/* Copyright (C) 2001-2006, William Joseph. All Rights Reserved. This file is part of GtkRadiant. GtkRadiant is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. GtkRadiant is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GtkRadiant; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #if !defined( INCLUDED_RENDER_H ) #define INCLUDED_RENDER_H /// \file /// \brief High-level constructs for efficient OpenGL rendering. #include "irender.h" #include "igl.h" #include "container/array.h" #include "math/vector.h" #include "math/pi.h" #include typedef unsigned int RenderIndex; const GLenum RenderIndexTypeID = GL_UNSIGNED_INT; /// \brief A resizable buffer of indices. class IndexBuffer { typedef std::vector Indices; Indices m_data; public: typedef Indices::iterator iterator; typedef Indices::const_iterator const_iterator; iterator begin(){ return m_data.begin(); } const_iterator begin() const { return m_data.begin(); } iterator end(){ return m_data.end(); } const_iterator end() const { return m_data.end(); } bool empty() const { return m_data.empty(); } std::size_t size() const { return m_data.size(); } const RenderIndex* data() const { return &( *m_data.begin() ); } RenderIndex& operator[]( std::size_t index ){ return m_data[index]; } const RenderIndex& operator[]( std::size_t index ) const { return m_data[index]; } void clear(){ m_data.clear(); } void reserve( std::size_t max_indices ){ m_data.reserve( max_indices ); } void insert( RenderIndex index ){ m_data.push_back( index ); } void swap( IndexBuffer& other ){ std::swap( m_data, m_data ); } }; namespace std { /// \brief Swaps the values of \p self and \p other. /// Overloads std::swap. inline void swap( IndexBuffer& self, IndexBuffer& other ){ self.swap( other ); } } /// \brief A resizable buffer of vertices. /// \param Vertex The vertex data type. template class VertexBuffer { typedef typename std::vector Vertices; Vertices m_data; public: typedef typename Vertices::iterator iterator; typedef typename Vertices::const_iterator const_iterator; iterator begin(){ return m_data.begin(); } iterator end(){ return m_data.end(); } const_iterator begin() const { return m_data.begin(); } const_iterator end() const { return m_data.end(); } bool empty() const { return m_data.empty(); } RenderIndex size() const { return RenderIndex( m_data.size() ); } const Vertex* data() const { return &( *m_data.begin() ); } Vertex& operator[]( std::size_t index ){ return m_data[index]; } const Vertex& operator[]( std::size_t index ) const { return m_data[index]; } void clear(){ m_data.clear(); } void reserve( std::size_t max_vertices ){ m_data.reserve( max_vertices ); } void push_back( const Vertex& vertex ){ m_data.push_back( vertex ); } }; /// \brief A wrapper around a VertexBuffer which inserts only vertices which have not already been inserted. /// \param Vertex The vertex data type. Must support operator<, operator== and operator!=. /// For best performance, quantise vertices before inserting them. template class UniqueVertexBuffer { typedef VertexBuffer Vertices; Vertices& m_data; struct bnode { bnode() : m_left( 0 ), m_right( 0 ){ } RenderIndex m_left; RenderIndex m_right; }; std::vector m_btree; RenderIndex m_prev0; RenderIndex m_prev1; RenderIndex m_prev2; RenderIndex find_or_insert( const Vertex& vertex ){ RenderIndex index = 0; while ( 1 ) { if ( vertex < m_data[index] ) { bnode& node = m_btree[index]; if ( node.m_left != 0 ) { index = node.m_left; continue; } else { node.m_left = RenderIndex( m_btree.size() ); m_btree.push_back( bnode() ); m_data.push_back( vertex ); return RenderIndex( m_btree.size() - 1 ); } } if ( m_data[index] < vertex ) { bnode& node = m_btree[index]; if ( node.m_right != 0 ) { index = node.m_right; continue; } else { node.m_right = RenderIndex( m_btree.size() ); m_btree.push_back( bnode() ); m_data.push_back( vertex ); return RenderIndex( m_btree.size() - 1 ); } } return index; } } public: UniqueVertexBuffer( Vertices& data ) : m_data( data ), m_prev0( 0 ), m_prev1( 0 ), m_prev2( 0 ){ } typedef typename Vertices::const_iterator iterator; iterator begin() const { return m_data.begin(); } iterator end() const { return m_data.end(); } std::size_t size() const { return m_data.size(); } const Vertex* data() const { return &( *m_data.begin() ); } Vertex& operator[]( std::size_t index ){ return m_data[index]; } const Vertex& operator[]( std::size_t index ) const { return m_data[index]; } void clear(){ m_prev0 = 0; m_prev1 = 0; m_prev2 = 0; m_data.clear(); m_btree.clear(); } void reserve( std::size_t max_vertices ){ m_data.reserve( max_vertices ); m_btree.reserve( max_vertices ); } /// \brief Returns the index of the element equal to \p vertex. RenderIndex insert( const Vertex& vertex ){ if ( m_data.empty() ) { m_data.push_back( vertex ); m_btree.push_back( bnode() ); return 0; } if ( m_data[m_prev0] == vertex ) { return m_prev0; } if ( m_prev1 != m_prev0 && m_data[m_prev1] == vertex ) { return m_prev1; } if ( m_prev2 != m_prev0 && m_prev2 != m_prev1 && m_data[m_prev2] == vertex ) { return m_prev2; } m_prev2 = m_prev1; m_prev1 = m_prev0; m_prev0 = find_or_insert( vertex ); return m_prev0; } }; /// \brief A 4-byte colour. struct Colour4b { unsigned char r, g, b, a; Colour4b(){ } Colour4b( unsigned char _r, unsigned char _g, unsigned char _b, unsigned char _a ) : r( _r ), g( _g ), b( _b ), a( _a ){ } }; const Colour4b colour_vertex( 0, 255, 0, 255 ); const Colour4b colour_selected( 0, 0, 255, 255 ); inline bool operator<( const Colour4b& self, const Colour4b& other ){ if ( self.r != other.r ) { return self.r < other.r; } if ( self.g != other.g ) { return self.g < other.g; } if ( self.b != other.b ) { return self.b < other.b; } if ( self.a != other.a ) { return self.a < other.a; } return false; } inline bool operator==( const Colour4b& self, const Colour4b& other ){ return self.r == other.r && self.g == other.g && self.b == other.b && self.a == other.a; } inline bool operator!=( const Colour4b& self, const Colour4b& other ){ return !operator==( self, other ); } /// \brief A 3-float vertex. struct Vertex3f : public Vector3 { Vertex3f(){ } Vertex3f( float _x, float _y, float _z ) : Vector3( _x, _y, _z ){ } }; inline bool operator<( const Vertex3f& self, const Vertex3f& other ){ if ( self.x() != other.x() ) { return self.x() < other.x(); } if ( self.y() != other.y() ) { return self.y() < other.y(); } if ( self.z() != other.z() ) { return self.z() < other.z(); } return false; } inline bool operator==( const Vertex3f& self, const Vertex3f& other ){ return self.x() == other.x() && self.y() == other.y() && self.z() == other.z(); } inline bool operator!=( const Vertex3f& self, const Vertex3f& other ){ return !operator==( self, other ); } inline Vertex3f vertex3f_from_array( const float* array ){ return Vertex3f( array[0], array[1], array[2] ); } inline float* vertex3f_to_array( Vertex3f& vertex ){ return reinterpret_cast( &vertex ); } inline const float* vertex3f_to_array( const Vertex3f& vertex ){ return reinterpret_cast( &vertex ); } const Vertex3f vertex3f_identity( 0, 0, 0 ); inline Vertex3f vertex3f_for_vector3( const Vector3& vector3 ){ return Vertex3f( vector3.x(), vector3.y(), vector3.z() ); } inline const Vector3& vertex3f_to_vector3( const Vertex3f& vertex ){ return vertex; } inline Vector3& vertex3f_to_vector3( Vertex3f& vertex ){ return vertex; } /// \brief A 3-float normal. struct Normal3f : public Vector3 { Normal3f(){ } Normal3f( float _x, float _y, float _z ) : Vector3( _x, _y, _z ){ } }; inline bool operator<( const Normal3f& self, const Normal3f& other ){ if ( self.x() != other.x() ) { return self.x() < other.x(); } if ( self.y() != other.y() ) { return self.y() < other.y(); } if ( self.z() != other.z() ) { return self.z() < other.z(); } return false; } inline bool operator==( const Normal3f& self, const Normal3f& other ){ return self.x() == other.x() && self.y() == other.y() && self.z() == other.z(); } inline bool operator!=( const Normal3f& self, const Normal3f& other ){ return !operator==( self, other ); } inline Normal3f normal3f_from_array( const float* array ){ return Normal3f( array[0], array[1], array[2] ); } inline float* normal3f_to_array( Normal3f& normal ){ return reinterpret_cast( &normal ); } inline const float* normal3f_to_array( const Normal3f& normal ){ return reinterpret_cast( &normal ); } inline Normal3f normal3f_for_vector3( const Vector3& vector3 ){ return Normal3f( vector3.x(), vector3.y(), vector3.z() ); } inline const Vector3& normal3f_to_vector3( const Normal3f& normal ){ return normal; } inline Vector3& normal3f_to_vector3( Normal3f& normal ){ return normal; } /// \brief A 2-float texture-coordinate set. struct TexCoord2f : public Vector2 { TexCoord2f(){ } TexCoord2f( float _s, float _t ) : Vector2( _s, _t ){ } float& s(){ return x(); } const float& s() const { return x(); } float& t(){ return y(); } const float& t() const { return y(); } }; inline bool operator<( const TexCoord2f& self, const TexCoord2f& other ){ if ( self.s() != other.s() ) { return self.s() < other.s(); } if ( self.t() != other.t() ) { return self.t() < other.t(); } return false; } inline bool operator==( const TexCoord2f& self, const TexCoord2f& other ){ return self.s() == other.s() && self.t() == other.t(); } inline bool operator!=( const TexCoord2f& self, const TexCoord2f& other ){ return !operator==( self, other ); } inline float* texcoord2f_to_array( TexCoord2f& texcoord ){ return reinterpret_cast( &texcoord ); } inline const float* texcoord2f_to_array( const TexCoord2f& texcoord ){ return reinterpret_cast( &texcoord ); } inline const TexCoord2f& texcoord2f_from_array( const float* array ){ return *reinterpret_cast( array ); } inline TexCoord2f texcoord2f_for_vector2( const Vector2& vector2 ){ return TexCoord2f( vector2.x(), vector2.y() ); } inline Vector4 colour4f_for_vector4( const Vector4& vector4 ){ return vector4; } inline const Vector2& texcoord2f_to_vector2( const TexCoord2f& vertex ){ return vertex; } inline Vector2& texcoord2f_to_vector2( TexCoord2f& vertex ){ return vertex; } inline Vector4& colour4f_to_vector4( Vector4& vertex ){ return vertex; } /// \brief Returns \p normal rescaled to be unit-length. inline Normal3f normal3f_normalised( const Normal3f& normal ){ return normal3f_for_vector3( vector3_normalised( normal3f_to_vector3( normal ) ) ); } enum UnitSphereOctant { UNITSPHEREOCTANT_000 = 0 << 0 | 0 << 1 | 0 << 2, UNITSPHEREOCTANT_001 = 0 << 0 | 0 << 1 | 1 << 2, UNITSPHEREOCTANT_010 = 0 << 0 | 1 << 1 | 0 << 2, UNITSPHEREOCTANT_011 = 0 << 0 | 1 << 1 | 1 << 2, UNITSPHEREOCTANT_100 = 1 << 0 | 0 << 1 | 0 << 2, UNITSPHEREOCTANT_101 = 1 << 0 | 0 << 1 | 1 << 2, UNITSPHEREOCTANT_110 = 1 << 0 | 1 << 1 | 0 << 2, UNITSPHEREOCTANT_111 = 1 << 0 | 1 << 1 | 1 << 2, }; /// \brief Returns the octant for \p normal indicating the sign of the region of unit-sphere space it lies within. inline UnitSphereOctant normal3f_classify_octant( const Normal3f& normal ){ return static_cast( ( ( normal.x() > 0 ) << 0 ) | ( ( normal.y() > 0 ) << 1 ) | ( ( normal.z() > 0 ) << 2 ) ); } /// \brief Returns \p normal with its components signs made positive based on \p octant. inline Normal3f normal3f_fold_octant( const Normal3f& normal, UnitSphereOctant octant ){ switch ( octant ) { case UNITSPHEREOCTANT_000: return Normal3f( -normal.x(), -normal.y(), -normal.z() ); case UNITSPHEREOCTANT_001: return Normal3f( normal.x(), -normal.y(), -normal.z() ); case UNITSPHEREOCTANT_010: return Normal3f( -normal.x(), normal.y(), -normal.z() ); case UNITSPHEREOCTANT_011: return Normal3f( normal.x(), normal.y(), -normal.z() ); case UNITSPHEREOCTANT_100: return Normal3f( -normal.x(), -normal.y(), normal.z() ); case UNITSPHEREOCTANT_101: return Normal3f( normal.x(), -normal.y(), normal.z() ); case UNITSPHEREOCTANT_110: return Normal3f( -normal.x(), normal.y(), normal.z() ); case UNITSPHEREOCTANT_111: return Normal3f( normal.x(), normal.y(), normal.z() ); } return Normal3f(); } /// \brief Reverses the effect of normal3f_fold_octant() on \p normal with \p octant. /// \p normal must have been obtained with normal3f_fold_octant(). /// \p octant must have been obtained with normal3f_classify_octant(). inline Normal3f normal3f_unfold_octant( const Normal3f& normal, UnitSphereOctant octant ){ return normal3f_fold_octant( normal, octant ); } enum UnitSphereSextant { UNITSPHERESEXTANT_XYZ = 0, UNITSPHERESEXTANT_XZY = 1, UNITSPHERESEXTANT_YXZ = 2, UNITSPHERESEXTANT_YZX = 3, UNITSPHERESEXTANT_ZXY = 4, UNITSPHERESEXTANT_ZYX = 5, }; /// \brief Returns the sextant for \p normal indicating how to sort its components so that x > y > z. /// All components of \p normal must be positive. /// \p normal must be normalised. inline UnitSphereSextant normal3f_classify_sextant( const Normal3f& normal ){ return normal.x() >= normal.y() ? normal.x() >= normal.z() ? normal.y() >= normal.z() ? UNITSPHERESEXTANT_XYZ : UNITSPHERESEXTANT_XZY : UNITSPHERESEXTANT_ZXY : normal.y() >= normal.z() ? normal.x() >= normal.z() ? UNITSPHERESEXTANT_YXZ : UNITSPHERESEXTANT_YZX : UNITSPHERESEXTANT_ZYX; } /// \brief Returns \p normal with its components sorted so that x > y > z based on \p sextant. /// All components of \p normal must be positive. /// \p normal must be normalised. inline Normal3f normal3f_fold_sextant( const Normal3f& normal, UnitSphereSextant sextant ){ switch ( sextant ) { case UNITSPHERESEXTANT_XYZ: return Normal3f( normal.x(), normal.y(), normal.z() ); case UNITSPHERESEXTANT_XZY: return Normal3f( normal.x(), normal.z(), normal.y() ); case UNITSPHERESEXTANT_YXZ: return Normal3f( normal.y(), normal.x(), normal.z() ); case UNITSPHERESEXTANT_YZX: return Normal3f( normal.y(), normal.z(), normal.x() ); case UNITSPHERESEXTANT_ZXY: return Normal3f( normal.z(), normal.x(), normal.y() ); case UNITSPHERESEXTANT_ZYX: return Normal3f( normal.z(), normal.y(), normal.x() ); } return Normal3f(); } /// \brief Reverses the effect of normal3f_fold_sextant() on \p normal with \p sextant. /// \p normal must have been obtained with normal3f_fold_sextant(). /// \p sextant must have been obtained with normal3f_classify_sextant(). inline Normal3f normal3f_unfold_sextant( const Normal3f& normal, UnitSphereSextant sextant ){ return normal3f_fold_sextant( normal, sextant ); } const std::size_t c_quantise_normal = 1 << 6; /// \brief All the components of \p folded must be positive and sorted so that x > y > z. inline Normal3f normal3f_folded_quantised( const Normal3f& folded ){ // compress double scale = static_cast( c_quantise_normal ) / ( folded.x() + folded.y() + folded.z() ); unsigned int zbits = static_cast( folded.z() * scale ); unsigned int ybits = static_cast( folded.y() * scale ); // decompress return normal3f_normalised( Normal3f( static_cast( c_quantise_normal - zbits - ybits ), static_cast( ybits ), static_cast( zbits ) ) ); } /// \brief Returns \p normal quantised by compressing and then decompressing its representation. inline Normal3f normal3f_quantised_custom( const Normal3f& normal ){ UnitSphereOctant octant = normal3f_classify_octant( normal ); Normal3f folded = normal3f_fold_octant( normal, octant ); UnitSphereSextant sextant = normal3f_classify_sextant( folded ); folded = normal3f_fold_sextant( folded, sextant ); return normal3f_unfold_octant( normal3f_unfold_sextant( normal3f_folded_quantised( folded ), sextant ), octant ); } struct spherical_t { double longditude, latitude; spherical_t( double _longditude, double _latitude ) : longditude( _longditude ), latitude( _latitude ){ } }; /* { theta = 2pi * U; phi = acos((2 * V) - 1); U = theta / 2pi; V = (cos(phi) + 1) / 2; } longitude = atan(y / x); latitude = acos(z); */ struct uniformspherical_t { double U, V; uniformspherical_t( double U_, double V_ ) : U( U_ ), V( V_ ){ } }; inline spherical_t spherical_from_normal3f( const Normal3f& normal ){ return spherical_t( normal.x() == 0 ? c_pi / 2 : normal.x() > 0 ? atan( normal.y() / normal.x() ) : atan( normal.y() / normal.x() ) + c_pi, acos( normal.z() ) ); } inline Normal3f normal3f_from_spherical( const spherical_t& spherical ){ return Normal3f( static_cast( cos( spherical.longditude ) * sin( spherical.latitude ) ), static_cast( sin( spherical.longditude ) * sin( spherical.latitude ) ), static_cast( cos( spherical.latitude ) ) ); } inline uniformspherical_t uniformspherical_from_spherical( const spherical_t& spherical ){ return uniformspherical_t( spherical.longditude * c_inv_2pi, ( cos( spherical.latitude ) + 1 ) * 0.5 ); } inline spherical_t spherical_from_uniformspherical( const uniformspherical_t& uniformspherical ){ return spherical_t( c_2pi * uniformspherical.U, acos( ( 2 * uniformspherical.V ) - 1 ) ); } inline uniformspherical_t uniformspherical_from_normal3f( const Normal3f& normal ){ return uniformspherical_from_spherical( spherical_from_normal3f( normal ) ); //return uniformspherical_t(atan2(normal.y / normal.x) * c_inv_2pi, (normal.z + 1) * 0.5); } inline Normal3f normal3f_from_uniformspherical( const uniformspherical_t& uniformspherical ){ return normal3f_from_spherical( spherical_from_uniformspherical( uniformspherical ) ); } /// \brief Returns a single-precision \p component quantised to \p precision. inline float float_quantise( float component, float precision ){ return float_snapped( component, precision ); } /// \brief Returns a double-precision \p component quantised to \p precision. inline double double_quantise( double component, double precision ){ return float_snapped( component, precision ); } inline spherical_t spherical_quantised( const spherical_t& spherical, float snap ){ return spherical_t( double_quantise( spherical.longditude, snap ), double_quantise( spherical.latitude, snap ) ); } inline uniformspherical_t uniformspherical_quantised( const uniformspherical_t& uniformspherical, float snap ){ return uniformspherical_t( double_quantise( uniformspherical.U, snap ), double_quantise( uniformspherical.V, snap ) ); } /// \brief Returns a \p vertex quantised to \p precision. inline Vertex3f vertex3f_quantised( const Vertex3f& vertex, float precision ){ return Vertex3f( float_quantise( vertex.x(), precision ), float_quantise( vertex.y(), precision ), float_quantise( vertex.z(), precision ) ); } /// \brief Returns a \p normal quantised to a fixed precision. inline Normal3f normal3f_quantised( const Normal3f& normal ){ return normal3f_quantised_custom( normal ); //return normal3f_from_spherical(spherical_quantised(spherical_from_normal3f(normal), snap)); //return normal3f_from_uniformspherical(uniformspherical_quantised(uniformspherical_from_normal3f(normal), snap)); // float_quantise(normal.x, snap), float_quantise(normal.y, snap), float_quantise(normal.y, snap)); } /// \brief Returns a \p texcoord quantised to \p precision. inline TexCoord2f texcoord2f_quantised( const TexCoord2f& texcoord, float precision ){ return TexCoord2f( float_quantise( texcoord.s(), precision ), float_quantise( texcoord.t(), precision ) ); } /// \brief Standard vertex type for lines and points. struct PointVertex { Colour4b colour; Vertex3f vertex; PointVertex(){ } PointVertex( Vertex3f _vertex ) : colour( Colour4b( 255, 255, 255, 255 ) ), vertex( _vertex ){ } PointVertex( Vertex3f _vertex, Colour4b _colour ) : colour( _colour ), vertex( _vertex ){ } }; inline bool operator<( const PointVertex& self, const PointVertex& other ){ if ( self.vertex != other.vertex ) { return self.vertex < other.vertex; } if ( self.colour != other.colour ) { return self.colour < other.colour; } return false; } inline bool operator==( const PointVertex& self, const PointVertex& other ){ return self.colour == other.colour && self.vertex == other.vertex; } inline bool operator!=( const PointVertex& self, const PointVertex& other ){ return !operator==( self, other ); } /// \brief Standard vertex type for lit/textured meshes. struct ArbitraryMeshVertex { TexCoord2f texcoord; Normal3f normal; Vertex3f vertex; Normal3f tangent; Normal3f bitangent; Vector4 colour; ArbitraryMeshVertex() : tangent( 0, 0, 0 ), bitangent( 0, 0, 0 ), colour( 1, 1, 1, 1 ){ } ArbitraryMeshVertex( Vertex3f _vertex, Normal3f _normal, TexCoord2f _texcoord ) : texcoord( _texcoord ), normal( _normal ), vertex( _vertex ), tangent( 0, 0, 0 ), bitangent( 0, 0, 0 ), colour( 1, 1, 1, 1 ){ } }; inline bool operator<( const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other ){ if ( self.texcoord != other.texcoord ) { return self.texcoord < other.texcoord; } if ( self.normal != other.normal ) { return self.normal < other.normal; } if ( self.vertex != other.vertex ) { return self.vertex < other.vertex; } return false; } inline bool operator==( const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other ){ return self.texcoord == other.texcoord && self.normal == other.normal && self.vertex == other.vertex; } inline bool operator!=( const ArbitraryMeshVertex& self, const ArbitraryMeshVertex& other ){ return !operator==( self, other ); } const float c_quantise_vertex = 1.f / static_cast( 1 << 3 ); /// \brief Returns \p v with vertex quantised to a fixed precision. inline PointVertex pointvertex_quantised( const PointVertex& v ){ return PointVertex( vertex3f_quantised( v.vertex, c_quantise_vertex ), v.colour ); } const float c_quantise_texcoord = 1.f / static_cast( 1 << 8 ); /// \brief Returns \p v with vertex, normal and texcoord quantised to a fixed precision. inline ArbitraryMeshVertex arbitrarymeshvertex_quantised( const ArbitraryMeshVertex& v ){ return ArbitraryMeshVertex( vertex3f_quantised( v.vertex, c_quantise_vertex ), normal3f_quantised( v.normal ), texcoord2f_quantised( v.texcoord, c_quantise_texcoord ) ); } /// \brief Sets up the OpenGL colour and vertex arrays for \p array. inline void pointvertex_gl_array( const PointVertex* array ){ glColorPointer( 4, GL_UNSIGNED_BYTE, sizeof( PointVertex ), &array->colour ); glVertexPointer( 3, GL_FLOAT, sizeof( PointVertex ), &array->vertex ); } class RenderablePointArray : public OpenGLRenderable { const Array& m_array; const GLenum m_mode; public: RenderablePointArray( const Array& array, GLenum mode ) : m_array( array ), m_mode( mode ){ } void render( RenderStateFlags state ) const { #define NV_DRIVER_BUG 1 #if NV_DRIVER_BUG glColorPointer( 4, GL_UNSIGNED_BYTE, 0, 0 ); glVertexPointer( 3, GL_FLOAT, 0, 0 ); glDrawArrays( GL_TRIANGLE_FAN, 0, 0 ); #endif pointvertex_gl_array( m_array.data() ); glDrawArrays( m_mode, 0, GLsizei( m_array.size() ) ); } }; class RenderablePointVector : public OpenGLRenderable { std::vector m_vector; const GLenum m_mode; public: RenderablePointVector( GLenum mode ) : m_mode( mode ){ } void render( RenderStateFlags state ) const { pointvertex_gl_array( &m_vector.front() ); glDrawArrays( m_mode, 0, GLsizei( m_vector.size() ) ); } std::size_t size() const { return m_vector.size(); } bool empty() const { return m_vector.empty(); } void clear(){ m_vector.clear(); } void reserve( std::size_t size ){ m_vector.reserve( size ); } void push_back( const PointVertex& point ){ m_vector.push_back( point ); } }; class RenderableVertexBuffer : public OpenGLRenderable { const GLenum m_mode; const VertexBuffer& m_vertices; public: RenderableVertexBuffer( GLenum mode, const VertexBuffer& vertices ) : m_mode( mode ), m_vertices( vertices ){ } void render( RenderStateFlags state ) const { pointvertex_gl_array( m_vertices.data() ); glDrawArrays( m_mode, 0, m_vertices.size() ); } }; class RenderableIndexBuffer : public OpenGLRenderable { const GLenum m_mode; const IndexBuffer& m_indices; const VertexBuffer& m_vertices; public: RenderableIndexBuffer( GLenum mode, const IndexBuffer& indices, const VertexBuffer& vertices ) : m_mode( mode ), m_indices( indices ), m_vertices( vertices ){ } void render( RenderStateFlags state ) const { #if 1 pointvertex_gl_array( m_vertices.data() ); glDrawElements( m_mode, GLsizei( m_indices.size() ), RenderIndexTypeID, m_indices.data() ); #else glBegin( m_mode ); if ( state & RENDER_COLOURARRAY != 0 ) { for ( std::size_t i = 0; i < m_indices.size(); ++i ) { glColor4ubv( &m_vertices[m_indices[i]].colour.r ); glVertex3fv( &m_vertices[m_indices[i]].vertex.x ); } } else { for ( std::size_t i = 0; i < m_indices.size(); ++i ) { glVertex3fv( &m_vertices[m_indices[i]].vertex.x ); } } glEnd(); #endif } }; class RemapXYZ { public: static void set( Vertex3f& vertex, float x, float y, float z ){ vertex.x() = x; vertex.y() = y; vertex.z() = z; } }; class RemapYZX { public: static void set( Vertex3f& vertex, float x, float y, float z ){ vertex.x() = z; vertex.y() = x; vertex.z() = y; } }; class RemapZXY { public: static void set( Vertex3f& vertex, float x, float y, float z ){ vertex.x() = y; vertex.y() = z; vertex.z() = x; } }; template inline void draw_circle( const std::size_t segments, const float radius, PointVertex* vertices, remap_policy remap ){ const double increment = c_pi / double(segments << 2); std::size_t count = 0; float x = radius; float y = 0; while ( count < segments ) { PointVertex* i = vertices + count; PointVertex* j = vertices + ( ( segments << 1 ) - ( count + 1 ) ); PointVertex* k = i + ( segments << 1 ); PointVertex* l = j + ( segments << 1 ); PointVertex* m = i + ( segments << 2 ); PointVertex* n = j + ( segments << 2 ); PointVertex* o = k + ( segments << 2 ); PointVertex* p = l + ( segments << 2 ); remap_policy::set( i->vertex, x,-y, 0 ); remap_policy::set( k->vertex,-y,-x, 0 ); remap_policy::set( m->vertex,-x, y, 0 ); remap_policy::set( o->vertex, y, x, 0 ); ++count; { const double theta = increment * count; x = static_cast( radius * cos( theta ) ); y = static_cast( radius * sin( theta ) ); } remap_policy::set( j->vertex, y,-x, 0 ); remap_policy::set( l->vertex,-x,-y, 0 ); remap_policy::set( n->vertex,-y, x, 0 ); remap_policy::set( p->vertex, x, y, 0 ); } } #if 0 class PointVertexArrayIterator { PointVertex* m_point; public: PointVertexArrayIterator( PointVertex* point ) : m_point( point ){ } PointVertexArrayIterator& operator++(){ ++m_point; return *this; } PointVertexArrayIterator operator++( int ){ PointVertexArrayIterator tmp( *this ); ++m_point; return tmp; } Vertex3f& operator*(){ return m_point.vertex; } Vertex3f* operator->(){ return &( operator*() ); } } template 0.000001f ) { s.x() = -cross.y() / cross.x(); } if ( fabs( cross.x() ) > 0.000001f ) { t.x() = -cross.z() / cross.x(); } } { Vector3 cross( vector3_cross( vector3_subtracted( Vector3( b.vertex.y(), b.texcoord.s(), b.texcoord.t() ), Vector3( a.vertex.y(), a.texcoord.s(), a.texcoord.t() ) ), vector3_subtracted( Vector3( c.vertex.y(), c.texcoord.s(), c.texcoord.t() ), Vector3( a.vertex.y(), a.texcoord.s(), a.texcoord.t() ) ) ) ); if ( fabs( cross.x() ) > 0.000001f ) { s.y() = -cross.y() / cross.x(); } if ( fabs( cross.x() ) > 0.000001f ) { t.y() = -cross.z() / cross.x(); } } { Vector3 cross( vector3_cross( vector3_subtracted( Vector3( b.vertex.z(), b.texcoord.s(), b.texcoord.t() ), Vector3( a.vertex.z(), a.texcoord.s(), a.texcoord.t() ) ), vector3_subtracted( Vector3( c.vertex.z(), c.texcoord.s(), c.texcoord.t() ), Vector3( a.vertex.z(), a.texcoord.s(), a.texcoord.t() ) ) ) ); if ( fabs( cross.x() ) > 0.000001f ) { s.z() = -cross.y() / cross.x(); } if ( fabs( cross.x() ) > 0.000001f ) { t.z() = -cross.z() / cross.x(); } } } inline void ArbitraryMeshTriangle_sumTangents( ArbitraryMeshVertex& a, ArbitraryMeshVertex& b, ArbitraryMeshVertex& c ){ Vector3 s, t; ArbitraryMeshTriangle_calcTangents( a, b, c, s, t ); reinterpret_cast( a.tangent ) += s; reinterpret_cast( b.tangent ) += s; reinterpret_cast( c.tangent ) += s; reinterpret_cast( a.bitangent ) += t; reinterpret_cast( b.bitangent ) += t; reinterpret_cast( c.bitangent ) += t; } #endif