libSDLmain.a has to be linked and must run anyways. So there's no need
for us to reinvent the wheel, just rely on SDLs process setup, argument
parsing, message handling and so on. As a nice side effect this may fix
some strange bugs related to message handling and argument parsing...
My modifications (jpeg writing and supplying zlib compressor for better
PNG compression) have been merged upstream, so from now on updates
should be easy and painless.
(Sean renamed my stbi_png_level to stbi_write_png_compression_level)
Until now we had 3 modes:
0 -> never grab the mouse.
1 -> always grab the mouse
2 -> ungrab the mouse if the game is windowed and the console or the
menu is opened or a cinematic is playing.
The 3rd mode is the same as the 2nd one, but without the "game is
windowed" constrained. Please note that release the mouse grab in
fullscreen may have side effects like the game loosing focus and being
unable to regain it. Especially under X11.
This was requested by @prg318 in issue #271.
turns out clock_get_time() uses mach_timespec_t which is very similar
to POSIX timespec_t so we're back to just one Sys_Microseconds() function
with an #ifdef __APPLE__ for the (relatively small) differences
Older versions of OS X don't implement clock_gettime() and no(?) version
seems to implement CLOCK_MONOTONIC. Work around this by implementing an
OS X specific variant of Sys_Microseconds() that relies on Mach APIs
provided by all OS X versions...
While at it alter the generic variant so that CLOCK_MONOTONIC is used
only if it's available. CLOCK_REALTIME as a fallback should be good
enough in most cases.
This is believed to fix issue #239.
Returning 'microseconds / 1000ll' at the first call is wrong, the game
would thing that the first frame too way too much time. For some reason
this wirks in (my) Win10, but breaks on (my) Win7...
The original client used single precision mode on Windows and the
default mode on all other platforms. Most platform (at least OS X,
FreeBSD, NetBSD up to 6.0, OpenBSD and Solaris) set double precision
as default, Linux sets extended double precision... When playing a
network game there're several possibilities:
* Same precision on both sides: This one is okay, of course.
* single precision <-> double precision: This one is okay, too. I guess
this is because the code allows a small deviation between client and
server to work around imprecisions introduced be the network protocol.
* double precision <-> extended double precision: This one is okay,
likely for the same reasons given above.
* single precision <-> extended double precision: This one gives a lot
of misspredictions at client side.
All of these are more or less academic these days. Yamagi Quake II used
the platforms default mode for ages. And both gcc and clang default to
SSE2 math (with double precision as default on all platforms) when
compiling for amd64. So the only reasonable case is Linux/i386 on one
side and the original client or another source port on Windows/i386 at
the other side.
Work around this by forcing the x87 to double precision mode.
Until now the curtime variable was set at every call Sys_*seconds().
That's a little bit unfortunate because calls to that functions are
scattered around the code. Instead set it once every frame in
Qcommon_Frame().
The dedicated server runs at cl_maxfps frames per second. Een with very
large values one server frame can never be shorter than 1 milliseconds.
And the timing doesn't need to be very precise since the network
latency adds a lot of more jitter.
This shouldn't have any noteable impact on timing (besides the machine
is way too slow for Quake II) and saves a lot of CPU cycles. 100% load
vs. 17% load on my desktop.
This allows us to implement the global timing without an artificial
brake slowing the game unnecessary down. This is only partial working,
more changes and fixes are coming.
This is a no-op for now. We need this to get a much higher precision
when calculating the frame times. This changes the fixedtime cvar from
milli- to microseconds.
This is the same as the well known Sys_Milliseconds() but like the name
suggests with microsecond precision. To be used in the upcoming new
framecounter.
For some fucking reason, if you set an unsupported
SDL_GL_MULTISAMPLESAMPLES value on Windows (at least Win10 with Intel GPU
drivers, there 16 is unsupported), creating the Window and OpenGL context
will succeed, but you'll get Microsofts stupid GDI OpenGL software
implementation that only supports OpenGL 1.1.
Before these fixes, the GL3 renderer would just crash and the GL1 renderer
would fail to load, which caused the game to run in the background:
No Window, no Input, but sound was playing..
Now this problem should be handled properly and if initialization fails,
the rendering backend will be considered not working, and it will
try the gl1 backend next, and if that also fails it'll give up and exit
the game.
SDL_WINDOW_FULLSCREEN changes the display resolution if the requested
resolution is different to the actual resultion. SDL_WINDOW_FULLSCREEN_
DESKTOP doesn't do that, it places a smaller or bigger render area
somewhere inside the fullscreen area. This is somewhat nicer with modern
high resolution flatscreens.
This commit changes vid_fullscreen 1 from SDL_WINDOW_FULLSCREEN to
SDL_WINDOW_FULLSCREEN_DESKTOP. Additional vid_fullscreen 2 is
implemented, it uses SDL_WINDOW_FULLSCREEN to create the fullscreen
area.
TL;DR: Use vid_fullscreen 1 to keep the current resolution or use
vid_fullscreen 2 to switch the resolution.
Implementation details: The whole fullscreen stuff is a horrible mess.
Like generations of hackers before me I'm not desperated enough to clean
it up. GLimp_InitGraphics() is modified to take the fullscreen mode as
an integer and not as a boolean. That's a change to the renderer API.
In GLimp_InitGraphics() the needed SDL fullscreen mode flag is
determined once at the top and just used further down below. That saves
dome SDL1 <-> SDL2 compatibility cruft. IsFullscreen() was modified to
return the actual fullscreen mode and not just if fullscreen is enabled.
Several platforms - OpenBSD being a prominent example - don't provide a
way to get the executable path. Don't abort, just return the current
dir ./ executable dir. This is just a work around, of course. The user
needs to supply a script that calls ./quake2 in the correct directory.
The big problem with the old implementation was that stdout.txt and
stderr.txt on Windows became available when nearly all the low level
initialization was already done. Regardless if the client was in
normal or in portable mode.
Solve this by scanning the command line for the string '-portable'. If
it's not found, stdout and stderr are redirected as early as possible.
If found the global variable (*sigh*) is_portable is set to true. It's
evaluated later on to set the cvar 'portable', which in turn is used
be the filesystem to decide if the home directory should be added to
the search path.
Maybe we should remove the cvar and stick to the global variable.
While at it change the maximum path length for qconsole.log from
MAX_QPATH to MAX_OSPATH. At least on my Linux laptop MAX_QPATH is
too short.
This commit is still untested on Windows!
This prevents Windows from scaling our (fullscreen) window to crap if
the whole desktop is scaled and we're rendering more than 1080p. This is
believed to fix#208.
Sometimes cinematics are skipped after the first frame even if the
player didn't press any key. I'm unable to reliable reproduce that,
so my educated guess is that one or more events are still waiting in
SDLs event queue.
For example, during intermission IN_Update() is not called for 5
seconds, key presses by impatient players are just added to the queue
and not processed. The first event is used to skip leave the
intermission, the second event skips the cinematic...
Fix this by implementing a new function IN_FlushQueue() to flush SDLs
event queue and calling it when starting cinematic playback. Yes, this
is just another layer violation. :(
For some reasons setting the MSAA fails at window creation and not at
GL context creation. And of course SDL is unable to detect before, that
the requested number of MSAA samples is invalid... Implement a work
around: Fall back to gl_msaa_samples == 0 if the window cannot be
created.
Resurrect support for render / refresher loadable libraries and use them to implement an experimental OpenGL 3.2 renderer. Please note that the new renderer interface is somewhat different from the original one, old render libraries will NOT work!
- Bump vid_gamma to 1.2 in both GL1 and GL3. A default value of 1.0 is
too dark.
- Lower gl3_overbrightbits to 1.3, the previous value of 1.5 was too
bright. This can be seen in later units, for example on mine1 some
textures blended into white.
- Lower gl3_particle_size to 40. A value of 60 may be okay, but with
gl3_particle_fade_factor 1.2 the particles take up too much screen
estate in close range combat.
With this changes GL3 looks (at least for me) nearly the same as GL1
rendered through the removed multitexturing path.