
}
}
SC_Close ();
}
// Make permananent copies of all the color information we found.
for (i = 0, index = 0; i < colorinfo.Size(); ++i)
{
TranslationMap tmap;
TempParmInfo *pinfo;
tmap.Name = colorinfo[i].Name;
pinfo = &parminfo[colorinfo[i].ParmInfo];
if (pinfo->Index < 0)
{
// Write out the set of remappings for this color.
for (k = 0; k < 2; ++k)
{
for (j = 0; j < pinfo->ParmLen[k]; ++j)
{
TranslationParms[k].Push (parms[pinfo->StartParm[k] + j]);
}
}
2007-01-09 04:40:58 +00:00
TranslationColors.Push (colorinfo[i].LogColor);
pinfo->Index = index++;
}
tmap.Number = pinfo->Index;
TranslationLookup.Push (tmap);
}
// Leave a terminating marker at the ends of the lists.
tparm.RangeStart = -1;
TranslationParms[0].Push (tparm);
TranslationParms[1].Push (tparm);
// Sort the translation lookups for fast binary searching.
qsort (&TranslationLookup[0], TranslationLookup.Size(), sizeof(TranslationLookup[0]), TranslationMapCompare);
NumTextColors = index;
assert (NumTextColors >= NUM_TEXT_COLORS);
}
//==========================================================================
//
// TranslationMapCompare
//
//==========================================================================
static int STACK_ARGS TranslationMapCompare (const void *a, const void *b)
{
return int(((const TranslationMap *)a)->Name) - int(((const TranslationMap *)b)->Name);
}
//==========================================================================
//
// V_FindFontColor
//
// Returns the color number for a particular named color range.
//
//==========================================================================
2006-08-31 00:16:12 +00:00
EColorRange V_FindFontColor (FName name)
{
2006-08-31 00:16:12 +00:00
int min = 0, max = TranslationLookup.Size() - 1;
while (min <= max)
{
unsigned int mid = (min + max) / 2;
const TranslationMap *probe = &TranslationLookup[mid];
if (probe->Name == name)
{
return EColorRange(probe->Number);
}
else if (probe->Name < name)
{
min = mid + 1;
}
else
{
max = mid - 1;
}
}
return CR_UNTRANSLATED;
}
2007-01-09 04:40:58 +00:00
//==========================================================================
//
// V_LogColorFromColorRange
//
// Returns the color to use for text in the startup/error log window.
//
//==========================================================================
PalEntry V_LogColorFromColorRange (EColorRange range)
{
if ((unsigned int)range >= TranslationColors.Size())
2007-01-09 04:40:58 +00:00
{ // Return default color
return DEFAULT_LOG_COLOR;
}
return TranslationColors[range];
}
//==========================================================================
//
// V_ParseFontColor
//
// Given a pointer to a color identifier (presumably just after a color
// escape character), return the color it identifies and advances
// color_value to just past it.
//
//==========================================================================
EColorRange V_ParseFontColor (const BYTE *&color_value, int normalcolor, int boldcolor)
{
const BYTE *ch = color_value;
int newcolor = *ch++;
if (newcolor == '-') // Normal
{
newcolor = normalcolor;
}
else if (newcolor == '+') // Bold
{
newcolor = boldcolor;
}
else if (newcolor == '[') // Named
{
const BYTE *namestart = ch;
while (*ch != ']' && *ch != '\0')
{
ch++;
}
FName rangename((const char *)namestart, int(ch - namestart), true);
if (*ch != '\0')
{
ch++;
}
newcolor = V_FindFontColor (rangename);
}
else if (newcolor >= 'A' && newcolor < NUM_TEXT_COLORS + 'A') // Standard, uppercase
{
newcolor -= 'A';
}
else if (newcolor >= 'a' && newcolor < NUM_TEXT_COLORS + 'a') // Standard, lowercase
{
newcolor -= 'a';
}
else // Incomplete!
{
color_value = ch - (*ch == '\0');
return CR_UNDEFINED;
}
color_value = ch;
return EColorRange(newcolor);
}
//==========================================================================
//
// V_InitFonts
//
//==========================================================================
void V_InitFonts()
{
V_InitFontColors ();
V_InitCustomFonts ();
// load the heads-up font
if (!(SmallFont = FFont::FindFont("SmallFont")))
{
if (Wads.CheckNumForName ("FONTA_S") >= 0)
{
SmallFont = new FFont ("SmallFont", "FONTA%02u", HU_FONTSTART, HU_FONTSIZE, 1);
}
else
{
SmallFont = new FFont ("SmallFont", "STCFN%.3d", HU_FONTSTART, HU_FONTSIZE, HU_FONTSTART);
}
}
if (!(SmallFont2=FFont::FindFont("SmallFont2")))
{
if (Wads.CheckNumForName ("STBFN033", ns_graphics) >= 0)
{
SmallFont2 = new FFont ("SmallFont2", "STBFN%.3d", HU_FONTSTART, HU_FONTSIZE, HU_FONTSTART);
}
else
{
SmallFont2 = SmallFont;
}
}
if (!(BigFont=FFont::FindFont("BigFont")))
{
if (gameinfo.gametype == GAME_Doom)
{
BigFont = new FSingleLumpFont ("BigFont", Wads.GetNumForName ("DBIGFONT"));
}
else if (gameinfo.gametype == GAME_Strife)
{
BigFont = new FSingleLumpFont ("BigFont", Wads.GetNumForName ("SBIGFONT"));
}
else
{
BigFont = new FFont ("BigFont", "FONTB%02u", HU_FONTSTART, HU_FONTSIZE, 1);
}
}
if (!(ConFont=FFont::FindFont("ConsoleFont")))
{
ConFont = new FSingleLumpFont ("ConsoleFont", Wads.GetNumForName ("CONFONT"));
}
}