/* ------------------------------------------------------------------------------- Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ---------------------------------------------------------------------------------- This code has been altered significantly from its original form, to support several games based on the Quake III Arena engine, in the form of "Q3Map2." ------------------------------------------------------------------------------- */ /* marker */ #define SURFACE_META_C /* dependencies */ #include "vmap.h" #define LIGHTMAP_EXCEEDED -1 #define S_EXCEEDED -2 #define T_EXCEEDED -3 #define ST_EXCEEDED -4 #define UNSUITABLE_TRIANGLE -10 #define VERTS_EXCEEDED -1000 #define INDEXES_EXCEEDED -2000 #define GROW_META_VERTS 1024 #define GROW_META_TRIANGLES 1024 static int numMetaSurfaces, numPatchMetaSurfaces; static int maxMetaVerts = 0; static int numMetaVerts = 0; static int firstSearchMetaVert = 0; static bspDrawVert_t *metaVerts = NULL; static int maxMetaTriangles = 0; static int numMetaTriangles = 0; static metaTriangle_t *metaTriangles = NULL; /* ClearMetaVertexes() called before staring a new entity to clear out the triangle list */ void ClearMetaTriangles( void ){ numMetaVerts = 0; numMetaTriangles = 0; } /* FindMetaVertex() finds a matching metavertex in the global list, returning its index */ static int FindMetaVertex( bspDrawVert_t *src ){ int i; bspDrawVert_t *v, *temp; /* try to find an existing drawvert */ for ( i = firstSearchMetaVert, v = &metaVerts[ i ]; i < numMetaVerts; i++, v++ ) { if ( memcmp( src, v, sizeof( bspDrawVert_t ) ) == 0 ) { return i; } } /* enough space? */ if ( numMetaVerts >= maxMetaVerts ) { /* reallocate more room */ maxMetaVerts += GROW_META_VERTS; temp = safe_malloc( maxMetaVerts * sizeof( bspDrawVert_t ) ); if ( metaVerts != NULL ) { memcpy( temp, metaVerts, numMetaVerts * sizeof( bspDrawVert_t ) ); free( metaVerts ); } metaVerts = temp; } /* add the triangle */ memcpy( &metaVerts[ numMetaVerts ], src, sizeof( bspDrawVert_t ) ); numMetaVerts++; /* return the count */ return ( numMetaVerts - 1 ); } /* AddMetaTriangle() adds a new meta triangle, allocating more memory if necessary */ static int AddMetaTriangle( void ){ metaTriangle_t *temp; /* enough space? */ if ( numMetaTriangles >= maxMetaTriangles ) { /* reallocate more room */ maxMetaTriangles += GROW_META_TRIANGLES; temp = safe_malloc( maxMetaTriangles * sizeof( metaTriangle_t ) ); if ( metaTriangles != NULL ) { memcpy( temp, metaTriangles, numMetaTriangles * sizeof( metaTriangle_t ) ); free( metaTriangles ); } metaTriangles = temp; } /* increment and return */ numMetaTriangles++; return numMetaTriangles - 1; } /* FindMetaTriangle() finds a matching metatriangle in the global list, otherwise adds it and returns the index to the metatriangle */ int FindMetaTriangle( metaTriangle_t *src, bspDrawVert_t *a, bspDrawVert_t *b, bspDrawVert_t *c, int planeNum ){ int triIndex; vec3_t dir; /* detect degenerate triangles fixme: do something proper here */ VectorSubtract( a->xyz, b->xyz, dir ); if ( VectorLength( dir ) < 0.125f ) { return -1; } VectorSubtract( b->xyz, c->xyz, dir ); if ( VectorLength( dir ) < 0.125f ) { return -1; } VectorSubtract( c->xyz, a->xyz, dir ); if ( VectorLength( dir ) < 0.125f ) { return -1; } /* find plane */ if ( planeNum >= 0 ) { /* because of precision issues with small triangles, try to use the specified plane */ src->planeNum = planeNum; VectorCopy( mapplanes[ planeNum ].normal, src->plane ); src->plane[ 3 ] = mapplanes[ planeNum ].dist; } else { /* calculate a plane from the triangle's points (and bail if a plane can't be constructed) */ src->planeNum = -1; if ( PlaneFromPoints( src->plane, a->xyz, b->xyz, c->xyz ) == qfalse ) { return -1; } } /* ydnar 2002-10-03: repair any bogus normals (busted ase import kludge) */ if ( VectorLength( a->normal ) <= 0.0f ) { VectorCopy( src->plane, a->normal ); } if ( VectorLength( b->normal ) <= 0.0f ) { VectorCopy( src->plane, b->normal ); } if ( VectorLength( c->normal ) <= 0.0f ) { VectorCopy( src->plane, c->normal ); } /* ydnar 2002-10-04: set lightmap axis if not already set */ if ( !( src->si->compileFlags & C_VERTEXLIT ) && src->lightmapAxis[ 0 ] == 0.0f && src->lightmapAxis[ 1 ] == 0.0f && src->lightmapAxis[ 2 ] == 0.0f ) { /* the shader can specify an explicit lightmap axis */ if ( src->si->lightmapAxis[ 0 ] || src->si->lightmapAxis[ 1 ] || src->si->lightmapAxis[ 2 ] ) { VectorCopy( src->si->lightmapAxis, src->lightmapAxis ); } /* new axis-finding code */ else{ CalcLightmapAxis( src->plane, src->lightmapAxis ); } } /* fill out the src triangle */ src->indexes[ 0 ] = FindMetaVertex( a ); src->indexes[ 1 ] = FindMetaVertex( b ); src->indexes[ 2 ] = FindMetaVertex( c ); /* try to find an existing triangle */ #ifdef USE_EXHAUSTIVE_SEARCH { int i; metaTriangle_t *tri; for ( i = 0, tri = metaTriangles; i < numMetaTriangles; i++, tri++ ) { if ( memcmp( src, tri, sizeof( metaTriangle_t ) ) == 0 ) { return i; } } } #endif /* get a new triangle */ triIndex = AddMetaTriangle(); /* add the triangle */ memcpy( &metaTriangles[ triIndex ], src, sizeof( metaTriangle_t ) ); /* return the triangle index */ return triIndex; } /* SurfaceToMetaTriangles() converts a classified surface to metatriangles */ static void SurfaceToMetaTriangles( mapDrawSurface_t *ds ){ int i; metaTriangle_t src; bspDrawVert_t a, b, c; /* only handle certain types of surfaces */ if ( ds->type != SURFACE_FACE && ds->type != SURFACE_META && ds->type != SURFACE_FORCED_META && ds->type != SURFACE_DECAL ) { return; } /* speed at the expense of memory */ firstSearchMetaVert = numMetaVerts; /* only handle valid surfaces */ if ( ds->type != SURFACE_BAD && ds->numVerts >= 3 && ds->numIndexes >= 3 ) { /* walk the indexes and create triangles */ for ( i = 0; i < ds->numIndexes; i += 3 ) { /* sanity check the indexes */ if ( ds->indexes[ i ] == ds->indexes[ i + 1 ] || ds->indexes[ i ] == ds->indexes[ i + 2 ] || ds->indexes[ i + 1 ] == ds->indexes[ i + 2 ] ) { //% Sys_Printf( "%d! ", ds->numVerts ); continue; } /* build a metatriangle */ src.si = ds->shaderInfo; src.side = ( ds->sideRef != NULL ? ds->sideRef->side : NULL ); src.entityNum = ds->entityNum; src.surfaceNum = ds->surfaceNum; src.planeNum = ds->planeNum; src.castShadows = ds->castShadows; src.recvShadows = ds->recvShadows; src.fogNum = ds->fogNum; src.cubemapNum = ds->cubemapNum; src.sampleSize = ds->sampleSize; src.shadeAngleDegrees = ds->shadeAngleDegrees; VectorCopy( ds->lightmapAxis, src.lightmapAxis ); /* copy drawverts */ memcpy( &a, &ds->verts[ ds->indexes[ i ] ], sizeof( a ) ); memcpy( &b, &ds->verts[ ds->indexes[ i + 1 ] ], sizeof( b ) ); memcpy( &c, &ds->verts[ ds->indexes[ i + 2 ] ], sizeof( c ) ); FindMetaTriangle( &src, &a, &b, &c, ds->planeNum ); } /* add to count */ numMetaSurfaces++; } /* clear the surface (free verts and indexes, sets it to SURFACE_BAD) */ ClearSurface( ds ); } /* TriangulatePatchSurface() creates triangles from a patch */ void TriangulatePatchSurface( entity_t *e, mapDrawSurface_t *ds ){ int iterations, x, y, pw[ 5 ], r; mapDrawSurface_t *dsNew; mesh_t src, *subdivided, *mesh; int forcePatchMeta; int patchQuality; int patchSubdivision; /* vortex: _patchMeta, _patchQuality, _patchSubdivide support */ forcePatchMeta = IntForKey( e, "_patchMeta" ); if ( !forcePatchMeta ) { forcePatchMeta = IntForKey( e, "patchMeta" ); } patchQuality = IntForKey( e, "_patchQuality" ); if ( !patchQuality ) { patchQuality = IntForKey( e, "patchQuality" ); } if ( !patchQuality ) { patchQuality = 1.0; } patchSubdivision = IntForKey( e, "_patchSubdivide" ); if ( !patchSubdivision ) { patchSubdivision = IntForKey( e, "patchSubdivide" ); } /* try to early out */ if ( ds->numVerts == 0 || ds->type != SURFACE_PATCH || ( patchMeta == qfalse && !forcePatchMeta ) ) { return; } /* make a mesh from the drawsurf */ src.width = ds->patchWidth; src.height = ds->patchHeight; src.verts = ds->verts; //% subdivided = SubdivideMesh( src, 8, 999 ); if ( patchSubdivision ) { iterations = IterationsForCurve( ds->longestCurve, patchSubdivision ); } else{ iterations = IterationsForCurve( ds->longestCurve, patchSubdivisions / patchQuality ); } subdivided = SubdivideMesh2( src, iterations ); //% ds->maxIterations /* fit it to the curve and remove colinear verts on rows/columns */ PutMeshOnCurve( *subdivided ); mesh = RemoveLinearMeshColumnsRows( subdivided ); FreeMesh( subdivided ); //% MakeMeshNormals( mesh ); /* make a copy of the drawsurface */ dsNew = AllocDrawSurface( SURFACE_META ); memcpy( dsNew, ds, sizeof( *ds ) ); /* if the patch is nonsolid, then discard it */ if ( !( ds->shaderInfo->compileFlags & C_SOLID ) ) { ClearSurface( ds ); } /* set new pointer */ ds = dsNew; /* basic transmogrification */ ds->type = SURFACE_META; ds->numIndexes = 0; ds->indexes = safe_malloc( mesh->width * mesh->height * 6 * sizeof( int ) ); /* copy the verts in */ ds->numVerts = ( mesh->width * mesh->height ); ds->verts = mesh->verts; /* iterate through the mesh quads */ for ( y = 0; y < ( mesh->height - 1 ); y++ ) { for ( x = 0; x < ( mesh->width - 1 ); x++ ) { /* set indexes */ pw[ 0 ] = x + ( y * mesh->width ); pw[ 1 ] = x + ( ( y + 1 ) * mesh->width ); pw[ 2 ] = x + 1 + ( ( y + 1 ) * mesh->width ); pw[ 3 ] = x + 1 + ( y * mesh->width ); pw[ 4 ] = x + ( y * mesh->width ); /* same as pw[ 0 ] */ /* set radix */ r = ( x + y ) & 1; /* make first triangle */ ds->indexes[ ds->numIndexes++ ] = pw[ r + 0 ]; ds->indexes[ ds->numIndexes++ ] = pw[ r + 1 ]; ds->indexes[ ds->numIndexes++ ] = pw[ r + 2 ]; /* make second triangle */ ds->indexes[ ds->numIndexes++ ] = pw[ r + 0 ]; ds->indexes[ ds->numIndexes++ ] = pw[ r + 2 ]; ds->indexes[ ds->numIndexes++ ] = pw[ r + 3 ]; } } /* free the mesh, but not the verts */ free( mesh ); /* add to count */ numPatchMetaSurfaces++; /* classify it */ ClassifySurfaces( 1, ds ); } #define TINY_AREA 1.0f #define MAXAREA_MAXTRIES 8 int MaxAreaIndexes( bspDrawVert_t *vert, int cnt, int *indexes ){ int r, s, t, bestR = 0, bestS = 1, bestT = 2; int i, j, try; double A, bestA = -1, V, bestV = -1; vec3_t ab, ac, bc, cross; bspDrawVert_t *buf; double shiftWidth; if ( cnt < 3 ) { return 0; } /* calculate total area */ A = 0; for ( i = 1; i + 1 < cnt; ++i ) { VectorSubtract( vert[i].xyz, vert[0].xyz, ab ); VectorSubtract( vert[i + 1].xyz, vert[0].xyz, ac ); CrossProduct( ab, ac, cross ); A += VectorLength( cross ); } V = 0; for ( i = 0; i < cnt; ++i ) { VectorSubtract( vert[( i + 1 ) % cnt].xyz, vert[i].xyz, ab ); V += VectorLength( ab ); } /* calculate shift width from the area sensibly, assuming the polygon * fits about 25% of the screen in both dimensions * we assume 1280x1024 * 1 pixel is then about sqrt(A) / (0.25 * screenwidth) * 8 pixels are then about sqrt(A) / (0.25 * 1280) * 8 * 8 pixels are then about sqrt(A) * 0.025 * */ shiftWidth = sqrt( A ) * 0.0125; /* 3->1 6->2 12->3 ... */ if ( A - ceil( log( cnt / 1.5 ) / log( 2 ) ) * V * shiftWidth * 2 < 0 ) { /* printf("Small triangle detected (area %f, circumference %f), adjusting shiftWidth from %f to ", A, V, shiftWidth); */ shiftWidth = A / ( ceil( log( cnt / 1.5 ) / log( 2 ) ) * V * 2 ); /* printf("%f\n", shiftWidth); */ } /* find the triangle with highest area */ for ( r = 0; r + 2 < cnt; ++r ) for ( s = r + 1; s + 1 < cnt; ++s ) for ( t = s + 1; t < cnt; ++t ) { VectorSubtract( vert[s].xyz, vert[r].xyz, ab ); VectorSubtract( vert[t].xyz, vert[r].xyz, ac ); VectorSubtract( vert[t].xyz, vert[s].xyz, bc ); CrossProduct( ab, ac, cross ); A = VectorLength( cross ); V = A - ( VectorLength( ab ) - VectorLength( ac ) - VectorLength( bc ) ) * shiftWidth; /* value = A - circumference * shiftWidth, i.e. we back out by shiftWidth units from each side, to prevent too acute triangles */ /* this kind of simulates "number of shiftWidth*shiftWidth fragments in the triangle not touched by an edge" */ if ( bestA < 0 || V > bestV ) { bestA = A; bestV = V; bestR = r; bestS = s; bestT = t; } } /* if(bestV < 0) printf("value was REALLY bad\n"); */ for ( try = 0; try < MAXAREA_MAXTRIES; ++try ) { if ( try ) { bestR = rand() % cnt; bestS = rand() % cnt; bestT = rand() % cnt; if ( bestR == bestS || bestR == bestT || bestS == bestT ) { continue; } // bubblesort inline // abc acb bac bca cab cba if ( bestR > bestS ) { j = bestR; bestR = bestS; bestS = j; } // abc acb abc bca acb bca if ( bestS > bestT ) { j = bestS; bestS = bestT; bestT = j; } // abc abc abc bac abc bac if ( bestR > bestS ) { j = bestR; bestR = bestS; bestS = j; } // abc abc abc abc abc abc VectorSubtract( vert[bestS].xyz, vert[bestR].xyz, ab ); VectorSubtract( vert[bestT].xyz, vert[bestR].xyz, ac ); CrossProduct( ab, ac, cross ); bestA = VectorLength( cross ); } if ( bestA < TINY_AREA ) { /* the biggest triangle is degenerate - then every other is too, and the other algorithms wouldn't generate anything useful either */ continue; } i = 0; indexes[i++] = bestR; indexes[i++] = bestS; indexes[i++] = bestT; /* uses 3 */ /* identify the other fragments */ /* full polygon without triangle (bestR,bestS,bestT) = three new polygons: * 1. bestR..bestS * 2. bestS..bestT * 3. bestT..bestR */ j = MaxAreaIndexes( vert + bestR, bestS - bestR + 1, indexes + i ); if ( j < 0 ) { continue; } j += i; for (; i < j; ++i ) indexes[i] += bestR; /* uses 3*(bestS-bestR+1)-6 */ j = MaxAreaIndexes( vert + bestS, bestT - bestS + 1, indexes + i ); if ( j < 0 ) { continue; } j += i; for (; i < j; ++i ) indexes[i] += bestS; /* uses 3*(bestT-bestS+1)-6 */ /* can'bestT recurse this one directly... therefore, buffering */ if ( cnt + bestR - bestT + 1 >= 3 ) { buf = safe_malloc( sizeof( *vert ) * ( cnt + bestR - bestT + 1 ) ); memcpy( buf, vert + bestT, sizeof( *vert ) * ( cnt - bestT ) ); memcpy( buf + ( cnt - bestT ), vert, sizeof( *vert ) * ( bestR + 1 ) ); j = MaxAreaIndexes( buf, cnt + bestR - bestT + 1, indexes + i ); if ( j < 0 ) { free( buf ); continue; } j += i; for (; i < j; ++i ) indexes[i] = ( indexes[i] + bestT ) % cnt; /* uses 3*(cnt+bestR-bestT+1)-6 */ free( buf ); } /* together 3 + 3*(cnt+3) - 18 = 3*cnt-6 q.e.d. */ return i; } return -1; } /* MaxAreaFaceSurface() - divVerent creates a triangle list using max area indexes */ void MaxAreaFaceSurface( mapDrawSurface_t *ds ){ int n; /* try to early out */ if ( !ds->numVerts || ( ds->type != SURFACE_FACE && ds->type != SURFACE_DECAL ) ) { return; } /* is this a simple triangle? */ if ( ds->numVerts == 3 ) { ds->numIndexes = 3; ds->indexes = safe_malloc( ds->numIndexes * sizeof( int ) ); VectorSet( ds->indexes, 0, 1, 2 ); numMaxAreaSurfaces++; return; } /* do it! */ ds->numIndexes = 3 * ds->numVerts - 6; ds->indexes = safe_malloc( ds->numIndexes * sizeof( int ) ); n = MaxAreaIndexes( ds->verts, ds->numVerts, ds->indexes ); if ( n < 0 ) { /* whatever we do, it's degenerate */ free( ds->indexes ); ds->numIndexes = 0; StripFaceSurface( ds ); return; } ds->numIndexes = n; /* add to count */ numMaxAreaSurfaces++; /* classify it */ ClassifySurfaces( 1, ds ); } /* FanFaceSurface() - ydnar creates a tri-fan from a brush face winding loosely based on SurfaceAsTriFan() */ void FanFaceSurface( mapDrawSurface_t *ds ){ int i, j, k, a, b, c, color[ MAX_LIGHTMAPS ][ 4 ]; bspDrawVert_t *verts, *centroid, *dv; double iv; /* try to early out */ if ( !ds->numVerts || ( ds->type != SURFACE_FACE && ds->type != SURFACE_DECAL ) ) { return; } /* add a new vertex at the beginning of the surface */ verts = safe_malloc( ( ds->numVerts + 1 ) * sizeof( bspDrawVert_t ) ); memset( verts, 0, sizeof( bspDrawVert_t ) ); memcpy( &verts[ 1 ], ds->verts, ds->numVerts * sizeof( bspDrawVert_t ) ); free( ds->verts ); ds->verts = verts; /* add up the drawverts to create a centroid */ centroid = &verts[ 0 ]; memset( color, 0, 4 * MAX_LIGHTMAPS * sizeof( int ) ); for ( i = 1, dv = &verts[ 1 ]; i < ( ds->numVerts + 1 ); i++, dv++ ) { VectorAdd( centroid->xyz, dv->xyz, centroid->xyz ); VectorAdd( centroid->normal, dv->normal, centroid->normal ); for ( j = 0; j < 4; j++ ) { for ( k = 0; k < MAX_LIGHTMAPS; k++ ) color[ k ][ j ] += dv->color[ k ][ j ]; if ( j < 2 ) { centroid->st[ j ] += dv->st[ j ]; for ( k = 0; k < MAX_LIGHTMAPS; k++ ) centroid->lightmap[ k ][ j ] += dv->lightmap[ k ][ j ]; } } } /* average the centroid */ iv = 1.0f / ds->numVerts; VectorScale( centroid->xyz, iv, centroid->xyz ); if ( VectorNormalize( centroid->normal, centroid->normal ) <= 0 ) { VectorCopy( verts[ 1 ].normal, centroid->normal ); } for ( j = 0; j < 4; j++ ) { for ( k = 0; k < MAX_LIGHTMAPS; k++ ) { color[ k ][ j ] /= ds->numVerts; centroid->color[ k ][ j ] = ( color[ k ][ j ] < 255.0f ? color[ k ][ j ] : 255 ); } if ( j < 2 ) { centroid->st[ j ] *= iv; for ( k = 0; k < MAX_LIGHTMAPS; k++ ) centroid->lightmap[ k ][ j ] *= iv; } } /* add to vert count */ ds->numVerts++; /* fill indexes in triangle fan order */ ds->numIndexes = 0; ds->indexes = safe_malloc( ds->numVerts * 3 * sizeof( int ) ); for ( i = 1; i < ds->numVerts; i++ ) { a = 0; b = i; c = ( i + 1 ) % ds->numVerts; c = c ? c : 1; ds->indexes[ ds->numIndexes++ ] = a; ds->indexes[ ds->numIndexes++ ] = b; ds->indexes[ ds->numIndexes++ ] = c; } /* add to count */ numFanSurfaces++; /* classify it */ ClassifySurfaces( 1, ds ); } /* StripFaceSurface() - ydnar attempts to create a valid tri-strip w/o degenerate triangles from a brush face winding based on SurfaceAsTriStrip() */ #define MAX_INDEXES 1024 void StripFaceSurface( mapDrawSurface_t *ds ){ int i, r, least, rotate, numIndexes, ni, a, b, c, indexes[ MAX_INDEXES ]; vec_t *v1, *v2; /* try to early out */ if ( !ds->numVerts || ( ds->type != SURFACE_FACE && ds->type != SURFACE_DECAL ) ) { return; } /* is this a simple triangle? */ if ( ds->numVerts == 3 ) { numIndexes = 3; VectorSet( indexes, 0, 1, 2 ); } else { /* ydnar: find smallest coordinate */ least = 0; if ( ds->shaderInfo != NULL && ds->shaderInfo->autosprite == qfalse ) { for ( i = 0; i < ds->numVerts; i++ ) { /* get points */ v1 = ds->verts[ i ].xyz; v2 = ds->verts[ least ].xyz; /* compare */ if ( v1[ 0 ] < v2[ 0 ] || ( v1[ 0 ] == v2[ 0 ] && v1[ 1 ] < v2[ 1 ] ) || ( v1[ 0 ] == v2[ 0 ] && v1[ 1 ] == v2[ 1 ] && v1[ 2 ] < v2[ 2 ] ) ) { least = i; } } } /* determine the triangle strip order */ numIndexes = ( ds->numVerts - 2 ) * 3; if ( numIndexes > MAX_INDEXES ) { Error( "MAX_INDEXES exceeded for surface (%d > %d) (%d verts)", numIndexes, MAX_INDEXES, ds->numVerts ); } /* try all possible orderings of the points looking for a non-degenerate strip order */ ni = 0; for ( r = 0; r < ds->numVerts; r++ ) { /* set rotation */ rotate = ( r + least ) % ds->numVerts; /* walk the winding in both directions */ for ( ni = 0, i = 0; i < ds->numVerts - 2 - i; i++ ) { /* make indexes */ a = ( ds->numVerts - 1 - i + rotate ) % ds->numVerts; b = ( i + rotate ) % ds->numVerts; c = ( ds->numVerts - 2 - i + rotate ) % ds->numVerts; /* test this triangle */ if ( ds->numVerts > 4 && IsTriangleDegenerate( ds->verts, a, b, c ) ) { break; } indexes[ ni++ ] = a; indexes[ ni++ ] = b; indexes[ ni++ ] = c; /* handle end case */ if ( i + 1 != ds->numVerts - 1 - i ) { /* make indexes */ a = ( ds->numVerts - 2 - i + rotate ) % ds->numVerts; b = ( i + rotate ) % ds->numVerts; c = ( i + 1 + rotate ) % ds->numVerts; /* test triangle */ if ( ds->numVerts > 4 && IsTriangleDegenerate( ds->verts, a, b, c ) ) { break; } indexes[ ni++ ] = a; indexes[ ni++ ] = b; indexes[ ni++ ] = c; } } /* valid strip? */ if ( ni == numIndexes ) { break; } } /* if any triangle in the strip is degenerate, render from a centered fan point instead */ if ( ni < numIndexes ) { FanFaceSurface( ds ); return; } } /* copy strip triangle indexes */ ds->numIndexes = numIndexes; ds->indexes = safe_malloc( ds->numIndexes * sizeof( int ) ); memcpy( ds->indexes, indexes, ds->numIndexes * sizeof( int ) ); /* add to count */ numStripSurfaces++; /* classify it */ ClassifySurfaces( 1, ds ); } /* EmitMetaStatictics vortex: prints meta statistics in general output */ void EmitMetaStats(){ Sys_Printf( "--- EmitMetaStats ---\n" ); Sys_Printf( "%9d total meta surfaces\n", numMetaSurfaces ); Sys_Printf( "%9d stripped surfaces\n", numStripSurfaces ); Sys_Printf( "%9d fanned surfaces\n", numFanSurfaces ); Sys_Printf( "%9d maxarea'd surfaces\n", numMaxAreaSurfaces ); Sys_Printf( "%9d patch meta surfaces\n", numPatchMetaSurfaces ); Sys_Printf( "%9d meta verts\n", numMetaVerts ); Sys_Printf( "%9d meta triangles\n", numMetaTriangles ); } /* MakeEntityMetaTriangles() builds meta triangles from brush faces (tristrips and fans) */ void MakeEntityMetaTriangles( entity_t *e ){ int i, f, fOld, start; mapDrawSurface_t *ds; /* note it */ Sys_FPrintf( SYS_VRB, "--- MakeEntityMetaTriangles ---\n" ); /* init pacifier */ fOld = -1; start = I_FloatTime(); /* walk the list of surfaces in the entity */ for ( i = e->firstDrawSurf; i < numMapDrawSurfs; i++ ) { /* print pacifier */ f = 10 * ( i - e->firstDrawSurf ) / ( numMapDrawSurfs - e->firstDrawSurf ); if ( f != fOld ) { fOld = f; Sys_FPrintf( SYS_VRB, "%d...", f ); } /* get surface */ ds = &mapDrawSurfs[ i ]; if ( ds->numVerts <= 0 ) { continue; } /* ignore autosprite surfaces */ if ( ds->shaderInfo->autosprite ) { continue; } /* meta this surface? */ if ( meta == qfalse && ds->shaderInfo->forceMeta == qfalse ) { continue; } /* switch on type */ switch ( ds->type ) { case SURFACE_FACE: case SURFACE_DECAL: if ( maxAreaFaceSurface ) { MaxAreaFaceSurface( ds ); } else{ StripFaceSurface( ds ); } SurfaceToMetaTriangles( ds ); break; case SURFACE_PATCH: TriangulatePatchSurface( e, ds ); break; case SURFACE_TRIANGLES: break; case SURFACE_FORCED_META: case SURFACE_META: SurfaceToMetaTriangles( ds ); break; default: break; } } /* print time */ if ( ( numMapDrawSurfs - e->firstDrawSurf ) ) { Sys_FPrintf( SYS_VRB, " (%d)\n", (int) ( I_FloatTime() - start ) ); } /* emit some stats */ Sys_FPrintf( SYS_VRB, "%9d total meta surfaces\n", numMetaSurfaces ); Sys_FPrintf( SYS_VRB, "%9d stripped surfaces\n", numStripSurfaces ); Sys_FPrintf( SYS_VRB, "%9d fanned surfaces\n", numFanSurfaces ); Sys_FPrintf( SYS_VRB, "%9d maxarea'd surfaces\n", numMaxAreaSurfaces ); Sys_FPrintf( SYS_VRB, "%9d patch meta surfaces\n", numPatchMetaSurfaces ); Sys_FPrintf( SYS_VRB, "%9d meta verts\n", numMetaVerts ); Sys_FPrintf( SYS_VRB, "%9d meta triangles\n", numMetaTriangles ); /* tidy things up */ TidyEntitySurfaces( e ); } /* CreateEdge() sets up an edge structure from a plane and 2 points that the edge ab falls lies in */ typedef struct edge_s { vec3_t origin, edge; vec_t length, kingpinLength; int kingpin; vec4_t plane; } edge_t; void CreateEdge( vec4_t plane, vec3_t a, vec3_t b, edge_t *edge ){ /* copy edge origin */ VectorCopy( a, edge->origin ); /* create vector aligned with winding direction of edge */ VectorSubtract( b, a, edge->edge ); if ( fabs( edge->edge[ 0 ] ) > fabs( edge->edge[ 1 ] ) && fabs( edge->edge[ 0 ] ) > fabs( edge->edge[ 2 ] ) ) { edge->kingpin = 0; } else if ( fabs( edge->edge[ 1 ] ) > fabs( edge->edge[ 0 ] ) && fabs( edge->edge[ 1 ] ) > fabs( edge->edge[ 2 ] ) ) { edge->kingpin = 1; } else{ edge->kingpin = 2; } edge->kingpinLength = edge->edge[ edge->kingpin ]; VectorNormalize( edge->edge, edge->edge ); edge->edge[ 3 ] = DotProduct( a, edge->edge ); edge->length = DotProduct( b, edge->edge ) - edge->edge[ 3 ]; /* create perpendicular plane that edge lies in */ CrossProduct( plane, edge->edge, edge->plane ); edge->plane[ 3 ] = DotProduct( a, edge->plane ); } /* FixMetaTJunctions() fixes t-junctions on meta triangles */ #define TJ_PLANE_EPSILON ( 1.0f / 8.0f ) #define TJ_EDGE_EPSILON ( 1.0f / 8.0f ) #define TJ_POINT_EPSILON ( 1.0f / 8.0f ) void FixMetaTJunctions( void ){ int i, j, k, f, fOld, start, vertIndex, triIndex, numTJuncs; metaTriangle_t *tri, *newTri; shaderInfo_t *si; bspDrawVert_t *a, *b, *c, junc; float dist, amount; vec3_t pt; vec4_t plane; edge_t edges[ 3 ]; /* this code is crap; revisit later */ return; /* note it */ Sys_FPrintf( SYS_VRB, "--- FixMetaTJunctions ---\n" ); /* init pacifier */ fOld = -1; start = I_FloatTime(); /* walk triangle list */ numTJuncs = 0; for ( i = 0; i < numMetaTriangles; i++ ) { /* get triangle */ tri = &metaTriangles[ i ]; /* print pacifier */ f = 10 * i / numMetaTriangles; if ( f != fOld ) { fOld = f; Sys_FPrintf( SYS_VRB, "%d...", f ); } /* attempt to early out */ si = tri->si; if ( ( si->compileFlags & C_NODRAW ) || si->autosprite || si->notjunc ) { continue; } /* calculate planes */ VectorCopy( tri->plane, plane ); plane[ 3 ] = tri->plane[ 3 ]; CreateEdge( plane, metaVerts[ tri->indexes[ 0 ] ].xyz, metaVerts[ tri->indexes[ 1 ] ].xyz, &edges[ 0 ] ); CreateEdge( plane, metaVerts[ tri->indexes[ 1 ] ].xyz, metaVerts[ tri->indexes[ 2 ] ].xyz, &edges[ 1 ] ); CreateEdge( plane, metaVerts[ tri->indexes[ 2 ] ].xyz, metaVerts[ tri->indexes[ 0 ] ].xyz, &edges[ 2 ] ); /* walk meta vert list */ for ( j = 0; j < numMetaVerts; j++ ) { /* get vert */ VectorCopy( metaVerts[ j ].xyz, pt ); /* determine if point lies in the triangle's plane */ dist = DotProduct( pt, plane ) - plane[ 3 ]; if ( fabs( dist ) > TJ_PLANE_EPSILON ) { continue; } /* skip this point if it already exists in the triangle */ for ( k = 0; k < 3; k++ ) { if ( fabs( pt[ 0 ] - metaVerts[ tri->indexes[ k ] ].xyz[ 0 ] ) <= TJ_POINT_EPSILON && fabs( pt[ 1 ] - metaVerts[ tri->indexes[ k ] ].xyz[ 1 ] ) <= TJ_POINT_EPSILON && fabs( pt[ 2 ] - metaVerts[ tri->indexes[ k ] ].xyz[ 2 ] ) <= TJ_POINT_EPSILON ) { break; } } if ( k < 3 ) { continue; } /* walk edges */ for ( k = 0; k < 3; k++ ) { /* ignore bogus edges */ if ( fabs( edges[ k ].kingpinLength ) < TJ_EDGE_EPSILON ) { continue; } /* determine if point lies on the edge */ dist = DotProduct( pt, edges[ k ].plane ) - edges[ k ].plane[ 3 ]; if ( fabs( dist ) > TJ_EDGE_EPSILON ) { continue; } /* determine how far along the edge the point lies */ amount = ( pt[ edges[ k ].kingpin ] - edges[ k ].origin[ edges[ k ].kingpin ] ) / edges[ k ].kingpinLength; if ( amount <= 0.0f || amount >= 1.0f ) { continue; } #if 0 dist = DotProduct( pt, edges[ k ].edge ) - edges[ k ].edge[ 3 ]; if ( dist <= -0.0f || dist >= edges[ k ].length ) { continue; } amount = dist / edges[ k ].length; #endif /* the edge opposite the zero-weighted vertex was hit, so use that as an amount */ a = &metaVerts[ tri->indexes[ k % 3 ] ]; b = &metaVerts[ tri->indexes[ ( k + 1 ) % 3 ] ]; c = &metaVerts[ tri->indexes[ ( k + 2 ) % 3 ] ]; /* make new vert */ LerpDrawVertAmount( a, b, amount, &junc ); VectorCopy( pt, junc.xyz ); /* compare against existing verts */ if ( VectorCompare( junc.xyz, a->xyz ) || VectorCompare( junc.xyz, b->xyz ) || VectorCompare( junc.xyz, c->xyz ) ) { continue; } /* see if we can just re-use the existing vert */ if ( !memcmp( &metaVerts[ j ], &junc, sizeof( junc ) ) ) { vertIndex = j; } else { /* find new vertex (note: a and b are invalid pointers after this) */ firstSearchMetaVert = numMetaVerts; vertIndex = FindMetaVertex( &junc ); if ( vertIndex < 0 ) { continue; } } /* make new triangle */ triIndex = AddMetaTriangle(); if ( triIndex < 0 ) { continue; } /* get triangles */ tri = &metaTriangles[ i ]; newTri = &metaTriangles[ triIndex ]; /* copy the triangle */ memcpy( newTri, tri, sizeof( *tri ) ); /* fix verts */ tri->indexes[ ( k + 1 ) % 3 ] = vertIndex; newTri->indexes[ k ] = vertIndex; /* recalculate edges */ CreateEdge( plane, metaVerts[ tri->indexes[ 0 ] ].xyz, metaVerts[ tri->indexes[ 1 ] ].xyz, &edges[ 0 ] ); CreateEdge( plane, metaVerts[ tri->indexes[ 1 ] ].xyz, metaVerts[ tri->indexes[ 2 ] ].xyz, &edges[ 1 ] ); CreateEdge( plane, metaVerts[ tri->indexes[ 2 ] ].xyz, metaVerts[ tri->indexes[ 0 ] ].xyz, &edges[ 2 ] ); /* debug code */ metaVerts[ vertIndex ].color[ 0 ][ 0 ] = 255; metaVerts[ vertIndex ].color[ 0 ][ 1 ] = 204; metaVerts[ vertIndex ].color[ 0 ][ 2 ] = 0; /* add to counter and end processing of this vert */ numTJuncs++; break; } } } /* print time */ Sys_FPrintf( SYS_VRB, " (%d)\n", (int) ( I_FloatTime() - start ) ); /* emit some stats */ Sys_FPrintf( SYS_VRB, "%9d T-junctions added\n", numTJuncs ); } /* SmoothMetaTriangles() averages coincident vertex normals in the meta triangles */ #define MAX_SAMPLES 256 #define THETA_EPSILON 0.000001 #define EQUAL_NORMAL_EPSILON 0.01 void SmoothMetaTriangles( void ){ int i, j, k, f, fOld, start, cs, numVerts, numVotes, numSmoothed; float shadeAngle, defaultShadeAngle, maxShadeAngle, dot, testAngle; metaTriangle_t *tri; float *shadeAngles; byte *smoothed; vec3_t average, diff; int indexes[ MAX_SAMPLES ]; vec3_t votes[ MAX_SAMPLES ]; /* note it */ Sys_FPrintf( SYS_VRB, "--- SmoothMetaTriangles ---\n" ); /* allocate shade angle table */ shadeAngles = safe_malloc( numMetaVerts * sizeof( float ) ); memset( shadeAngles, 0, numMetaVerts * sizeof( float ) ); /* allocate smoothed table */ cs = ( numMetaVerts / 8 ) + 1; smoothed = safe_malloc( cs ); memset( smoothed, 0, cs ); /* set default shade angle */ defaultShadeAngle = DEG2RAD( npDegrees ); maxShadeAngle = 0.0f; /* run through every surface and flag verts belonging to non-lightmapped surfaces and set per-vertex smoothing angle */ for ( i = 0, tri = &metaTriangles[ i ]; i < numMetaTriangles; i++, tri++ ) { shadeAngle = defaultShadeAngle; /* get shade angle from shader */ if ( tri->si->shadeAngleDegrees > 0.0f ) { shadeAngle = DEG2RAD( tri->si->shadeAngleDegrees ); } /* get shade angle from entity */ else if ( tri->shadeAngleDegrees > 0.0f ) { shadeAngle = DEG2RAD( tri->shadeAngleDegrees ); } if ( shadeAngle <= 0.0f ) { shadeAngle = defaultShadeAngle; } if ( shadeAngle > maxShadeAngle ) { maxShadeAngle = shadeAngle; } /* flag its verts */ for ( j = 0; j < 3; j++ ) { shadeAngles[ tri->indexes[ j ] ] = shadeAngle; if ( shadeAngle <= 0 ) { smoothed[ tri->indexes[ j ] >> 3 ] |= ( 1 << ( tri->indexes[ j ] & 7 ) ); } } } /* bail if no surfaces have a shade angle */ if ( maxShadeAngle <= 0 ) { Sys_FPrintf( SYS_VRB, "No smoothing angles specified, aborting\n" ); free( shadeAngles ); free( smoothed ); return; } /* init pacifier */ fOld = -1; start = I_FloatTime(); /* go through the list of vertexes */ numSmoothed = 0; for ( i = 0; i < numMetaVerts; i++ ) { /* print pacifier */ f = 10 * i / numMetaVerts; if ( f != fOld ) { fOld = f; Sys_FPrintf( SYS_VRB, "%d...", f ); } /* already smoothed? */ if ( smoothed[ i >> 3 ] & ( 1 << ( i & 7 ) ) ) { continue; } /* clear */ VectorClear( average ); numVerts = 0; numVotes = 0; /* build a table of coincident vertexes */ for ( j = i; j < numMetaVerts && numVerts < MAX_SAMPLES; j++ ) { /* already smoothed? */ if ( smoothed[ j >> 3 ] & ( 1 << ( j & 7 ) ) ) { continue; } /* test vertexes */ if ( VectorCompare( metaVerts[ i ].xyz, metaVerts[ j ].xyz ) == qfalse ) { continue; } /* use smallest shade angle */ shadeAngle = ( shadeAngles[ i ] < shadeAngles[ j ] ? shadeAngles[ i ] : shadeAngles[ j ] ); /* check shade angle */ dot = DotProduct( metaVerts[ i ].normal, metaVerts[ j ].normal ); if ( dot > 1.0 ) { dot = 1.0; } else if ( dot < -1.0 ) { dot = -1.0; } testAngle = acos( dot ) + THETA_EPSILON; if ( testAngle >= shadeAngle ) { continue; } /* add to the list */ indexes[ numVerts++ ] = j; /* flag vertex */ smoothed[ j >> 3 ] |= ( 1 << ( j & 7 ) ); /* see if this normal has already been voted */ for ( k = 0; k < numVotes; k++ ) { VectorSubtract( metaVerts[ j ].normal, votes[ k ], diff ); if ( fabs( diff[ 0 ] ) < EQUAL_NORMAL_EPSILON && fabs( diff[ 1 ] ) < EQUAL_NORMAL_EPSILON && fabs( diff[ 2 ] ) < EQUAL_NORMAL_EPSILON ) { break; } } /* add a new vote? */ if ( k == numVotes && numVotes < MAX_SAMPLES ) { VectorAdd( average, metaVerts[ j ].normal, average ); VectorCopy( metaVerts[ j ].normal, votes[ numVotes ] ); numVotes++; } } /* don't average for less than 2 verts */ if ( numVerts < 2 ) { continue; } /* average normal */ if ( VectorNormalize( average, average ) > 0 ) { /* smooth */ for ( j = 0; j < numVerts; j++ ) VectorCopy( average, metaVerts[ indexes[ j ] ].normal ); numSmoothed++; } } /* free the tables */ free( shadeAngles ); free( smoothed ); /* print time */ Sys_FPrintf( SYS_VRB, " (%d)\n", (int) ( I_FloatTime() - start ) ); /* emit some stats */ Sys_FPrintf( SYS_VRB, "%9d smoothed vertexes\n", numSmoothed ); } /* AddMetaVertToSurface() adds a drawvert to a surface unless an existing vert matching already exists returns the index of that vert (or < 0 on failure) */ int AddMetaVertToSurface( mapDrawSurface_t *ds, bspDrawVert_t *dv1, int *coincident ){ int i; bspDrawVert_t *dv2; /* go through the verts and find a suitable candidate */ for ( i = 0; i < ds->numVerts; i++ ) { /* get test vert */ dv2 = &ds->verts[ i ]; /* compare xyz and normal */ if ( VectorCompare( dv1->xyz, dv2->xyz ) == qfalse ) { continue; } if ( VectorCompare( dv1->normal, dv2->normal ) == qfalse ) { continue; } /* good enough at this point */ ( *coincident )++; /* compare texture coordinates and color */ if ( dv1->st[ 0 ] != dv2->st[ 0 ] || dv1->st[ 1 ] != dv2->st[ 1 ] ) { continue; } if ( dv1->color[ 0 ][ 3 ] != dv2->color[ 0 ][ 3 ] ) { continue; } /* found a winner */ numMergedVerts++; return i; } /* overflow check */ if ( ds->numVerts >= ( ( ds->shaderInfo->compileFlags & C_VERTEXLIT ) ? maxSurfaceVerts : maxLMSurfaceVerts ) ) { return VERTS_EXCEEDED; } /* made it this far, add the vert and return */ dv2 = &ds->verts[ ds->numVerts++ ]; *dv2 = *dv1; return ( ds->numVerts - 1 ); } /* AddMetaTriangleToSurface() attempts to add a metatriangle to a surface returns the score of the triangle added */ #define AXIS_SCORE 100000 #define AXIS_MIN 100000 #define VERT_SCORE 10000 #define SURFACE_SCORE 1000 #define ST_SCORE 50 #define ST_SCORE2 ( 2 * ( ST_SCORE ) ) #define DEFAULT_ADEQUATE_SCORE ( (AXIS_MIN) +1 * ( VERT_SCORE ) ) #define DEFAULT_GOOD_SCORE ( (AXIS_MIN) +2 * (VERT_SCORE) +4 * ( ST_SCORE ) ) #define PERFECT_SCORE ( (AXIS_MIN) +3 * ( VERT_SCORE ) + (SURFACE_SCORE) +4 * ( ST_SCORE ) ) #define ADEQUATE_SCORE ( metaAdequateScore >= 0 ? metaAdequateScore : DEFAULT_ADEQUATE_SCORE ) #define GOOD_SCORE ( metaGoodScore >= 0 ? metaGoodScore : DEFAULT_GOOD_SCORE ) static int AddMetaTriangleToSurface( mapDrawSurface_t *ds, metaTriangle_t *tri, qboolean testAdd ){ vec3_t p; int i, score, coincident, ai, bi, ci, oldTexRange[ 2 ]; float lmMax; vec3_t mins, maxs; qboolean inTexRange; mapDrawSurface_t old; /* overflow check */ if ( ds->numIndexes >= maxSurfaceIndexes ) { return 0; } /* test the triangle */ if ( ds->entityNum != tri->entityNum ) { /* ydnar: added 2002-07-06 */ return 0; } if ( ds->castShadows != tri->castShadows || ds->recvShadows != tri->recvShadows ) { return 0; } if ( ds->shaderInfo != tri->si || ds->fogNum != tri->fogNum || ds->cubemapNum != tri->cubemapNum || ds->sampleSize != tri->sampleSize ) { return 0; } #if 0 if ( !( ds->shaderInfo->compileFlags & C_VERTEXLIT ) && //% VectorCompare( ds->lightmapAxis, tri->lightmapAxis ) == qfalse ) DotProduct( ds->lightmapAxis, tri->plane ) < 0.25f ) { return 0; } #endif /* planar surfaces will only merge with triangles in the same plane */ if ( npDegrees == 0.0f && ds->shaderInfo->nonplanar == qfalse && ds->planeNum >= 0 ) { if ( VectorCompare( mapplanes[ ds->planeNum ].normal, tri->plane ) == qfalse || mapplanes[ ds->planeNum ].dist != tri->plane[ 3 ] ) { return 0; } if ( tri->planeNum >= 0 && tri->planeNum != ds->planeNum ) { return 0; } } if ( metaMaxBBoxDistance >= 0 ) { if ( ds->numIndexes > 0 ) { VectorCopy( ds->mins, mins ); VectorCopy( ds->maxs, maxs ); mins[0] -= metaMaxBBoxDistance; mins[1] -= metaMaxBBoxDistance; mins[2] -= metaMaxBBoxDistance; maxs[0] += metaMaxBBoxDistance; maxs[1] += metaMaxBBoxDistance; maxs[2] += metaMaxBBoxDistance; #define CHECK_1D( mins, v, maxs ) ( ( mins ) <= ( v ) && ( v ) <= ( maxs ) ) #define CHECK_3D( mins, v, maxs ) ( CHECK_1D( ( mins )[0], ( v )[0], ( maxs )[0] ) && CHECK_1D( ( mins )[1], ( v )[1], ( maxs )[1] ) && CHECK_1D( ( mins )[2], ( v )[2], ( maxs )[2] ) ) VectorCopy( metaVerts[ tri->indexes[ 0 ] ].xyz, p ); if ( !CHECK_3D( mins, p, maxs ) ) { VectorCopy( metaVerts[ tri->indexes[ 1 ] ].xyz, p ); if ( !CHECK_3D( mins, p, maxs ) ) { VectorCopy( metaVerts[ tri->indexes[ 2 ] ].xyz, p ); if ( !CHECK_3D( mins, p, maxs ) ) { return 0; } } } #undef CHECK_3D #undef CHECK_1D } } /* set initial score */ score = tri->surfaceNum == ds->surfaceNum ? SURFACE_SCORE : 0; /* score the the dot product of lightmap axis to plane */ if ( ( ds->shaderInfo->compileFlags & C_VERTEXLIT ) || VectorCompare( ds->lightmapAxis, tri->lightmapAxis ) ) { score += AXIS_SCORE; } else{ score += AXIS_SCORE * DotProduct( ds->lightmapAxis, tri->plane ); } /* preserve old drawsurface if this fails */ memcpy( &old, ds, sizeof( *ds ) ); /* attempt to add the verts */ coincident = 0; ai = AddMetaVertToSurface( ds, &metaVerts[ tri->indexes[ 0 ] ], &coincident ); bi = AddMetaVertToSurface( ds, &metaVerts[ tri->indexes[ 1 ] ], &coincident ); ci = AddMetaVertToSurface( ds, &metaVerts[ tri->indexes[ 2 ] ], &coincident ); /* check vertex underflow */ if ( ai < 0 || bi < 0 || ci < 0 ) { memcpy( ds, &old, sizeof( *ds ) ); return 0; } /* score coincident vertex count (2003-02-14: changed so this only matters on planar surfaces) */ score += ( coincident * VERT_SCORE ); /* add new vertex bounds to mins/maxs */ VectorCopy( ds->mins, mins ); VectorCopy( ds->maxs, maxs ); AddPointToBounds( metaVerts[ tri->indexes[ 0 ] ].xyz, mins, maxs ); AddPointToBounds( metaVerts[ tri->indexes[ 1 ] ].xyz, mins, maxs ); AddPointToBounds( metaVerts[ tri->indexes[ 2 ] ].xyz, mins, maxs ); /* check lightmap bounds overflow (after at least 1 triangle has been added) */ if ( !( ds->shaderInfo->compileFlags & C_VERTEXLIT ) && ds->numIndexes > 0 && VectorLength( ds->lightmapAxis ) > 0.0f && ( VectorCompare( ds->mins, mins ) == qfalse || VectorCompare( ds->maxs, maxs ) == qfalse ) ) { /* set maximum size before lightmap scaling (normally 2032 units) */ /* 2004-02-24: scale lightmap test size by 2 to catch larger brush faces */ /* 2004-04-11: reverting to actual lightmap size */ lmMax = ( ds->sampleSize * ( ds->shaderInfo->lmCustomWidth - 1 ) ); for ( i = 0; i < 3; i++ ) { if ( ( maxs[ i ] - mins[ i ] ) > lmMax ) { memcpy( ds, &old, sizeof( *ds ) ); return 0; } } } /* check texture range overflow */ oldTexRange[ 0 ] = ds->texRange[ 0 ]; oldTexRange[ 1 ] = ds->texRange[ 1 ]; inTexRange = CalcSurfaceTextureRange( ds ); if ( inTexRange == qfalse && ds->numIndexes > 0 ) { memcpy( ds, &old, sizeof( *ds ) ); return UNSUITABLE_TRIANGLE; } /* score texture range */ if ( ds->texRange[ 0 ] <= oldTexRange[ 0 ] ) { score += ST_SCORE2; } else if ( ds->texRange[ 0 ] > oldTexRange[ 0 ] && oldTexRange[ 1 ] > oldTexRange[ 0 ] ) { score += ST_SCORE; } if ( ds->texRange[ 1 ] <= oldTexRange[ 1 ] ) { score += ST_SCORE2; } else if ( ds->texRange[ 1 ] > oldTexRange[ 1 ] && oldTexRange[ 0 ] > oldTexRange[ 1 ] ) { score += ST_SCORE; } /* go through the indexes and try to find an existing triangle that matches abc */ for ( i = 0; i < ds->numIndexes; i += 3 ) { /* 2002-03-11 (birthday!): rotate the triangle 3x to find an existing triangle */ if ( ( ai == ds->indexes[ i ] && bi == ds->indexes[ i + 1 ] && ci == ds->indexes[ i + 2 ] ) || ( bi == ds->indexes[ i ] && ci == ds->indexes[ i + 1 ] && ai == ds->indexes[ i + 2 ] ) || ( ci == ds->indexes[ i ] && ai == ds->indexes[ i + 1 ] && bi == ds->indexes[ i + 2 ] ) ) { /* triangle already present */ memcpy( ds, &old, sizeof( *ds ) ); tri->si = NULL; return 0; } /* rotate the triangle 3x to find an inverse triangle (error case) */ if ( ( ai == ds->indexes[ i ] && bi == ds->indexes[ i + 2 ] && ci == ds->indexes[ i + 1 ] ) || ( bi == ds->indexes[ i ] && ci == ds->indexes[ i + 2 ] && ai == ds->indexes[ i + 1 ] ) || ( ci == ds->indexes[ i ] && ai == ds->indexes[ i + 2 ] && bi == ds->indexes[ i + 1 ] ) ) { /* warn about it */ Sys_FPrintf( SYS_WRN, "WARNING: Flipped triangle: (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f) (%6.0f %6.0f %6.0f)\n", ds->verts[ ai ].xyz[ 0 ], ds->verts[ ai ].xyz[ 1 ], ds->verts[ ai ].xyz[ 2 ], ds->verts[ bi ].xyz[ 0 ], ds->verts[ bi ].xyz[ 1 ], ds->verts[ bi ].xyz[ 2 ], ds->verts[ ci ].xyz[ 0 ], ds->verts[ ci ].xyz[ 1 ], ds->verts[ ci ].xyz[ 2 ] ); /* reverse triangle already present */ memcpy( ds, &old, sizeof( *ds ) ); tri->si = NULL; return 0; } } /* add the triangle indexes */ if ( ds->numIndexes < maxSurfaceIndexes ) { ds->indexes[ ds->numIndexes++ ] = ai; } if ( ds->numIndexes < maxSurfaceIndexes ) { ds->indexes[ ds->numIndexes++ ] = bi; } if ( ds->numIndexes < maxSurfaceIndexes ) { ds->indexes[ ds->numIndexes++ ] = ci; } /* check index overflow */ if ( ds->numIndexes >= maxSurfaceIndexes ) { memcpy( ds, &old, sizeof( *ds ) ); return 0; } /* sanity check the indexes */ if ( ds->numIndexes >= 3 && ( ds->indexes[ ds->numIndexes - 3 ] == ds->indexes[ ds->numIndexes - 2 ] || ds->indexes[ ds->numIndexes - 3 ] == ds->indexes[ ds->numIndexes - 1 ] || ds->indexes[ ds->numIndexes - 2 ] == ds->indexes[ ds->numIndexes - 1 ] ) ) { Sys_Printf( "DEG:%d! ", ds->numVerts ); } /* testing only? */ if ( testAdd ) { memcpy( ds, &old, sizeof( *ds ) ); } else { /* copy bounds back to surface */ VectorCopy( mins, ds->mins ); VectorCopy( maxs, ds->maxs ); /* mark triangle as used */ tri->si = NULL; } /* add a side reference */ ds->sideRef = AllocSideRef( tri->side, ds->sideRef ); /* return to sender */ return score; } /* MetaTrianglesToSurface() creates map drawsurface(s) from the list of possibles */ static void MetaTrianglesToSurface( int numPossibles, metaTriangle_t *possibles, int *fOld, int *numAdded ){ int i, j, f, best, score, bestScore; metaTriangle_t *seed, *test; mapDrawSurface_t *ds; bspDrawVert_t *verts; int *indexes; qboolean added; /* allocate arrays */ verts = safe_malloc( sizeof( *verts ) * maxSurfaceVerts ); indexes = safe_malloc( sizeof( *indexes ) * maxSurfaceIndexes ); /* walk the list of triangles */ for ( i = 0, seed = possibles; i < numPossibles; i++, seed++ ) { /* skip this triangle if it has already been merged */ if ( seed->si == NULL ) { continue; } /* ----------------------------------------------------------------- initial drawsurf construction ----------------------------------------------------------------- */ /* start a new drawsurface */ ds = AllocDrawSurface( SURFACE_META ); ds->entityNum = seed->entityNum; ds->surfaceNum = seed->surfaceNum; ds->castShadows = seed->castShadows; ds->recvShadows = seed->recvShadows; ds->shaderInfo = seed->si; ds->planeNum = seed->planeNum; ds->fogNum = seed->fogNum; ds->cubemapNum = seed->cubemapNum; ds->sampleSize = seed->sampleSize; ds->shadeAngleDegrees = seed->shadeAngleDegrees; ds->verts = verts; ds->indexes = indexes; VectorCopy( seed->lightmapAxis, ds->lightmapAxis ); ds->sideRef = AllocSideRef( seed->side, NULL ); ClearBounds( ds->mins, ds->maxs ); /* clear verts/indexes */ memset( verts, 0, sizeof( *verts ) * maxSurfaceVerts ); memset( indexes, 0, sizeof( *indexes ) * maxSurfaceIndexes ); /* add the first triangle */ if ( AddMetaTriangleToSurface( ds, seed, qfalse ) ) { ( *numAdded )++; } /* ----------------------------------------------------------------- add triangles ----------------------------------------------------------------- */ /* progressively walk the list until no more triangles can be added */ added = qtrue; while ( added ) { /* print pacifier */ f = 10 * *numAdded / numMetaTriangles; if ( f > *fOld ) { *fOld = f; Sys_FPrintf( SYS_VRB, "%d...", f ); } /* reset best score */ best = -1; bestScore = 0; added = qfalse; /* walk the list of possible candidates for merging */ for ( j = i + 1, test = &possibles[ j ]; j < numPossibles; j++, test++ ) { /* skip this triangle if it has already been merged */ if ( test->si == NULL ) { continue; } /* score this triangle */ score = AddMetaTriangleToSurface( ds, test, qtrue ); if ( score > bestScore ) { best = j; bestScore = score; /* if we have a score over a certain threshold, just use it */ if ( bestScore >= GOOD_SCORE ) { if ( AddMetaTriangleToSurface( ds, &possibles[ best ], qfalse ) ) { ( *numAdded )++; } /* reset */ best = -1; bestScore = 0; added = qtrue; } } } /* add best candidate */ if ( best >= 0 && bestScore > ADEQUATE_SCORE ) { if ( AddMetaTriangleToSurface( ds, &possibles[ best ], qfalse ) ) { ( *numAdded )++; } /* reset */ added = qtrue; } } /* copy the verts and indexes to the new surface */ ds->verts = safe_malloc( ds->numVerts * sizeof( bspDrawVert_t ) ); memcpy( ds->verts, verts, ds->numVerts * sizeof( bspDrawVert_t ) ); ds->indexes = safe_malloc( ds->numIndexes * sizeof( int ) ); memcpy( ds->indexes, indexes, ds->numIndexes * sizeof( int ) ); /* classify the surface */ ClassifySurfaces( 1, ds ); /* add to count */ numMergedSurfaces++; } /* free arrays */ free( verts ); free( indexes ); } /* CompareMetaTriangles() compare function for qsort() */ static int CompareMetaTriangles( const void *a, const void *b ){ int i, j, av, bv; vec3_t aMins, bMins; /* shader first */ if ( ( (const metaTriangle_t*) a )->si < ( (const metaTriangle_t*) b )->si ) { return 1; } else if ( ( (const metaTriangle_t*) a )->si > ( (const metaTriangle_t*) b )->si ) { return -1; } /* then fog */ else if ( ( (const metaTriangle_t*) a )->fogNum < ( (const metaTriangle_t*) b )->fogNum ) { return 1; } else if ( ( (const metaTriangle_t*) a )->fogNum > ( (const metaTriangle_t*) b )->fogNum ) { return -1; } /* then cubemaps */ else if ( ( (const metaTriangle_t*) a )->cubemapNum < ( (const metaTriangle_t*) b )->cubemapNum ) { return 1; } else if ( ( (const metaTriangle_t*) a )->cubemapNum > ( (const metaTriangle_t*) b )->cubemapNum ) { return -1; } /* then plane */ #if 0 else if ( npDegrees == 0.0f && ( (const metaTriangle_t*) a )->si->nonplanar == qfalse && ( (const metaTriangle_t*) a )->planeNum >= 0 && ( (const metaTriangle_t*) a )->planeNum >= 0 ) { if ( ( (const metaTriangle_t*) a )->plane[ 3 ] < ( (const metaTriangle_t*) b )->plane[ 3 ] ) { return 1; } else if ( ( (const metaTriangle_t*) a )->plane[ 3 ] > ( (const metaTriangle_t*) b )->plane[ 3 ] ) { return -1; } else if ( ( (const metaTriangle_t*) a )->plane[ 0 ] < ( (const metaTriangle_t*) b )->plane[ 0 ] ) { return 1; } else if ( ( (const metaTriangle_t*) a )->plane[ 0 ] > ( (const metaTriangle_t*) b )->plane[ 0 ] ) { return -1; } else if ( ( (const metaTriangle_t*) a )->plane[ 1 ] < ( (const metaTriangle_t*) b )->plane[ 1 ] ) { return 1; } else if ( ( (const metaTriangle_t*) a )->plane[ 1 ] > ( (const metaTriangle_t*) b )->plane[ 1 ] ) { return -1; } else if ( ( (const metaTriangle_t*) a )->plane[ 2 ] < ( (const metaTriangle_t*) b )->plane[ 2 ] ) { return 1; } else if ( ( (const metaTriangle_t*) a )->plane[ 2 ] > ( (const metaTriangle_t*) b )->plane[ 2 ] ) { return -1; } } #endif /* then position in world */ /* find mins */ VectorSet( aMins, 999999, 999999, 999999 ); VectorSet( bMins, 999999, 999999, 999999 ); for ( i = 0; i < 3; i++ ) { av = ( (const metaTriangle_t*) a )->indexes[ i ]; bv = ( (const metaTriangle_t*) b )->indexes[ i ]; for ( j = 0; j < 3; j++ ) { if ( metaVerts[ av ].xyz[ j ] < aMins[ j ] ) { aMins[ j ] = metaVerts[ av ].xyz[ j ]; } if ( metaVerts[ bv ].xyz[ j ] < bMins[ j ] ) { bMins[ j ] = metaVerts[ bv ].xyz[ j ]; } } } /* test it */ for ( i = 0; i < 3; i++ ) { if ( aMins[ i ] < bMins[ i ] ) { return 1; } else if ( aMins[ i ] > bMins[ i ] ) { return -1; } } /* functionally equivalent */ return 0; } /* MergeMetaTriangles() merges meta triangles into drawsurfaces */ void MergeMetaTriangles( void ){ int i, j, fOld, start, numAdded; metaTriangle_t *head, *end; /* only do this if there are meta triangles */ if ( numMetaTriangles <= 0 ) { return; } /* note it */ Sys_FPrintf( SYS_VRB, "--- MergeMetaTriangles ---\n" ); /* sort the triangles by shader major, fognum minor */ qsort( metaTriangles, numMetaTriangles, sizeof( metaTriangle_t ), CompareMetaTriangles ); /* init pacifier */ fOld = -1; start = I_FloatTime(); numAdded = 0; /* merge */ for ( i = 0, j = 0; i < numMetaTriangles; i = j ) { /* get head of list */ head = &metaTriangles[ i ]; /* skip this triangle if it has already been merged */ if ( head->si == NULL ) { continue; } /* find end */ if ( j <= i ) { for ( j = i + 1; j < numMetaTriangles; j++ ) { /* get end of list */ end = &metaTriangles[ j ]; if ( head->si != end->si || head->fogNum != end->fogNum || head->cubemapNum != end->cubemapNum ) { break; } } } /* try to merge this list of possible merge candidates */ MetaTrianglesToSurface( ( j - i ), head, &fOld, &numAdded ); } /* clear meta triangle list */ ClearMetaTriangles(); /* print time */ if ( i ) { Sys_FPrintf( SYS_VRB, " (%d)\n", (int) ( I_FloatTime() - start ) ); } /* emit some stats */ Sys_FPrintf( SYS_VRB, "%9d surfaces merged\n", numMergedSurfaces ); Sys_FPrintf( SYS_VRB, "%9d vertexes merged\n", numMergedVerts ); }