//======= Copyright (c) 2015-2024 Vera Visions LLC. All rights reserved. ======= // // Purpose: // // Any surface lit by a dynamic/real-time light is touched with this shader. //============================================================================== !!ver 100 150 !!permu BUMP !!permu FRAMEBLEND !!permu SKELETAL !!permu UPPERLOWER !!permu FOG !!permu REFLECTCUBEMASK !!cvarf r_glsl_offsetmapping_scale !!cvardf r_glsl_pcf !!cvardf r_glsl_fresnel !!samps diffuse shadowmap projectionmap !!samps =BUMP normalmap !!samps =UPPERLOWER upper lower !!samps =SPECULAR specular reflectcube !!samps =FAKESHADOWS shadowmap #include "sys/defs.h" varying vec2 tcbase; varying vec3 lightvector; #ifdef VERTEXCOLOURS varying vec4 vc; #endif #ifdef SPECULAR varying vec3 eyevector; varying mat3 invsurface; #define PBR #endif #if defined(PCF) || defined(CUBE) || defined(SPOT) varying vec4 vtexprojcoord; #endif #ifdef VERTEX_SHADER #include "sys/skeletal.h" void main () { vec3 n, s, t, w; gl_Position = skeletaltransform_wnst(w,n,s,t); tcbase = v_texcoord; //pass the texture coords straight through vec3 lightminusvertex = l_lightposition - w.xyz; #ifdef NOBUMP //the only important thing is distance lightvector = lightminusvertex; #else //the light direction relative to the surface normal, for bumpmapping. lightvector.x = dot(lightminusvertex, s.xyz); lightvector.y = dot(lightminusvertex, t.xyz); lightvector.z = dot(lightminusvertex, n.xyz); #endif #ifdef VERTEXCOLOURS vc = v_colour; #endif #ifdef SPECULAR vec3 eyeminusvertex = e_eyepos - w.xyz; eyevector.x = dot(eyeminusvertex, s.xyz); eyevector.y = dot(eyeminusvertex, t.xyz); eyevector.z = dot(eyeminusvertex, n.xyz); invsurface[0] = v_svector; invsurface[1] = v_tvector; invsurface[2] = v_normal; #endif #if defined(PCF) || defined(SPOT) || defined(CUBE) //for texture projections/shadowmapping on dlights vtexprojcoord = (l_cubematrix*vec4(w.xyz, 1.0)); #endif } #endif #ifdef FRAGMENT_SHADER vec3 LightingFuncShlick(vec3 N, vec3 V, vec3 L, float roughness, vec3 Cdiff, vec3 F0) { vec3 H = normalize(V+L); float NL = clamp(dot(N,L), 0.001, 1.0); float LH = clamp(dot(L,H), 0.0, 1.0); float NH = clamp(dot(N,H), 0.0, 1.0); float NV = clamp(abs(dot(N,V)), 0.001, 1.0); float VH = clamp(dot(V,H), 0.0, 1.0); float PI = 3.14159f; //Fresnel term //the fresnel models glancing light. //(Schlick) vec3 F = F0 + (1.0-F0)*pow(1.0-VH, 5.0); //Schlick float k = roughness*0.79788456080286535587989211986876; float G = (LH/(LH*(1.0-k)+k)) * (NH/(NH*(1.0-k)+k)); //microfacet distribution float a = roughness*roughness; a *= a; float t = (NH*NH*(a-1.0)+1.0); float D = a/(PI*t*t); if (r_glsl_fresnel == 1) return vec3(F); if (r_glsl_fresnel == 2) return vec3(G); if (r_glsl_fresnel == 3) return vec3(D); return ((1.0-F)*(Cdiff/PI) + (F*G*D)/(4*NL*NV)) * NL; } #include "sys/fog.h" #include "sys/pcf.h" #ifdef OFFSETMAPPING #include "sys/offsetmapping.h" #endif void main () { #ifdef OFFSETMAPPING vec2 tcoffsetmap = offsetmap(s_normalmap, tcbase, eyevector); #define tcbase tcoffsetmap #endif vec4 albedo_f = texture2D(s_diffuse, tcbase); #ifdef BUMP vec3 normal_f = normalize(texture2D(s_normalmap, tcbase).rgb - 0.5); #else vec3 normal_f = vec3(0.0, 0.0, 1.0); #endif #ifdef ORTHO float colorscale = 1.0; #else float colorscale = max(1.0 - (dot(lightvector, lightvector)/(l_lightradius*l_lightradius)), 0.0); #endif #ifdef PCF /* filter the light by the shadowmap. logically a boolean, but we allow fractions for softer shadows */ colorscale *= ShadowmapFilter(s_shadowmap, vtexprojcoord); #endif #ifdef SPOT /* filter the colour by the spotlight. discard anything behind the light so we don't get a mirror image */ if (vtexprojcoord.w < 0.0) discard; vec2 spot = ((vtexprojcoord.st)/vtexprojcoord.w); colorscale*=1.0-(dot(spot,spot)); #endif if (colorscale > 0) { vec3 out_f; #ifdef FLAT albedo_f = vec4(FLAT, FLAT, FLAT, 1.0); #else #ifdef VERTEXCOLOURS albedo_f.rgb *= albedo_f.a; #endif #endif #ifdef UPPER vec4 uc = texture2D(s_upper, tcbase); albedo_f.rgb += uc.rgb*e_uppercolour*uc.a; #endif #ifdef LOWER vec4 lc = texture2D(s_lower, tcbase); albedo_f.rgb += lc.rgb*e_lowercolour*lc.a; #endif #ifdef PBR float metalness_f = texture2D(s_specular, tcbase).r; float roughness_f = texture2D(s_specular, tcbase).g; float ao = texture2D(s_specular, tcbase).b; vec3 nl = normalize(lightvector); out_f = albedo_f.rgb * (l_lightcolourscale.x + l_lightcolourscale.y * max(dot(normal_f.rgb, nl), 0.0)); const vec3 dielectricSpecular = vec3(0.04, 0.04, 0.04); const vec3 black = vec3(0.0, 0.0, 0.0); vec3 F0 = mix(dielectricSpecular, albedo_f.rgb, metalness_f); albedo_f.rgb = mix(albedo_f.rgb * (1.0 - dielectricSpecular.r), black, metalness_f); out_f = LightingFuncShlick(normal_f.rgb, normalize(eyevector), nl, roughness_f, albedo_f.rgb, F0); vec3 cube_c = reflect(-eyevector, normal_f.rgb); cube_c = cube_c.x*invsurface[0] + cube_c.y*invsurface[1] + cube_c.z*invsurface[2]; cube_c = vec4(m_model * vec4(cube_c.xyz,0.0)).xyz; out_f.rgb = out_f.rgb + (vec3(metalness_f,metalness_f,metalness_f) * textureCube(s_reflectcube, cube_c).rgb); #endif #ifdef CUBE /* filter the colour by the cubemap projection */ out_f *= textureCube(s_projectionmap, vtexprojcoord.xyz).rgb; #endif #ifdef PROJECTION /* 2d projection, not used */ out_f *= texture2d(s_projectionmap, shadowcoord); #endif #ifdef VERTEXCOLOURS out_f *= vc.rgb * vc.a; #endif gl_FragColor.rgb = fog3additive(out_f * colorscale * l_lightcolour); } else { gl_FragColor.rgb = vec3(0.0); } } #endif