On Unix platforms unicode is implemented through UTF-8 which is
transparent for applications. But on Windows a UTF-16 dialect is
used which needs alteration at application side. This wrapper is
another step to unicode support on Windows, now we can replace
fopen() by a function that converts our internal UTF-8 pathes to
Windows UTF-16 dialect.
This is a noop for Unix platforms. The Windows build is broken,
the compiler errors out in shared.h. This will be fixed in a
later commit.
Caveats:
* fopen() calls in 3rd party code (std_* and unzip) are not replaced.
This may become a problem. We need to check that.
* In the Unix specific code fopen() isn't replaced since it's not
necessayry.
My modifications (jpeg writing and supplying zlib compressor for better
PNG compression) have been merged upstream, so from now on updates
should be easy and painless.
(Sean renamed my stbi_png_level to stbi_write_png_compression_level)
The original client used single precision mode on Windows and the
default mode on all other platforms. Most platform (at least OS X,
FreeBSD, NetBSD up to 6.0, OpenBSD and Solaris) set double precision
as default, Linux sets extended double precision... When playing a
network game there're several possibilities:
* Same precision on both sides: This one is okay, of course.
* single precision <-> double precision: This one is okay, too. I guess
this is because the code allows a small deviation between client and
server to work around imprecisions introduced be the network protocol.
* double precision <-> extended double precision: This one is okay,
likely for the same reasons given above.
* single precision <-> extended double precision: This one gives a lot
of misspredictions at client side.
All of these are more or less academic these days. Yamagi Quake II used
the platforms default mode for ages. And both gcc and clang default to
SSE2 math (with double precision as default on all platforms) when
compiling for amd64. So the only reasonable case is Linux/i386 on one
side and the original client or another source port on Windows/i386 at
the other side.
Work around this by forcing the x87 to double precision mode.
SDL_WINDOW_FULLSCREEN changes the display resolution if the requested
resolution is different to the actual resultion. SDL_WINDOW_FULLSCREEN_
DESKTOP doesn't do that, it places a smaller or bigger render area
somewhere inside the fullscreen area. This is somewhat nicer with modern
high resolution flatscreens.
This commit changes vid_fullscreen 1 from SDL_WINDOW_FULLSCREEN to
SDL_WINDOW_FULLSCREEN_DESKTOP. Additional vid_fullscreen 2 is
implemented, it uses SDL_WINDOW_FULLSCREEN to create the fullscreen
area.
TL;DR: Use vid_fullscreen 1 to keep the current resolution or use
vid_fullscreen 2 to switch the resolution.
Implementation details: The whole fullscreen stuff is a horrible mess.
Like generations of hackers before me I'm not desperated enough to clean
it up. GLimp_InitGraphics() is modified to take the fullscreen mode as
an integer and not as a boolean. That's a change to the renderer API.
In GLimp_InitGraphics() the needed SDL fullscreen mode flag is
determined once at the top and just used further down below. That saves
dome SDL1 <-> SDL2 compatibility cruft. IsFullscreen() was modified to
return the actual fullscreen mode and not just if fullscreen is enabled.
Several platforms - OpenBSD being a prominent example - don't provide a
way to get the executable path. Don't abort, just return the current
dir ./ executable dir. This is just a work around, of course. The user
needs to supply a script that calls ./quake2 in the correct directory.
Sometimes cinematics are skipped after the first frame even if the
player didn't press any key. I'm unable to reliable reproduce that,
so my educated guess is that one or more events are still waiting in
SDLs event queue.
For example, during intermission IN_Update() is not called for 5
seconds, key presses by impatient players are just added to the queue
and not processed. The first event is used to skip leave the
intermission, the second event skips the cinematic...
Fix this by implementing a new function IN_FlushQueue() to flush SDLs
event queue and calling it when starting cinematic playback. Yes, this
is just another layer violation. :(
- Bump vid_gamma to 1.2 in both GL1 and GL3. A default value of 1.0 is
too dark.
- Lower gl3_overbrightbits to 1.3, the previous value of 1.5 was too
bright. This can be seen in later units, for example on mine1 some
textures blended into white.
- Lower gl3_particle_size to 40. A value of 60 may be okay, but with
gl3_particle_fade_factor 1.2 the particles take up too much screen
estate in close range combat.
With this changes GL3 looks (at least for me) nearly the same as GL1
rendered through the removed multitexturing path.
the screenshot command now supports the filetype as optional argument
(just "screenshot" will use tga like before):
"screenshot png" will save the screenshot as PNG, same with jpg, png
and tga.
For jpg, you can even specify the quality, like "screenshot jpg 90"
(the Quality is between 1 and 100, like with libjpeg).
To reduce duplicated code, I addeed Vid_WriteScreenshot() to refimport_t
and implement most of it in the client (vid.c).
The renderer still fetches the raw image data from OpenGL or whatever
and then calls re.VidWriteScreenshot() which will write it to disk in
the format requested by the user.
the arguments were not used anyway, and returning true/false is clearer
than returning -1 (for error) or sth else (which has no deeper meaning
anyway).
Also:
* PrepareForWindow() can now return -1 if there's an error
* suppress some warnings in Makefile
* fix error for building ref_gl.dylib on OSX
So in all code in the reflib (ref_gl.dll/.so/.dylib) calls to
ri.Con_Printf(print_level, fmt, ...) have been replaced by calls to
R_Printf(print_level, fmt, ...) which uses ri.Com_VPrintf().
This is a slighty revised version of id Software original code. Icculus
code may have some advantages on broken drivers or underpowered GPUs.
Today it's just a performance hook. This is a first step in fixing #147.
In Linux distributions, having the executable depend on the right
libraries and arrange for them to be installed is straightforward,
and there's a lot of infrastructure for tracking which library
version a particular executable needs, including making sure we have
a version that contains all of the symbols that were used. Loading
libopenal at runtime defeats that infrastructure.
The ability to substitute a different-but-compatible libopenal,
or operate with reduced functionality without libopenal, might
still be desirable for generic/portable binary releases.
The CMake build system already linked the executable to
${OPENAL_LIBRARY} anyway, so it is already a hard dependency in that
build system.
It's apparently not enough to clear key repeats, we'll need to clear
the down states too. Without this Alt stays pressed after toggeling
fullscreen trhough Alt-Enter.
No, this is not a rage quit but the result of a long discussion. There
are several reasons for us to drop OS X support:
- OS X support was always more or less hacky. For example is was never
really integrated into the build system and some features like the
OpenAL sound backend never worked well.
- The OS X support never grew into the new world based upon SDL2.
- It was broken since at least Lion which was released 4 years ago.
- None of the developers has a Mac or plans to buy one. Supporting
a software for a platform not used by the developers is more or
less impossible.
- And despite several appeals no one from the OS X community ever
stept up and send patches.
Removed are:
- Makefile support
- The OpenAL quirks
- The Cocoa bindings
- The framworks
Not removed is:
- Savegame support
- Memory management support
- Platform detection
- OpenGL and SDL includes
So, if someone steps up and does a modern, fully integrated port based
upon SDL2 we're happy to merge it back. The requirements are:
- It must be a clean port, without any hacks
- Full build system integration must be provided
- The port must be maintained even after it was merged. At every release
binaries must be build, API / ABI changes with new OS X versions must
be tracked.
This is a less intrusive variant of the old Key_ClearState() function.
When the refresher is restarted or the menu is left, this function is
called to mark all keys as "up". That works around some corner cases
where a key is still marked "down" and thus the first stroke is detected
as a repetition.
In the old times the refresher was a stand alone DLL. For performance
reasons and to avoid laggy input parts of the input system were
implemented in this DLL. Now that the renfresher is part of the main
binary and initialized at client startup we can remove most of the
abstractions between input system, refresher and client. Also the
input system can be treated as a normal subsystem.
Changes:
- Untangle the VID_* stuff and the IN_* stuff. The functions
called by function pointers in in_state are now called directly
and 'struct in_state' was removed.
- Remove input.h and rename the appropriate backend functions.
There's no longer a need for an abstraction layer between the
input backend and the input frontend.
- Move input initialization and shutdown into CL_Init(), like it's
already done for all other subsystems.
- Remove Key_ClearStates(). I'm pretty sure that's a left over from
the old Win 9x backends and unnecessary.
- General cleanup.