/* ------------------------------------------------------------------------------- Copyright (C) 1999-2007 id Software, Inc. and contributors. For a list of contributors, see the accompanying CONTRIBUTORS file. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA ---------------------------------------------------------------------------------- This code has been altered significantly from its original form, to support several games based on the Quake III Arena engine, in the form of "Q3Map2." ------------------------------------------------------------------------------- */ /* marker */ #define PATCH_C /* dependencies */ #include "vmap.h" /* ExpandLongestCurve() - ydnar finds length of quadratic curve specified and determines if length is longer than the supplied max */ #define APPROX_SUBDIVISION 8 static void ExpandLongestCurve( float *longestCurve, vec3_t a, vec3_t b, vec3_t c ){ int i; float t, len; vec3_t ab, bc, ac, pt, last, delta; /* calc vectors */ VectorSubtract( b, a, ab ); if ( VectorNormalize( ab, ab ) < 0.125f ) { return; } VectorSubtract( c, b, bc ); if ( VectorNormalize( bc, bc ) < 0.125f ) { return; } VectorSubtract( c, a, ac ); if ( VectorNormalize( ac, ac ) < 0.125f ) { return; } /* if all 3 vectors are the same direction, then this edge is linear, so we ignore it */ if ( DotProduct( ab, bc ) > 0.99f && DotProduct( ab, ac ) > 0.99f ) { return; } /* recalculate vectors */ VectorSubtract( b, a, ab ); VectorSubtract( c, b, bc ); /* determine length */ VectorCopy( a, last ); for ( i = 0, len = 0.0f, t = 0.0f; i < APPROX_SUBDIVISION; i++, t += ( 1.0f / APPROX_SUBDIVISION ) ) { /* calculate delta */ delta[ 0 ] = ( ( 1.0f - t ) * ab[ 0 ] ) + ( t * bc[ 0 ] ); delta[ 1 ] = ( ( 1.0f - t ) * ab[ 1 ] ) + ( t * bc[ 1 ] ); delta[ 2 ] = ( ( 1.0f - t ) * ab[ 2 ] ) + ( t * bc[ 2 ] ); /* add to first point and calculate pt-pt delta */ VectorAdd( a, delta, pt ); VectorSubtract( pt, last, delta ); /* add it to length and store last point */ len += VectorLength( delta ); VectorCopy( pt, last ); } /* longer? */ if ( len > *longestCurve ) { *longestCurve = len; } } /* ExpandMaxIterations() - ydnar determines how many iterations a quadratic curve needs to be subdivided with to fit the specified error */ static void ExpandMaxIterations( int *maxIterations, int maxError, vec3_t a, vec3_t b, vec3_t c ){ int i, j; vec3_t prev, next, mid, delta, delta2; float len, len2; int numPoints, iterations; vec3_t points[ MAX_EXPANDED_AXIS ]; /* initial setup */ numPoints = 3; VectorCopy( a, points[ 0 ] ); VectorCopy( b, points[ 1 ] ); VectorCopy( c, points[ 2 ] ); /* subdivide */ for ( i = 0; i + 2 < numPoints; i += 2 ) { /* check subdivision limit */ if ( numPoints + 2 >= MAX_EXPANDED_AXIS ) { break; } /* calculate new curve deltas */ for ( j = 0; j < 3; j++ ) { prev[ j ] = points[ i + 1 ][ j ] - points[ i ][ j ]; next[ j ] = points[ i + 2 ][ j ] - points[ i + 1 ][ j ]; mid[ j ] = ( points[ i ][ j ] + points[ i + 1 ][ j ] * 2.0f + points[ i + 2 ][ j ] ) * 0.25f; } /* see if this midpoint is off far enough to subdivide */ VectorSubtract( points[ i + 1 ], mid, delta ); len = VectorLength( delta ); if ( len < maxError ) { continue; } /* subdivide */ numPoints += 2; /* create new points */ for ( j = 0; j < 3; j++ ) { prev[ j ] = 0.5f * ( points[ i ][ j ] + points[ i + 1 ][ j ] ); next[ j ] = 0.5f * ( points[ i + 1 ][ j ] + points[ i + 2 ][ j ] ); mid[ j ] = 0.5f * ( prev[ j ] + next[ j ] ); } /* push points out */ for ( j = numPoints - 1; j > i + 3; j-- ) VectorCopy( points[ j - 2 ], points[ j ] ); /* insert new points */ VectorCopy( prev, points[ i + 1 ] ); VectorCopy( mid, points[ i + 2 ] ); VectorCopy( next, points[ i + 3 ] ); /* back up and recheck this set again, it may need more subdivision */ i -= 2; } /* put the line on the curve */ for ( i = 1; i < numPoints; i += 2 ) { for ( j = 0; j < 3; j++ ) { prev[ j ] = 0.5f * ( points[ i ][ j ] + points[ i + 1 ][ j ] ); next[ j ] = 0.5f * ( points[ i ][ j ] + points[ i - 1 ][ j ] ); points[ i ][ j ] = 0.5f * ( prev[ j ] + next[ j ] ); } } /* eliminate linear sections */ for ( i = 0; i + 2 < numPoints; i++ ) { /* create vectors */ VectorSubtract( points[ i + 1 ], points[ i ], delta ); len = VectorNormalize( delta, delta ); VectorSubtract( points[ i + 2 ], points[ i + 1 ], delta2 ); len2 = VectorNormalize( delta2, delta2 ); /* if either edge is degenerate, then eliminate it */ if ( len < 0.0625f || len2 < 0.0625f || DotProduct( delta, delta2 ) >= 1.0f ) { for ( j = i + 1; j + 1 < numPoints; j++ ) VectorCopy( points[ j + 1 ], points[ j ] ); numPoints--; continue; } } /* the number of iterations is 2^(points - 1) - 1 */ numPoints >>= 1; iterations = 0; while ( numPoints > 1 ) { numPoints >>= 1; iterations++; } /* more? */ if ( iterations > *maxIterations ) { *maxIterations = iterations; } } void ParseVertMatrix(bspDrawVert_t *v) { vec4_t vcol; int i; MatchToken( "(" ); for ( i = 0 ; i < 3 ; i++ ) { GetToken( qfalse ); v->xyz[i] = atof( token ); } for ( i = 0 ; i < 2 ; i++ ) { GetToken( qfalse ); v->st[i] = atof( token ); } for ( i = 0 ; i < 4 ; i++ ) { GetToken( qfalse ); if (!strcmp(token, ")")) break; vcol[i] = atof( token ); } for ( ; i < 4 ; i++ ) { vcol[i] = 1; } if (strcmp(token, ")")) MatchToken( ")" ); /* ydnar: fix colors */ for ( i = 0; i < MAX_LIGHTMAPS; i++ ) { v->color[ i ][ 0 ] = 255*vcol[0]; v->color[ i ][ 1 ] = 255*vcol[1]; v->color[ i ][ 2 ] = 255*vcol[2]; v->color[ i ][ 3 ] = 255*vcol[3]; } } /* ParsePatch() creates a mapDrawSurface_t from the patch text */ void ParsePatch( qboolean onlyLights, qboolean fixedtess ){ vec_t info[ 5 ]; int i, j; parseMesh_t *pm; char texture[ MAX_QPATH ]; char shader[ MAX_QPATH ]; mesh_t m; bspDrawVert_t *verts; epair_t *ep; vec4_t delta, delta2, delta3; qboolean degenerate; float longestCurve; int maxIterations; MatchToken( "{" ); /* get texture */ GetToken( qtrue ); strcpy( texture, token ); if (fixedtess) Parse1DMatrix( 7, info ); else Parse1DMatrix( 5, info ); //Hack for fixed tessellation /* info[2] = info[3] = 2; fixedtess = qtrue;*/ m.width = info[0]; m.height = info[1]; m.subdiv_x = fixedtess?info[2]:-1; m.subdiv_y = fixedtess?info[3]:-1; m.verts = verts = safe_malloc( m.width * m.height * sizeof( m.verts[0] ) ); if ( m.width < 0 || m.width > MAX_PATCH_SIZE || m.height < 0 || m.height > MAX_PATCH_SIZE ) { Error( "ParsePatch: bad size" ); } MatchToken( "(" ); for ( j = 0; j < m.width ; j++ ) { MatchToken( "(" ); for ( i = 0; i < m.height ; i++ ) ParseVertMatrix(&verts[ i * m.width + j ]); MatchToken( ")" ); } MatchToken( ")" ); // if brush primitives format, we may have some epairs to ignore here GetToken( qtrue ); if ( g_bBrushPrimit != BPRIMIT_OLDBRUSHES && strcmp( token,"}" ) ) { ep = ParseEPair(); free( ep->key ); free( ep->value ); free( ep ); } else{ UnGetToken(); } MatchToken( "}" ); MatchToken( "}" ); /* short circuit */ if ( noCurveBrushes || onlyLights ) { return; } /* ydnar: delete and warn about degenerate patches */ j = ( m.width * m.height ); VectorClear( delta ); delta[ 3 ] = 0; degenerate = qtrue; /* find first valid vector */ for ( i = 1; i < j && delta[ 3 ] == 0; i++ ) { VectorSubtract( m.verts[ 0 ].xyz, m.verts[ i ].xyz, delta ); delta[ 3 ] = VectorNormalize( delta, delta ); } /* secondary degenerate test */ if ( delta[ 3 ] == 0 ) { degenerate = qtrue; } else { /* if all vectors match this or are zero, then this is a degenerate patch */ for ( i = 1; i < j && degenerate == qtrue; i++ ) { VectorSubtract( m.verts[ 0 ].xyz, m.verts[ i ].xyz, delta2 ); delta2[ 3 ] = VectorNormalize( delta2, delta2 ); if ( delta2[ 3 ] != 0 ) { /* create inverse vector */ VectorCopy( delta2, delta3 ); delta3[ 3 ] = delta2[ 3 ]; VectorInverse( delta3 ); /* compare */ if ( VectorCompare( delta, delta2 ) == qfalse && VectorCompare( delta, delta3 ) == qfalse ) { degenerate = qfalse; } } } } /* warn and select degenerate patch */ if ( degenerate ) { xml_Select( "degenerate patch", mapEnt->mapEntityNum, entitySourceBrushes, qfalse ); free( m.verts ); return; } /* find longest curve on the mesh */ longestCurve = 0.0f; maxIterations = 0; if (!fixedtess) { for ( j = 0; j + 2 < m.width; j += 2 ) { for ( i = 0; i + 2 < m.height; i += 2 ) { ExpandLongestCurve( &longestCurve, verts[ i * m.width + j ].xyz, verts[ i * m.width + ( j + 1 ) ].xyz, verts[ i * m.width + ( j + 2 ) ].xyz ); /* row */ ExpandLongestCurve( &longestCurve, verts[ i * m.width + j ].xyz, verts[ ( i + 1 ) * m.width + j ].xyz, verts[ ( i + 2 ) * m.width + j ].xyz ); /* col */ ExpandMaxIterations( &maxIterations, patchSubdivisions, verts[ i * m.width + j ].xyz, verts[ i * m.width + ( j + 1 ) ].xyz, verts[ i * m.width + ( j + 2 ) ].xyz ); /* row */ ExpandMaxIterations( &maxIterations, patchSubdivisions, verts[ i * m.width + j ].xyz, verts[ ( i + 1 ) * m.width + j ].xyz, verts[ ( i + 2 ) * m.width + j ].xyz ); /* col */ } } } /* allocate patch mesh */ pm = safe_malloc( sizeof( *pm ) ); memset( pm, 0, sizeof( *pm ) ); /* ydnar: add entity/brush numbering */ pm->entityNum = mapEnt->mapEntityNum; pm->brushNum = entitySourceBrushes; /* set shader */ sprintf( shader, "textures/%s", texture ); pm->shaderInfo = ShaderInfoForShader( shader ); /* set mesh */ pm->mesh = m; /* set longest curve */ pm->longestCurve = longestCurve; pm->maxIterations = maxIterations; /* link to the entity */ pm->next = mapEnt->patches; mapEnt->patches = pm; } /* GrowGroup_r() recursively adds patches to a lod group */ static void GrowGroup_r( parseMesh_t *pm, int patchNum, int patchCount, parseMesh_t **meshes, byte *bordering, byte *group ){ int i; const byte *row; /* early out check */ if ( group[ patchNum ] ) { return; } /* set it */ group[ patchNum ] = 1; row = bordering + patchNum * patchCount; /* check maximums */ if ( meshes[ patchNum ]->longestCurve > pm->longestCurve ) { pm->longestCurve = meshes[ patchNum ]->longestCurve; } if ( meshes[ patchNum ]->maxIterations > pm->maxIterations ) { pm->maxIterations = meshes[ patchNum ]->maxIterations; } /* walk other patches */ for ( i = 0; i < patchCount; i++ ) { if ( row[ i ] ) { GrowGroup_r( pm, i, patchCount, meshes, bordering, group ); } } } /* PatchMapDrawSurfs() any patches that share an edge need to choose their level of detail as a unit, otherwise the edges would pull apart. */ void PatchMapDrawSurfs( entity_t *e ){ int i, j, k, l, c1, c2; parseMesh_t *pm; parseMesh_t *check, *scan; mapDrawSurface_t *ds; int patchCount, groupCount; bspDrawVert_t *v1, *v2; vec3_t bounds[ 2 ]; byte *bordering; /* ydnar: mac os x fails with these if not static */ MAC_STATIC parseMesh_t *meshes[ MAX_MAP_DRAW_SURFS ]; MAC_STATIC qb_t grouped[ MAX_MAP_DRAW_SURFS ]; MAC_STATIC byte group[ MAX_MAP_DRAW_SURFS ]; /* note it */ Sys_FPrintf( SYS_VRB, "--- PatchMapDrawSurfs ---\n" ); patchCount = 0; for ( pm = e->patches ; pm ; pm = pm->next ) { meshes[patchCount] = pm; patchCount++; } if ( !patchCount ) { return; } bordering = safe_malloc( patchCount * patchCount ); memset( bordering, 0, patchCount * patchCount ); // build the bordering matrix for ( k = 0 ; k < patchCount ; k++ ) { bordering[k * patchCount + k] = 1; for ( l = k + 1 ; l < patchCount ; l++ ) { check = meshes[k]; scan = meshes[l]; c1 = scan->mesh.width * scan->mesh.height; v1 = scan->mesh.verts; for ( i = 0 ; i < c1 ; i++, v1++ ) { c2 = check->mesh.width * check->mesh.height; v2 = check->mesh.verts; for ( j = 0 ; j < c2 ; j++, v2++ ) { if ( fabs( v1->xyz[0] - v2->xyz[0] ) < 1.0 && fabs( v1->xyz[1] - v2->xyz[1] ) < 1.0 && fabs( v1->xyz[2] - v2->xyz[2] ) < 1.0 ) { break; } } if ( j != c2 ) { break; } } if ( i != c1 ) { // we have a connection bordering[k * patchCount + l] = bordering[l * patchCount + k] = 1; } else { // no connection bordering[k * patchCount + l] = bordering[l * patchCount + k] = 0; } } } /* build groups */ memset( grouped, 0, patchCount ); groupCount = 0; for ( i = 0; i < patchCount; i++ ) { /* get patch */ scan = meshes[ i ]; /* start a new group */ if ( !grouped[ i ] ) { groupCount++; } /* recursively find all patches that belong in the same group */ memset( group, 0, patchCount ); GrowGroup_r( scan, i, patchCount, meshes, bordering, group ); /* bound them */ ClearBounds( bounds[ 0 ], bounds[ 1 ] ); for ( j = 0; j < patchCount; j++ ) { if ( group[ j ] ) { grouped[ j ] = qtrue; check = meshes[ j ]; c1 = check->mesh.width * check->mesh.height; v1 = check->mesh.verts; for ( k = 0; k < c1; k++, v1++ ) AddPointToBounds( v1->xyz, bounds[ 0 ], bounds[ 1 ] ); } } /* debug code */ //% Sys_Printf( "Longest curve: %f Iterations: %d\n", scan->longestCurve, scan->maxIterations ); /* create drawsurf */ scan->grouped = qtrue; ds = DrawSurfaceForMesh( e, scan, NULL ); /* ydnar */ VectorCopy( bounds[ 0 ], ds->bounds[ 0 ] ); VectorCopy( bounds[ 1 ], ds->bounds[ 1 ] ); } /* emit some statistics */ Sys_FPrintf( SYS_VRB, "%9d patches\n", patchCount ); Sys_FPrintf( SYS_VRB, "%9d patch LOD groups\n", groupCount ); }