/* * Copyright (C) 1997-2001 Id Software, Inc. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * * See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA * 02111-1307, USA. * * ======================================================================= * * Support functions, linked into client, server, renderer and game. * * ======================================================================= */ #include #include "../header/shared.h" #define DEG2RAD(a) (a * M_PI) / 180.0F vec3_t vec3_origin = {0, 0, 0}; /* ============================================================================ */ void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector(vr, dir); CrossProduct(vr, vf, vup); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy(im, m, sizeof(im)); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset(zrot, 0, sizeof(zrot)); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; zrot[0][0] = (float)cos(DEG2RAD(degrees)); zrot[0][1] = (float)sin(DEG2RAD(degrees)); zrot[1][0] = (float)-sin(DEG2RAD(degrees)); zrot[1][1] = (float)cos(DEG2RAD(degrees)); R_ConcatRotations(m, zrot, tmpmat); R_ConcatRotations(tmpmat, im, rot); for (i = 0; i < 3; i++) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } void AngleVectors(vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; angle = angles[YAW] * (M_PI * 2 / 360); sy = (float)sin(angle); cy = (float)cos(angle); angle = angles[PITCH] * (M_PI * 2 / 360); sp = (float)sin(angle); cp = (float)cos(angle); angle = angles[ROLL] * (M_PI * 2 / 360); sr = (float)sin(angle); cr = (float)cos(angle); if (forward) { forward[0] = cp * cy; forward[1] = cp * sy; forward[2] = -sp; } if (right) { right[0] = (-1 * sr * sp * cy + - 1 * cr * -sy); right[1] = (-1 * sr * sp * sy + - 1 * cr * cy); right[2] = -1 * sr * cp; } if (up) { up[0] = (cr * sp * cy + - sr * -sy); up[1] = (cr * sp * sy + - sr * cy); up[2] = cr * cp; } } void AngleVectors2(vec3_t value1, vec3_t angles) { float forward; float yaw, pitch; if ((value1[1] == 0) && (value1[0] == 0)) { yaw = 0; if (value1[2] > 0) { pitch = 90; } else { pitch = 270; } } else { if (value1[0]) { yaw = ((float)atan2(value1[1], value1[0]) * 180 / M_PI); } else if (value1[1] > 0) { yaw = 90; } else { yaw = 270; } if (yaw < 0) { yaw += 360; } forward = (float)sqrt(value1[0] * value1[0] + value1[1] * value1[1]); pitch = ((float)atan2(value1[2], forward) * 180 / M_PI); if (pitch < 0) { pitch += 360; } } angles[PITCH] = -pitch; angles[YAW] = yaw; angles[ROLL] = 0; } void ProjectPointOnPlane(vec3_t dst, const vec3_t p, const vec3_t normal) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct(normal, normal); d = DotProduct(normal, p) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* assumes "src" is normalized */ void PerpendicularVector(vec3_t dst, const vec3_t src) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* find the smallest magnitude axially aligned vector */ for (pos = 0, i = 0; i < 3; i++) { if (fabs(src[i]) < minelem) { pos = i; minelem = (float)fabs(src[i]); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* project the point onto the plane defined by src */ ProjectPointOnPlane(dst, tempvec, src); /* normalize the result */ VectorNormalize(dst); } void R_ConcatRotations(float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void R_ConcatTransforms(float in1[3][4], float in2[3][4], float out[3][4]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[0][3] = in1[0][0] * in2[0][3] + in1[0][1] * in2[1][3] + in1[0][2] * in2[2][3] + in1[0][3]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[1][3] = in1[1][0] * in2[0][3] + in1[1][1] * in2[1][3] + in1[1][2] * in2[2][3] + in1[1][3]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; out[2][3] = in1[2][0] * in2[0][3] + in1[2][1] * in2[1][3] + in1[2][2] * in2[2][3] + in1[2][3]; } /* ============================================================================ */ float Q_fabs(float f) { int tmp = *(int *)&f; tmp &= 0x7FFFFFFF; return *(float *)&tmp; } float LerpAngle(float a2, float a1, float frac) { if (a1 - a2 > 180) { a1 -= 360; } if (a1 - a2 < -180) { a1 += 360; } return a2 + frac * (a1 - a2); } float anglemod(float a) { a = (360.0 / 65536) * ((int)(a * (65536 / 360.0)) & 65535); return a; } int i; vec3_t corners[2]; /* * This is the slow, general version */ int BoxOnPlaneSide2(vec3_t emins, vec3_t emaxs, struct cplane_s *p) { int i; float dist1, dist2; int sides; vec3_t corners[2]; for (i = 0; i < 3; i++) { if (p->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist1 = DotProduct(p->normal, corners[0]) - p->dist; dist2 = DotProduct(p->normal, corners[1]) - p->dist; sides = 0; if (dist1 >= 0) { sides = 1; } if (dist2 < 0) { sides |= 2; } return sides; } /* * Returns 1, 2, or 1 + 2 */ int BoxOnPlaneSide(vec3_t emins, vec3_t emaxs, struct cplane_s *p) { float dist1, dist2; int sides; /* fast axial cases */ if (p->type < 3) { if (p->dist <= emins[p->type]) { return 1; } if (p->dist >= emaxs[p->type]) { return 2; } return 3; } /* general case */ switch (p->signbits) { case 0: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; break; case 1: dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; break; case 2: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; break; case 3: dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; break; case 4: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; break; case 5: dist1 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emaxs[2]; break; case 6: dist1 = p->normal[0] * emaxs[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emins[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; break; case 7: dist1 = p->normal[0] * emins[0] + p->normal[1] * emins[1] + p->normal[2] * emins[2]; dist2 = p->normal[0] * emaxs[0] + p->normal[1] * emaxs[1] + p->normal[2] * emaxs[2]; break; default: dist1 = dist2 = 0; break; } sides = 0; if (dist1 >= p->dist) { sides = 1; } if (dist2 < p->dist) { sides |= 2; } return sides; } void ClearBounds(vec3_t mins, vec3_t maxs) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds(vec3_t v, vec3_t mins, vec3_t maxs) { int i; vec_t val; for (i = 0; i < 3; i++) { val = v[i]; if (val < mins[i]) { mins[i] = val; } if (val > maxs[i]) { maxs[i] = val; } } } int VectorCompare(vec3_t v1, vec3_t v2) { if ((v1[0] != v2[0]) || (v1[1] != v2[1]) || (v1[2] != v2[2])) { return 0; } return 1; } vec_t VectorNormalize(vec3_t v) { float length, ilength; length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; length = (float)sqrt(length); if (length) { ilength = 1 / length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } vec_t VectorNormalize2(vec3_t v, vec3_t out) { float length, ilength; length = v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; length = (float)sqrt(length); if (length) { ilength = 1 / length; out[0] = v[0] * ilength; out[1] = v[1] * ilength; out[2] = v[2] * ilength; } return length; } void VectorMA(vec3_t veca, float scale, vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale * vecb[0]; vecc[1] = veca[1] + scale * vecb[1]; vecc[2] = veca[2] + scale * vecb[2]; } vec_t _DotProduct(vec3_t v1, vec3_t v2) { return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; } void _VectorSubtract(vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0] - vecb[0]; out[1] = veca[1] - vecb[1]; out[2] = veca[2] - vecb[2]; } void _VectorAdd(vec3_t veca, vec3_t vecb, vec3_t out) { out[0] = veca[0] + vecb[0]; out[1] = veca[1] + vecb[1]; out[2] = veca[2] + vecb[2]; } void _VectorCopy(vec3_t in, vec3_t out) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void CrossProduct(vec3_t v1, vec3_t v2, vec3_t cross) { cross[0] = v1[1] * v2[2] - v1[2] * v2[1]; cross[1] = v1[2] * v2[0] - v1[0] * v2[2]; cross[2] = v1[0] * v2[1] - v1[1] * v2[0]; } double sqrt(double x); vec_t VectorLength(vec3_t v) { int i; float length; length = 0; for (i = 0; i < 3; i++) { length += v[i] * v[i]; } length = (float)sqrt(length); return length; } void VectorInverse(vec3_t v) { v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void VectorScale(vec3_t in, vec_t scale, vec3_t out) { out[0] = in[0] * scale; out[1] = in[1] * scale; out[2] = in[2] * scale; } int Q_log2(int val) { int answer = 0; while (val >>= 1) { answer++; } return answer; } /* ==================================================================================== */ char * COM_SkipPath(char *pathname) { char *last; last = pathname; while (*pathname) { if (*pathname == '/') { last = pathname + 1; } pathname++; } return last; } void COM_StripExtension(char *in, char *out) { while (*in && *in != '.') { *out++ = *in++; } *out = 0; } char * COM_FileExtension(char *in) { static char exten[8]; int i; while (*in && *in != '.') { in++; } if (!*in) { return ""; } in++; for (i = 0; i < 7 && *in; i++, in++) { exten[i] = *in; } exten[i] = 0; return exten; } void COM_FileBase(char *in, char *out) { char *s, *s2; s = in + strlen(in) - 1; while (s != in && *s != '.') { s--; } for (s2 = s; s2 != in && *s2 != '/'; s2--) { } if (s - s2 < 2) { out[0] = 0; } else { s--; strncpy(out, s2 + 1, s - s2); out[s - s2] = 0; } } /* * Returns the path up to, but not including the last / */ void COM_FilePath(const char *in, char *out) { const char *s; s = in + strlen(in) - 1; while (s != in && *s != '/') { s--; } strncpy(out, in, s - in); out[s - in] = 0; } void COM_DefaultExtension(char *path, const char *extension) { char *src; /* */ /* if path doesn't have a .EXT, append extension */ /* (extension should include the .) */ /* */ src = path + strlen(path) - 1; while (*src != '/' && src != path) { if (*src == '.') { return; /* it has an extension */ } src--; } strcat(path, extension); } /* * ============================================================================ * * BYTE ORDER FUNCTIONS * * ============================================================================ */ qboolean bigendien; /* can't just use function pointers, or dll linkage can mess up when qcommon is included in multiple places */ short (*_BigShort)(short l); short (*_LittleShort)(short l); int (*_BigLong)(int l); int (*_LittleLong)(int l); float (*_BigFloat)(float l); float (*_LittleFloat)(float l); short BigShort(short l) { return _BigShort(l); } short LittleShort(short l) { return _LittleShort(l); } int BigLong(int l) { return _BigLong(l); } int LittleLong(int l) { return _LittleLong(l); } float BigFloat(float l) { return _BigFloat(l); } float LittleFloat(float l) { return _LittleFloat(l); } short ShortSwap(short l) { byte b1, b2; b1 = l & 255; b2 = (l >> 8) & 255; return (b1 << 8) + b2; } short ShortNoSwap(short l) { return l; } int LongSwap(int l) { byte b1, b2, b3, b4; b1 = l & 255; b2 = (l >> 8) & 255; b3 = (l >> 16) & 255; b4 = (l >> 24) & 255; return ((int)b1 << 24) + ((int)b2 << 16) + ((int)b3 << 8) + b4; } int LongNoSwap(int l) { return l; } float FloatSwap(float f) { union { float f; byte b[4]; } dat1, dat2; dat1.f = f; dat2.b[0] = dat1.b[3]; dat2.b[1] = dat1.b[2]; dat2.b[2] = dat1.b[1]; dat2.b[3] = dat1.b[0]; return dat2.f; } float FloatNoSwap(float f) { return f; } void Swap_Init(void) { byte swaptest[2] = {1, 0}; /* set the byte swapping variables in a portable manner */ if (*(short *)swaptest == 1) { bigendien = false; _BigShort = ShortSwap; _LittleShort = ShortNoSwap; _BigLong = LongSwap; _LittleLong = LongNoSwap; _BigFloat = FloatSwap; _LittleFloat = FloatNoSwap; } else { bigendien = true; _BigShort = ShortNoSwap; _LittleShort = ShortSwap; _BigLong = LongNoSwap; _LittleLong = LongSwap; _BigFloat = FloatNoSwap; _LittleFloat = FloatSwap; } if (LittleShort(*(short *)swaptest) != 1) assert("Error in the endian conversion!"); } /* * does a varargs printf into a temp buffer, so I don't * need to have varargs versions of all text functions. */ char * va(char *format, ...) { va_list argptr; static char string[1024]; va_start(argptr, format); vsnprintf(string, 1024, format, argptr); va_end(argptr); return string; } char com_token[MAX_TOKEN_CHARS]; /* * Parse a token out of a string */ char * COM_Parse(char **data_p) { int c; int len; char *data; data = *data_p; len = 0; com_token[0] = 0; if (!data) { *data_p = NULL; return ""; } skipwhite: while ((c = *data) <= ' ') { if (c == 0) { *data_p = NULL; return ""; } data++; } /* skip // comments */ if ((c == '/') && (data[1] == '/')) { while (*data && *data != '\n') { data++; } goto skipwhite; } /* handle quoted strings specially */ if (c == '\"') { data++; while (1) { c = *data++; if ((c == '\"') || !c) { com_token[len] = 0; *data_p = data; return com_token; } if (len < MAX_TOKEN_CHARS) { com_token[len] = c; len++; } } } /* parse a regular word */ do { if (len < MAX_TOKEN_CHARS) { com_token[len] = c; len++; } data++; c = *data; } while (c > 32); if (len == MAX_TOKEN_CHARS) { len = 0; } com_token[len] = 0; *data_p = data; return com_token; } int paged_total; void Com_PageInMemory(byte *buffer, int size) { int i; for (i = size - 1; i > 0; i -= 4096) { paged_total += buffer[i]; } } /* * ============================================================================ * * LIBRARY REPLACEMENT FUNCTIONS * * ============================================================================ */ int Q_stricmp(const char *s1, const char *s2) { return strcasecmp(s1, s2); } int Q_strncasecmp(char *s1, char *s2, int n) { int c1, c2; do { c1 = *s1++; c2 = *s2++; if (!n--) { return 0; /* strings are equal until end point */ } if (c1 != c2) { if ((c1 >= 'a') && (c1 <= 'z')) { c1 -= ('a' - 'A'); } if ((c2 >= 'a') && (c2 <= 'z')) { c2 -= ('a' - 'A'); } if (c1 != c2) { return -1; /* strings not equal */ } } } while (c1); return 0; /* strings are equal */ } int Q_strcasecmp(char *s1, char *s2) { return Q_strncasecmp(s1, s2, 99999); } void Com_sprintf(char *dest, int size, char *fmt, ...) { int len; va_list argptr; static char bigbuffer[0x10000]; va_start(argptr, fmt); len = vsnprintf(bigbuffer, 0x10000, fmt, argptr); va_end(argptr); if ((len >= size) || (len == size)) { Com_Printf("Com_sprintf: overflow\n"); len = size - 1; } bigbuffer[size - 1] = '\0'; strcpy(dest, bigbuffer); } char * strlwr ( char *s ) { char *p = s; while ( *s ) { *s = tolower( *s ); s++; } return ( p ); } /* * ===================================================================== * * INFO STRINGS * * ===================================================================== */ /* * Searches the string for the given * key and returns the associated value, * or an empty string. */ char * Info_ValueForKey(char *s, char *key) { char pkey[512]; static char value[2][512]; /* use two buffers so compares work without stomping on each other */ static int valueindex; char *o; valueindex ^= 1; if (*s == '\\') { s++; } while (1) { o = pkey; while (*s != '\\') { if (!*s) { return ""; } *o++ = *s++; } *o = 0; s++; o = value[valueindex]; while (*s != '\\' && *s) { if (!*s) { return ""; } *o++ = *s++; } *o = 0; if (!strcmp(key, pkey)) { return value[valueindex]; } if (!*s) { return ""; } s++; } } void Info_RemoveKey(char *s, char *key) { char *start; char pkey[512]; char value[512]; char *o; if (strstr(key, "\\")) { return; } while (1) { start = s; if (*s == '\\') { s++; } o = pkey; while (*s != '\\') { if (!*s) { return; } *o++ = *s++; } *o = 0; s++; o = value; while (*s != '\\' && *s) { if (!*s) { return; } *o++ = *s++; } *o = 0; if (!strcmp(key, pkey)) { strcpy(start, s); /* remove this part */ return; } if (!*s) { return; } } } /* * Some characters are illegal in info strings * because they can mess up the server's parsing */ qboolean Info_Validate(char *s) { if (strstr(s, "\"")) { return false; } if (strstr(s, ";")) { return false; } return true; } void Info_SetValueForKey(char *s, char *key, char *value) { char newi[MAX_INFO_STRING], *v; int c; int maxsize = MAX_INFO_STRING; if (strstr(key, "\\") || strstr(value, "\\")) { Com_Printf("Can't use keys or values with a \\\n"); return; } if (strstr(key, ";")) { Com_Printf("Can't use keys or values with a semicolon\n"); return; } if (strstr(key, "\"") || strstr(value, "\"")) { Com_Printf("Can't use keys or values with a \"\n"); return; } if ((strlen(key) > MAX_INFO_KEY - 1) || (strlen(value) > MAX_INFO_KEY - 1)) { Com_Printf("Keys and values must be < 64 characters.\n"); return; } Info_RemoveKey(s, key); if (!value || !strlen(value)) { return; } Com_sprintf(newi, sizeof(newi), "\\%s\\%s", key, value); if (strlen(newi) + strlen(s) > maxsize) { Com_Printf("Info string length exceeded\n"); return; } /* only copy ascii values */ s += strlen(s); v = newi; while (*v) { c = *v++; c &= 127; /* strip high bits */ if ((c >= 32) && (c < 127)) { *s++ = c; } } *s = 0; }