The problem was that the cvars were only initialized (with CVar_Get())
if you opened the address book menu.
So if you start (and possibly run) and quit the game /without/ opening
that menu (or at least the "join network server" menu), the game will
not save those cvars to the config when it next writes it.
To prevent this, *always* initialize the cvars in M_Init().
On Unix platforms unicode is implemented through UTF-8 which is
transparent for applications. But on Windows a UTF-16 dialect is
used which needs alteration at application side. This wrapper is
another step to unicode support on Windows, now we can replace
fopen() by a function that converts our internal UTF-8 pathes to
Windows UTF-16 dialect.
This is a noop for Unix platforms. The Windows build is broken,
the compiler errors out in shared.h. This will be fixed in a
later commit.
Caveats:
* fopen() calls in 3rd party code (std_* and unzip) are not replaced.
This may become a problem. We need to check that.
* In the Unix specific code fopen() isn't replaced since it's not
necessayry.
There's no need to exclude directories from search by flags. In fact
the Unix backend has worked nicely for years without it... Sadly we
can't remove the now superfluous 'canhave' and 'musthave' attributes
from Sys_FindFirst() and Sys_FindNext() since they're defined in
shared.h and may be used from custom game DLLs.
Loop 'for ( i = 0; i < 3; i++ )' sets values to vtx[0..2]. So next index must be 3(instead 4) and
loop 'for ( i = 16; i >= 0; i-- )' will set vtx[3..(18*3-1)].
=====
src/client/refresh/gl/r_light.c: In function ‘R_RenderDlight’:
src/client/refresh/gl/r_light.c:76:21: warning: iteration 16 invokes undefined behavior [-Waggressive-loop-optimizations]
vtx[index_vtx++] = light->origin [ j ] + vright [ j ] * cos( a ) * rad
~~~~~~~~~~~~~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ vup [ j ] * sin( a ) * rad;
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
src/client/refresh/gl/r_light.c:65:2: note: within this loop
for ( i = 16; i >= 0; i-- )
^~~
=====
This is mostly the same approach as in GL1. I'm not quite sure if the
software rasterizer can work with all aspects and the like but I wasn't
able to crash it by trying several random resultions.