fluidsynth/src/utils/fluid_sys.c
2017-10-15 18:42:44 +02:00

1312 lines
30 KiB
C

/* FluidSynth - A Software Synthesizer
*
* Copyright (C) 2003 Peter Hanappe and others.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free
* Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301, USA
*/
#include "fluid_sys.h"
#if WITH_READLINE
#include <readline/readline.h>
#include <readline/history.h>
#endif
#ifdef DBUS_SUPPORT
#include "fluid_rtkit.h"
#endif
/* WIN32 HACK - Flag used to differentiate between a file descriptor and a socket.
* Should work, so long as no SOCKET or file descriptor ends up with this bit set. - JG */
#define WIN32_SOCKET_FLAG 0x40000000
/* SCHED_FIFO priority for high priority timer threads */
#define FLUID_SYS_TIMER_HIGH_PRIO_LEVEL 10
typedef struct
{
fluid_thread_func_t func;
void *data;
int prio_level;
} fluid_thread_info_t;
struct _fluid_timer_t
{
long msec;
fluid_timer_callback_t callback;
void *data;
fluid_thread_t *thread;
int cont;
int auto_destroy;
};
struct _fluid_server_socket_t
{
fluid_socket_t socket;
fluid_thread_t *thread;
int cont;
fluid_server_func_t func;
void *data;
};
static int fluid_istream_gets(fluid_istream_t in, char* buf, int len);
static char fluid_errbuf[512]; /* buffer for error message */
static fluid_log_function_t fluid_log_function[LAST_LOG_LEVEL];
static void* fluid_log_user_data[LAST_LOG_LEVEL];
static int fluid_log_initialized = 0;
static char* fluid_libname = "fluidsynth";
void fluid_sys_config()
{
fluid_log_config();
}
unsigned int fluid_debug_flags = 0;
#if DEBUG
/*
* fluid_debug
*/
int fluid_debug(int level, char * fmt, ...)
{
if (fluid_debug_flags & level) {
fluid_log_function_t fun;
va_list args;
va_start (args, fmt);
vsnprintf(fluid_errbuf, sizeof (fluid_errbuf), fmt, args);
va_end (args);
fun = fluid_log_function[FLUID_DBG];
if (fun != NULL) {
(*fun)(level, fluid_errbuf, fluid_log_user_data[FLUID_DBG]);
}
}
return 0;
}
#endif
/**
* Installs a new log function for a specified log level.
* @param level Log level to install handler for.
* @param fun Callback function handler to call for logged messages
* @param data User supplied data pointer to pass to log function
* @return The previously installed function.
*/
fluid_log_function_t
fluid_set_log_function(int level, fluid_log_function_t fun, void* data)
{
fluid_log_function_t old = NULL;
if ((level >= 0) && (level < LAST_LOG_LEVEL)) {
old = fluid_log_function[level];
fluid_log_function[level] = fun;
fluid_log_user_data[level] = data;
}
return old;
}
/**
* Default log function which prints to the stderr.
* @param level Log level
* @param message Log message
* @param data User supplied data (not used)
*/
void
fluid_default_log_function(int level, char* message, void* data)
{
FILE* out;
#if defined(WIN32)
out = stdout;
#else
out = stderr;
#endif
if (fluid_log_initialized == 0) {
fluid_log_config();
}
switch (level) {
case FLUID_PANIC:
FLUID_FPRINTF(out, "%s: panic: %s\n", fluid_libname, message);
break;
case FLUID_ERR:
FLUID_FPRINTF(out, "%s: error: %s\n", fluid_libname, message);
break;
case FLUID_WARN:
FLUID_FPRINTF(out, "%s: warning: %s\n", fluid_libname, message);
break;
case FLUID_INFO:
FLUID_FPRINTF(out, "%s: %s\n", fluid_libname, message);
break;
case FLUID_DBG:
#if DEBUG
FLUID_FPRINTF(out, "%s: debug: %s\n", fluid_libname, message);
#endif
break;
default:
FLUID_FPRINTF(out, "%s: %s\n", fluid_libname, message);
break;
}
fflush(out);
}
/*
* fluid_init_log
*/
void
fluid_log_config(void)
{
if (fluid_log_initialized == 0) {
fluid_log_initialized = 1;
if (fluid_log_function[FLUID_PANIC] == NULL) {
fluid_set_log_function(FLUID_PANIC, fluid_default_log_function, NULL);
}
if (fluid_log_function[FLUID_ERR] == NULL) {
fluid_set_log_function(FLUID_ERR, fluid_default_log_function, NULL);
}
if (fluid_log_function[FLUID_WARN] == NULL) {
fluid_set_log_function(FLUID_WARN, fluid_default_log_function, NULL);
}
if (fluid_log_function[FLUID_INFO] == NULL) {
fluid_set_log_function(FLUID_INFO, fluid_default_log_function, NULL);
}
if (fluid_log_function[FLUID_DBG] == NULL) {
fluid_set_log_function(FLUID_DBG, fluid_default_log_function, NULL);
}
}
}
/**
* Print a message to the log.
* @param level Log level (#fluid_log_level).
* @param fmt Printf style format string for log message
* @param ... Arguments for printf 'fmt' message string
* @return Always returns #FLUID_FAILED
*/
int
fluid_log(int level, const char* fmt, ...)
{
fluid_log_function_t fun = NULL;
va_list args;
va_start (args, fmt);
vsnprintf(fluid_errbuf, sizeof (fluid_errbuf), fmt, args);
va_end (args);
if ((level >= 0) && (level < LAST_LOG_LEVEL)) {
fun = fluid_log_function[level];
if (fun != NULL) {
(*fun)(level, fluid_errbuf, fluid_log_user_data[level]);
}
}
return FLUID_FAILED;
}
/**
* An improved strtok, still trashes the input string, but is portable and
* thread safe. Also skips token chars at beginning of token string and never
* returns an empty token (will return NULL if source ends in token chars though).
* NOTE: NOT part of public API
* @internal
* @param str Pointer to a string pointer of source to tokenize. Pointer gets
* updated on each invocation to point to beginning of next token. Note that
* token char get's overwritten with a 0 byte. String pointer is set to NULL
* when final token is returned.
* @param delim String of delimiter chars.
* @return Pointer to the next token or NULL if no more tokens.
*/
char *fluid_strtok (char **str, char *delim)
{
char *s, *d, *token;
char c;
if (str == NULL || delim == NULL || !*delim)
{
FLUID_LOG(FLUID_ERR, "Null pointer");
return NULL;
}
s = *str;
if (!s) return NULL; /* str points to a NULL pointer? (tokenize already ended) */
/* skip delimiter chars at beginning of token */
do
{
c = *s;
if (!c) /* end of source string? */
{
*str = NULL;
return NULL;
}
for (d = delim; *d; d++) /* is source char a token char? */
{
if (c == *d) /* token char match? */
{
s++; /* advance to next source char */
break;
}
}
} while (*d); /* while token char match */
token = s; /* start of token found */
/* search for next token char or end of source string */
for (s = s+1; *s; s++)
{
c = *s;
for (d = delim; *d; d++) /* is source char a token char? */
{
if (c == *d) /* token char match? */
{
*s = '\0'; /* overwrite token char with zero byte to terminate token */
*str = s+1; /* update str to point to beginning of next token */
return token;
}
}
}
/* we get here only if source string ended */
*str = NULL;
return token;
}
/*
* fluid_error
*/
char*
fluid_error()
{
return fluid_errbuf;
}
/**
* Check if a file is a MIDI file.
* @param filename Path to the file to check
* @return TRUE if it could be a MIDI file, FALSE otherwise
*
* The current implementation only checks for the "MThd" header in the file.
* It is useful only to distinguish between SoundFont and MIDI files.
*/
int
fluid_is_midifile(const char *filename)
{
FILE* fp = fopen(filename, "rb");
char id[4];
if (fp == NULL) {
return 0;
}
if (fread((void*) id, 1, 4, fp) != 4) {
fclose(fp);
return 0;
}
fclose(fp);
return strncmp(id, "MThd", 4) == 0;
}
/**
* Check if a file is a SoundFont file.
* @param filename Path to the file to check
* @return TRUE if it could be a SoundFont, FALSE otherwise
*
* The current implementation only checks for the "RIFF" header in the file.
* It is useful only to distinguish between SoundFont and MIDI files.
*/
int
fluid_is_soundfont(const char *filename)
{
FILE* fp = fopen(filename, "rb");
char id[4];
if (fp == NULL) {
return 0;
}
if (fread((void*) id, 1, 4, fp) != 4) {
fclose(fp);
return 0;
}
fclose(fp);
return strncmp(id, "RIFF", 4) == 0;
}
/**
* Get time in milliseconds to be used in relative timing operations.
* @return Unix time in milliseconds.
*/
unsigned int fluid_curtime(void)
{
static glong initial_seconds = 0;
GTimeVal timeval;
if (initial_seconds == 0) {
g_get_current_time (&timeval);
initial_seconds = timeval.tv_sec;
}
g_get_current_time (&timeval);
return (unsigned int)((timeval.tv_sec - initial_seconds) * 1000.0 + timeval.tv_usec / 1000.0);
}
/**
* Get time in microseconds to be used in relative timing operations.
* @return Unix time in microseconds.
*/
double
fluid_utime (void)
{
GTimeVal timeval;
g_get_current_time (&timeval);
return (timeval.tv_sec * 1000000.0 + timeval.tv_usec);
}
#if defined(WIN32) /* Windoze specific stuff */
void
fluid_thread_self_set_prio (int prio_level)
{
if (prio_level > 0)
SetThreadPriority (GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
}
#elif defined(__OS2__) /* OS/2 specific stuff */
void
fluid_thread_self_set_prio (int prio_level)
{
if (prio_level > 0)
DosSetPriority (PRTYS_THREAD, PRTYC_REGULAR, PRTYD_MAXIMUM, 0);
}
#else /* POSIX stuff.. Nice POSIX.. Good POSIX. */
void
fluid_thread_self_set_prio (int prio_level)
{
struct sched_param priority;
if (prio_level > 0)
{
memset(&priority, 0, sizeof(priority));
priority.sched_priority = prio_level;
if (pthread_setschedparam (pthread_self (), SCHED_FIFO, &priority) == 0) {
return;
}
#ifdef DBUS_SUPPORT
/* Try to gain high priority via rtkit */
if (fluid_rtkit_make_realtime(0, prio_level) == 0) {
return;
}
#endif
FLUID_LOG(FLUID_WARN, "Failed to set thread to high priority");
}
}
#ifdef FPE_CHECK
/***************************************************************
*
* Floating point exceptions
*
* The floating point exception functions were taken from Ircam's
* jMax source code. http://www.ircam.fr/jmax
*
* FIXME: check in config for i386 machine
*
* Currently not used. I leave the code here in case we want to pick
* this up again some time later.
*/
/* Exception flags */
#define _FPU_STATUS_IE 0x001 /* Invalid Operation */
#define _FPU_STATUS_DE 0x002 /* Denormalized Operand */
#define _FPU_STATUS_ZE 0x004 /* Zero Divide */
#define _FPU_STATUS_OE 0x008 /* Overflow */
#define _FPU_STATUS_UE 0x010 /* Underflow */
#define _FPU_STATUS_PE 0x020 /* Precision */
#define _FPU_STATUS_SF 0x040 /* Stack Fault */
#define _FPU_STATUS_ES 0x080 /* Error Summary Status */
/* Macros for accessing the FPU status word. */
/* get the FPU status */
#define _FPU_GET_SW(sw) __asm__ ("fnstsw %0" : "=m" (*&sw))
/* clear the FPU status */
#define _FPU_CLR_SW() __asm__ ("fnclex" : : )
/* Purpose:
* Checks, if the floating point unit has produced an exception, print a message
* if so and clear the exception.
*/
unsigned int fluid_check_fpe_i386(char* explanation)
{
unsigned int s;
_FPU_GET_SW(s);
_FPU_CLR_SW();
s &= _FPU_STATUS_IE | _FPU_STATUS_DE | _FPU_STATUS_ZE | _FPU_STATUS_OE | _FPU_STATUS_UE;
if (s)
{
FLUID_LOG(FLUID_WARN, "FPE exception (before or in %s): %s%s%s%s%s", explanation,
(s & _FPU_STATUS_IE) ? "Invalid operation " : "",
(s & _FPU_STATUS_DE) ? "Denormal number " : "",
(s & _FPU_STATUS_ZE) ? "Zero divide " : "",
(s & _FPU_STATUS_OE) ? "Overflow " : "",
(s & _FPU_STATUS_UE) ? "Underflow " : "");
}
return s;
}
/* Purpose:
* Clear floating point exception.
*/
void fluid_clear_fpe_i386 (void)
{
_FPU_CLR_SW();
}
#endif // ifdef FPE_CHECK
#endif // #else (its POSIX)
/***************************************************************
*
* Profiling (Linux, i586 only)
*
*/
#if WITH_PROFILING
fluid_profile_data_t fluid_profile_data[] =
{
{ FLUID_PROF_WRITE, "fluid_synth_write_* ", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_ONE_BLOCK, "fluid_synth_one_block ", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_ONE_BLOCK_CLEAR, "fluid_synth_one_block:clear ", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_ONE_BLOCK_VOICE, "fluid_synth_one_block:one voice ", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_ONE_BLOCK_VOICES, "fluid_synth_one_block:all voices", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_ONE_BLOCK_REVERB, "fluid_synth_one_block:reverb ", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_ONE_BLOCK_CHORUS, "fluid_synth_one_block:chorus ", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_VOICE_NOTE, "fluid_voice:note ", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_VOICE_RELEASE, "fluid_voice:release ", 1e10, 0.0, 0.0, 0},
{ FLUID_PROF_LAST, "last", 1e100, 0.0, 0.0, 0}
};
void fluid_profiling_print(void)
{
int i;
printf("fluid_profiling_print\n");
FLUID_LOG(FLUID_INFO, "Estimated times: min/avg/max (micro seconds)");
for (i = 0; i < FLUID_PROF_LAST; i++) {
if (fluid_profile_data[i].count > 0) {
FLUID_LOG(FLUID_INFO, "%s: %.3f/%.3f/%.3f",
fluid_profile_data[i].description,
fluid_profile_data[i].min,
fluid_profile_data[i].total / fluid_profile_data[i].count,
fluid_profile_data[i].max);
} else {
FLUID_LOG(FLUID_DBG, "%s: no profiling available", fluid_profile_data[i].description);
}
}
}
#endif /* WITH_PROFILING */
/***************************************************************
*
* Threads
*
*/
#if OLD_GLIB_THREAD_API
/* Rather than inline this one, we just declare it as a function, to prevent
* GCC warning about inline failure. */
fluid_cond_t *
new_fluid_cond (void)
{
if (!g_thread_supported ()) g_thread_init (NULL);
return g_cond_new ();
}
#endif
static gpointer
fluid_thread_high_prio (gpointer data)
{
fluid_thread_info_t *info = data;
fluid_thread_self_set_prio (info->prio_level);
info->func (info->data);
FLUID_FREE (info);
return NULL;
}
/**
* Create a new thread.
* @param func Function to execute in new thread context
* @param data User defined data to pass to func
* @param prio_level Priority level. If greater than 0 then high priority scheduling will
* be used, with the given priority level (used by pthreads only). 0 uses normal scheduling.
* @param detach If TRUE, 'join' does not work and the thread destroys itself when finished.
* @return New thread pointer or NULL on error
*/
fluid_thread_t *
new_fluid_thread (const char *name, fluid_thread_func_t func, void *data, int prio_level, int detach)
{
GThread *thread;
fluid_thread_info_t *info;
GError *err = NULL;
g_return_val_if_fail (func != NULL, NULL);
#if OLD_GLIB_THREAD_API
/* Make sure g_thread_init has been called.
* FIXME - Probably not a good idea in a shared library,
* but what can we do *and* remain backwards compatible? */
if (!g_thread_supported ()) g_thread_init (NULL);
#endif
if (prio_level > 0)
{
info = FLUID_NEW (fluid_thread_info_t);
if (!info)
{
FLUID_LOG(FLUID_ERR, "Out of memory");
return NULL;
}
info->func = func;
info->data = data;
info->prio_level = prio_level;
#if NEW_GLIB_THREAD_API
thread = g_thread_try_new (name, fluid_thread_high_prio, info, &err);
#else
thread = g_thread_create (fluid_thread_high_prio, info, detach == FALSE, &err);
#endif
}
#if NEW_GLIB_THREAD_API
else thread = g_thread_try_new (name, (GThreadFunc)func, data, &err);
#else
else thread = g_thread_create ((GThreadFunc)func, data, detach == FALSE, &err);
#endif
if (!thread)
{
FLUID_LOG(FLUID_ERR, "Failed to create the thread: %s",
fluid_gerror_message (err));
g_clear_error (&err);
return NULL;
}
#if NEW_GLIB_THREAD_API
if (detach) g_thread_unref (thread); // Release thread reference, if caller wants to detach
#endif
return thread;
}
/**
* Frees data associated with a thread (does not actually stop thread).
* @param thread Thread to free
*/
void
delete_fluid_thread(fluid_thread_t* thread)
{
/* Threads free themselves when they quit, nothing to do */
}
/**
* Join a thread (wait for it to terminate).
* @param thread Thread to join
* @return FLUID_OK
*/
int
fluid_thread_join(fluid_thread_t* thread)
{
g_thread_join (thread);
return FLUID_OK;
}
void
fluid_timer_run (void *data)
{
fluid_timer_t *timer;
int count = 0;
int cont;
long start;
long delay;
timer = (fluid_timer_t *)data;
/* keep track of the start time for absolute positioning */
start = fluid_curtime ();
while (timer->cont)
{
cont = (*timer->callback)(timer->data, fluid_curtime() - start);
count++;
if (!cont) break;
/* to avoid incremental time errors, calculate the delay between
two callbacks bringing in the "absolute" time (count *
timer->msec) */
delay = (count * timer->msec) - (fluid_curtime() - start);
if (delay > 0) g_usleep (delay * 1000);
}
FLUID_LOG (FLUID_DBG, "Timer thread finished");
if (timer->auto_destroy)
FLUID_FREE (timer);
return;
}
fluid_timer_t*
new_fluid_timer (int msec, fluid_timer_callback_t callback, void* data,
int new_thread, int auto_destroy, int high_priority)
{
fluid_timer_t *timer;
timer = FLUID_NEW (fluid_timer_t);
if (timer == NULL)
{
FLUID_LOG (FLUID_ERR, "Out of memory");
return NULL;
}
timer->msec = msec;
timer->callback = callback;
timer->data = data;
timer->cont = TRUE ;
timer->thread = NULL;
timer->auto_destroy = auto_destroy;
if (new_thread)
{
timer->thread = new_fluid_thread ("timer", fluid_timer_run, timer, high_priority
? FLUID_SYS_TIMER_HIGH_PRIO_LEVEL : 0, FALSE);
if (!timer->thread)
{
FLUID_FREE (timer);
return NULL;
}
}
else fluid_timer_run (timer); /* Run directly, instead of as a separate thread */
return timer;
}
int
delete_fluid_timer (fluid_timer_t *timer)
{
int auto_destroy = timer->auto_destroy;
timer->cont = 0;
fluid_timer_join (timer);
/* Shouldn't access timer now if auto_destroy enabled, since it has been destroyed */
if (!auto_destroy) FLUID_FREE (timer);
return FLUID_OK;
}
int
fluid_timer_join (fluid_timer_t *timer)
{
int auto_destroy;
if (timer->thread)
{
auto_destroy = timer->auto_destroy;
fluid_thread_join (timer->thread);
if (!auto_destroy) timer->thread = NULL;
}
return FLUID_OK;
}
/***************************************************************
*
* Sockets and I/O
*
*/
/**
* Get standard in stream handle.
* @return Standard in stream.
*/
fluid_istream_t
fluid_get_stdin (void)
{
return STDIN_FILENO;
}
/**
* Get standard output stream handle.
* @return Standard out stream.
*/
fluid_ostream_t
fluid_get_stdout (void)
{
return STDOUT_FILENO;
}
/**
* Read a line from an input stream.
* @return 0 if end-of-stream, -1 if error, non zero otherwise
*/
int
fluid_istream_readline (fluid_istream_t in, fluid_ostream_t out, char* prompt,
char* buf, int len)
{
#if WITH_READLINE
if (in == fluid_get_stdin ())
{
char *line;
line = readline (prompt);
if (line == NULL)
return -1;
FLUID_SNPRINTF (buf, len, "%s", line);
buf[len - 1] = 0;
free(line);
return 1;
}
else
#endif
{
fluid_ostream_printf (out, "%s", prompt);
return fluid_istream_gets (in, buf, len);
}
}
/**
* Reads a line from an input stream (socket).
* @param in The input socket
* @param buf Buffer to store data to
* @param len Maximum length to store to buf
* @return 1 if a line was read, 0 on end of stream, -1 on error
*/
static int
fluid_istream_gets (fluid_istream_t in, char* buf, int len)
{
char c;
int n;
buf[len - 1] = 0;
while (--len > 0)
{
#ifndef WIN32
n = read(in, &c, 1);
if (n == -1) return -1;
#else
/* Handle read differently depending on if its a socket or file descriptor */
if (!(in & WIN32_SOCKET_FLAG))
{
n = read(in, &c, 1);
if (n == -1) return -1;
}
else
{
n = recv(in & ~WIN32_SOCKET_FLAG, &c, 1, 0);
if (n == SOCKET_ERROR) return -1;
}
#endif
if (n == 0)
{
*buf++ = 0;
return 0;
}
if (c == '\n')
{
*buf++ = 0;
return 1;
}
/* Store all characters excluding CR */
if (c != '\r') *buf++ = c;
}
return -1;
}
/**
* Send a printf style string with arguments to an output stream (socket).
* @param out Output stream
* @param format printf style format string
* @param ... Arguments for the printf format string
* @return Number of bytes written or -1 on error
*/
int
fluid_ostream_printf (fluid_ostream_t out, char* format, ...)
{
char buf[4096];
va_list args;
int len;
va_start (args, format);
len = vsnprintf (buf, 4095, format, args);
va_end (args);
if (len == 0)
{
return 0;
}
if (len < 0)
{
printf("fluid_ostream_printf: buffer overflow");
return -1;
}
buf[4095] = 0;
#ifndef WIN32
return write (out, buf, strlen (buf));
#else
{
int retval;
/* Handle write differently depending on if its a socket or file descriptor */
if (!(out & WIN32_SOCKET_FLAG))
return write(out, buf, strlen (buf));
/* Socket */
retval = send (out & ~WIN32_SOCKET_FLAG, buf, strlen (buf), 0);
return retval != SOCKET_ERROR ? retval : -1;
}
#endif
}
int fluid_server_socket_join(fluid_server_socket_t *server_socket)
{
return fluid_thread_join (server_socket->thread);
}
#ifndef WIN32 // Not win32?
#define SOCKET_ERROR -1
fluid_istream_t fluid_socket_get_istream (fluid_socket_t sock)
{
return sock;
}
fluid_ostream_t fluid_socket_get_ostream (fluid_socket_t sock)
{
return sock;
}
void fluid_socket_close(fluid_socket_t sock)
{
if (sock != INVALID_SOCKET)
close (sock);
}
static void
fluid_server_socket_run (void *data)
{
fluid_server_socket_t *server_socket = (fluid_server_socket_t *)data;
fluid_socket_t client_socket;
#ifdef IPV6_SUPPORT
struct sockaddr_in6 addr;
char straddr[INET6_ADDRSTRLEN];
#else
struct sockaddr_in addr;
char straddr[INET_ADDRSTRLEN];
#endif
socklen_t addrlen = sizeof (addr);
int retval;
FLUID_MEMSET((char *)&addr, 0, sizeof(addr));
FLUID_LOG (FLUID_DBG, "Server listening for connections");
while (server_socket->cont)
{
client_socket = accept (server_socket->socket, (struct sockaddr *)&addr, &addrlen);
FLUID_LOG (FLUID_DBG, "New client connection");
if (client_socket == INVALID_SOCKET)
{
if (server_socket->cont)
FLUID_LOG(FLUID_ERR, "Failed to accept connection");
server_socket->cont = 0;
return;
} else {
#ifdef HAVE_INETNTOP
#ifdef IPV6_SUPPORT
inet_ntop(AF_INET6, &addr.sin6_addr, straddr, sizeof(straddr));
#else
inet_ntop(AF_INET, &addr.sin_addr, straddr, sizeof(straddr));
#endif
#endif
#ifdef HAVE_INETNTOP
retval = server_socket->func (server_socket->data, client_socket,
straddr);
#else
retval = server_socket->func (server_socket->data, client_socket,
inet_ntoa (addr.sin_addr));
#endif
if (retval != 0)
fluid_socket_close(client_socket);
}
}
FLUID_LOG(FLUID_DBG, "Server closing");
}
fluid_server_socket_t*
new_fluid_server_socket(int port, fluid_server_func_t func, void* data)
{
fluid_server_socket_t* server_socket;
#ifdef IPV6_SUPPORT
struct sockaddr_in6 addr;
#else
struct sockaddr_in addr;
#endif
fluid_socket_t sock;
g_return_val_if_fail (func != NULL, NULL);
#ifdef IPV6_SUPPORT
sock = socket(AF_INET6, SOCK_STREAM, 0);
if (sock == INVALID_SOCKET) {
FLUID_LOG(FLUID_ERR, "Failed to create server socket");
return NULL;
}
FLUID_MEMSET((char *)&addr, 0, sizeof(struct sockaddr_in6));
addr.sin6_family = AF_INET6;
addr.sin6_addr = in6addr_any;
addr.sin6_port = htons(port);
#else
sock = socket(AF_INET, SOCK_STREAM, 0);
if (sock == INVALID_SOCKET) {
FLUID_LOG(FLUID_ERR, "Failed to create server socket");
return NULL;
}
FLUID_MEMSET((char *)&addr, 0, sizeof(struct sockaddr_in));
addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_ANY);
addr.sin_port = htons(port);
#endif
if (bind(sock, (const struct sockaddr *) &addr, sizeof(addr)) == SOCKET_ERROR) {
FLUID_LOG(FLUID_ERR, "Failed to bind server socket");
fluid_socket_close(sock);
return NULL;
}
if (listen(sock, 10) == SOCKET_ERROR) {
FLUID_LOG(FLUID_ERR, "Failed listen on server socket");
fluid_socket_close(sock);
return NULL;
}
server_socket = FLUID_NEW(fluid_server_socket_t);
if (server_socket == NULL) {
FLUID_LOG(FLUID_ERR, "Out of memory");
fluid_socket_close(sock);
return NULL;
}
server_socket->socket = sock;
server_socket->func = func;
server_socket->data = data;
server_socket->cont = 1;
server_socket->thread = new_fluid_thread("server", fluid_server_socket_run, server_socket,
0, FALSE);
if (server_socket->thread == NULL) {
FLUID_FREE(server_socket);
fluid_socket_close(sock);
return NULL;
}
return server_socket;
}
int delete_fluid_server_socket(fluid_server_socket_t* server_socket)
{
server_socket->cont = 0;
if (server_socket->socket != INVALID_SOCKET) {
fluid_socket_close(server_socket->socket);
}
if (server_socket->thread) {
delete_fluid_thread(server_socket->thread);
}
FLUID_FREE(server_socket);
return FLUID_OK;
}
#else // Win32 is "special"
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
fluid_istream_t fluid_socket_get_istream (fluid_socket_t sock)
{
return sock | WIN32_SOCKET_FLAG;
}
fluid_ostream_t fluid_socket_get_ostream (fluid_socket_t sock)
{
return sock | WIN32_SOCKET_FLAG;
}
void fluid_socket_close (fluid_socket_t sock)
{
if (sock != INVALID_SOCKET)
closesocket (sock);
}
static void fluid_server_socket_run (void *data)
{
fluid_server_socket_t *server_socket = (fluid_server_socket_t *)data;
fluid_socket_t client_socket;
#ifdef IPV6_SUPPORT
struct sockaddr_in6 addr;
char straddr[INET6_ADDRSTRLEN];
#else
struct sockaddr_in addr;
#ifdef HAVE_INETNTOP
char straddr[INET_ADDRSTRLEN];
#endif
#endif
socklen_t addrlen = sizeof (addr);
int r;
FLUID_MEMSET((char *)&addr, 0, sizeof(addr));
FLUID_LOG(FLUID_DBG, "Server listening for connections");
while (server_socket->cont)
{
client_socket = accept (server_socket->socket, (struct sockaddr *)&addr, &addrlen);
FLUID_LOG (FLUID_DBG, "New client connection");
if (client_socket == INVALID_SOCKET)
{
if (server_socket->cont)
FLUID_LOG (FLUID_ERR, "Failed to accept connection: %ld", WSAGetLastError ());
server_socket->cont = 0;
return;
}
else
{
#ifdef HAVE_INETNTOP
#ifdef IPV6_SUPPORT
inet_ntop(AF_INET6, &addr.sin6_addr, straddr, sizeof(straddr));
#else
inet_ntop(AF_INET, &addr.sin_addr, straddr, sizeof(straddr));
#endif
#endif
#ifdef HAVE_INETNTOP
r = server_socket->func (server_socket->data, client_socket,
straddr);
#else
r = server_socket->func (server_socket->data, client_socket,
inet_ntoa (addr.sin_addr));
#endif
if (r != 0)
fluid_socket_close (client_socket);
}
}
FLUID_LOG (FLUID_DBG, "Server closing");
}
fluid_server_socket_t*
new_fluid_server_socket(int port, fluid_server_func_t func, void* data)
{
fluid_server_socket_t* server_socket;
#ifdef IPV6_SUPPORT
struct sockaddr_in6 addr;
#else
struct sockaddr_in addr;
#endif
fluid_socket_t sock;
WSADATA wsaData;
int retval;
g_return_val_if_fail (func != NULL, NULL);
// Win32 requires initialization of winsock
retval = WSAStartup (MAKEWORD (2,2), &wsaData);
if (retval != 0)
{
FLUID_LOG(FLUID_ERR, "Server socket creation error: WSAStartup failed: %d", retval);
return NULL;
}
#ifdef IPV6_SUPPORT
sock = socket (AF_INET6, SOCK_STREAM, 0);
if (sock == INVALID_SOCKET)
{
FLUID_LOG (FLUID_ERR, "Failed to create server socket: %ld", WSAGetLastError ());
WSACleanup ();
return NULL;
}
addr.sin6_family = AF_INET6;
addr.sin6_port = htons (port);
addr.sin6_addr = in6addr_any;
#else
sock = socket (AF_INET, SOCK_STREAM, 0);
if (sock == INVALID_SOCKET)
{
FLUID_LOG (FLUID_ERR, "Failed to create server socket: %ld", WSAGetLastError ());
WSACleanup ();
return NULL;
}
addr.sin_family = AF_INET;
addr.sin_port = htons (port);
addr.sin_addr.s_addr = htonl (INADDR_ANY);
#endif
retval = bind (sock, (struct sockaddr *)&addr, sizeof (addr));
if (retval == SOCKET_ERROR)
{
FLUID_LOG (FLUID_ERR, "Failed to bind server socket: %ld", WSAGetLastError ());
fluid_socket_close (sock);
WSACleanup ();
return NULL;
}
if (listen (sock, SOMAXCONN) == SOCKET_ERROR)
{
FLUID_LOG (FLUID_ERR, "Failed to listen on server socket: %ld", WSAGetLastError ());
fluid_socket_close (sock);
WSACleanup ();
return NULL;
}
server_socket = FLUID_NEW (fluid_server_socket_t);
if (server_socket == NULL)
{
FLUID_LOG (FLUID_ERR, "Out of memory");
fluid_socket_close (sock);
WSACleanup ();
return NULL;
}
server_socket->socket = sock;
server_socket->func = func;
server_socket->data = data;
server_socket->cont = 1;
server_socket->thread = new_fluid_thread("server", fluid_server_socket_run, server_socket,
0, FALSE);
if (server_socket->thread == NULL)
{
FLUID_FREE (server_socket);
fluid_socket_close (sock);
WSACleanup ();
return NULL;
}
return server_socket;
}
int delete_fluid_server_socket(fluid_server_socket_t *server_socket)
{
server_socket->cont = 0;
if (server_socket->socket != INVALID_SOCKET)
fluid_socket_close (server_socket->socket);
if (server_socket->thread)
delete_fluid_thread (server_socket->thread);
FLUID_FREE (server_socket);
WSACleanup (); // Should be called the same number of times as WSAStartup
return FLUID_OK;
}
#endif