/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_shade.c #include "tr_local.h" #if idppc_altivec && !defined(MACOS_X) #include #endif /* THIS ENTIRE FILE IS BACK END This file deals with applying shaders to surface data in the tess struct. */ /* ================ R_ArrayElementDiscrete This is just for OpenGL conformance testing, it should never be the fastest ================ */ static void APIENTRY R_ArrayElementDiscrete( GLint index ) { qglColor4ubv( tess.svars.colors[ index ] ); if ( glState.currenttmu ) { qglMultiTexCoord2fARB( 0, tess.svars.texcoords[ 0 ][ index ][0], tess.svars.texcoords[ 0 ][ index ][1] ); qglMultiTexCoord2fARB( 1, tess.svars.texcoords[ 1 ][ index ][0], tess.svars.texcoords[ 1 ][ index ][1] ); } else { qglTexCoord2fv( tess.svars.texcoords[ 0 ][ index ] ); } qglVertex3fv( tess.xyz[ index ] ); } /* =================== R_DrawStripElements =================== */ static int c_vertexes; // for seeing how long our average strips are static int c_begins; static void R_DrawStripElements( int numIndexes, const glIndex_t *indexes, void ( APIENTRY *element )(GLint) ) { int i; int last[3] = { -1, -1, -1 }; qboolean even; c_begins++; if ( numIndexes <= 0 ) { return; } qglBegin( GL_TRIANGLE_STRIP ); // prime the strip element( indexes[0] ); element( indexes[1] ); element( indexes[2] ); c_vertexes += 3; last[0] = indexes[0]; last[1] = indexes[1]; last[2] = indexes[2]; even = qfalse; for ( i = 3; i < numIndexes; i += 3 ) { // odd numbered triangle in potential strip if ( !even ) { // check previous triangle to see if we're continuing a strip if ( ( indexes[i+0] == last[2] ) && ( indexes[i+1] == last[1] ) ) { element( indexes[i+2] ); c_vertexes++; assert( indexes[i+2] < tess.numVertexes ); even = qtrue; } // otherwise we're done with this strip so finish it and start // a new one else { qglEnd(); qglBegin( GL_TRIANGLE_STRIP ); c_begins++; element( indexes[i+0] ); element( indexes[i+1] ); element( indexes[i+2] ); c_vertexes += 3; even = qfalse; } } else { // check previous triangle to see if we're continuing a strip if ( ( last[2] == indexes[i+1] ) && ( last[0] == indexes[i+0] ) ) { element( indexes[i+2] ); c_vertexes++; even = qfalse; } // otherwise we're done with this strip so finish it and start // a new one else { qglEnd(); qglBegin( GL_TRIANGLE_STRIP ); c_begins++; element( indexes[i+0] ); element( indexes[i+1] ); element( indexes[i+2] ); c_vertexes += 3; even = qfalse; } } // cache the last three vertices last[0] = indexes[i+0]; last[1] = indexes[i+1]; last[2] = indexes[i+2]; } qglEnd(); } /* ================== R_DrawElements Optionally performs our own glDrawElements that looks for strip conditions instead of using the single glDrawElements call that may be inefficient without compiled vertex arrays. ================== */ static void R_DrawElements( int numIndexes, const glIndex_t *indexes ) { int primitives; primitives = r_primitives->integer; // default is to use triangles if compiled vertex arrays are present if ( primitives == 0 ) { if ( qglLockArraysEXT ) { primitives = 2; } else { primitives = 1; } } if ( primitives == 2 ) { qglDrawElements( GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, indexes ); return; } if ( primitives == 1 ) { R_DrawStripElements( numIndexes, indexes, qglArrayElement ); return; } if ( primitives == 3 ) { R_DrawStripElements( numIndexes, indexes, R_ArrayElementDiscrete ); return; } // anything else will cause no drawing } /* ============================================================= SURFACE SHADERS ============================================================= */ shaderCommands_t tess; static qboolean setArraysOnce; /* ================= R_BindAnimatedImage ================= */ static void R_BindAnimatedImage( textureBundle_t *bundle ) { int index; if ( bundle->isVideoMap ) { ri.CIN_RunCinematic(bundle->videoMapHandle); ri.CIN_UploadCinematic(bundle->videoMapHandle); return; } if ( bundle->numImageAnimations <= 1 ) { GL_Bind( bundle->image[0] ); return; } // it is necessary to do this messy calc to make sure animations line up // exactly with waveforms of the same frequency index = ri.ftol(tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE); index >>= FUNCTABLE_SIZE2; if ( index < 0 ) { index = 0; // may happen with shader time offsets } index %= bundle->numImageAnimations; GL_Bind( bundle->image[ index ] ); } /* ================ DrawTris Draws triangle outlines for debugging ================ */ static void DrawTris (shaderCommands_t *input) { GL_Bind( tr.whiteImage ); qglColor3f (1,1,1); GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE ); qglDepthRange( 0, 0 ); qglDisableClientState (GL_COLOR_ARRAY); qglDisableClientState (GL_TEXTURE_COORD_ARRAY); qglVertexPointer (3, GL_FLOAT, 16, input->xyz); // padded for SIMD if (qglLockArraysEXT) { qglLockArraysEXT(0, input->numVertexes); GLimp_LogComment( "glLockArraysEXT\n" ); } R_DrawElements( input->numIndexes, input->indexes ); if (qglUnlockArraysEXT) { qglUnlockArraysEXT(); GLimp_LogComment( "glUnlockArraysEXT\n" ); } qglDepthRange( 0, 1 ); } /* ================ DrawNormals Draws vertex normals for debugging ================ */ static void DrawNormals (shaderCommands_t *input) { int i; vec3_t temp; GL_Bind( tr.whiteImage ); qglColor3f (1,1,1); qglDepthRange( 0, 0 ); // never occluded GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE ); qglBegin (GL_LINES); for (i = 0 ; i < input->numVertexes ; i++) { qglVertex3fv (input->xyz[i]); VectorMA (input->xyz[i], 2, input->normal[i], temp); qglVertex3fv (temp); } qglEnd (); qglDepthRange( 0, 1 ); } /* ============== RB_BeginSurface We must set some things up before beginning any tesselation, because a surface may be forced to perform a RB_End due to overflow. ============== */ void RB_BeginSurface( shader_t *shader, int fogNum ) { shader_t *state = (shader->remappedShader) ? shader->remappedShader : shader; tess.numIndexes = 0; tess.numVertexes = 0; tess.shader = state; tess.fogNum = fogNum; tess.dlightBits = 0; // will be OR'd in by surface functions tess.xstages = state->stages; tess.numPasses = state->numUnfoggedPasses; tess.currentStageIteratorFunc = state->optimalStageIteratorFunc; tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset; if (tess.shader->clampTime && tess.shaderTime >= tess.shader->clampTime) { tess.shaderTime = tess.shader->clampTime; } } /* =================== DrawMultitextured output = t0 * t1 or t0 + t1 t0 = most upstream according to spec t1 = most downstream according to spec =================== */ static void DrawMultitextured( shaderCommands_t *input, int stage ) { shaderStage_t *pStage; pStage = tess.xstages[stage]; GL_State( pStage->stateBits ); // this is an ugly hack to work around a GeForce driver // bug with multitexture and clip planes if ( backEnd.viewParms.isPortal ) { qglPolygonMode( GL_FRONT_AND_BACK, GL_FILL ); } // // base // GL_SelectTexture( 0 ); qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoords[0] ); R_BindAnimatedImage( &pStage->bundle[0] ); // // lightmap/secondary pass // GL_SelectTexture( 1 ); qglEnable( GL_TEXTURE_2D ); qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); if ( r_lightmap->integer ) { GL_TexEnv( GL_REPLACE ); } else { GL_TexEnv( tess.shader->multitextureEnv ); } qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoords[1] ); R_BindAnimatedImage( &pStage->bundle[1] ); R_DrawElements( input->numIndexes, input->indexes ); // // disable texturing on TEXTURE1, then select TEXTURE0 // //qglDisableClientState( GL_TEXTURE_COORD_ARRAY ); qglDisable( GL_TEXTURE_2D ); GL_SelectTexture( 0 ); } /* =================== ProjectDlightTexture Perform dynamic lighting with another rendering pass =================== */ #if idppc_altivec static void ProjectDlightTexture_altivec( void ) { int i, l; vec_t origin0, origin1, origin2; float texCoords0, texCoords1; vector float floatColorVec0, floatColorVec1; vector float modulateVec, colorVec, zero; vector short colorShort; vector signed int colorInt; vector unsigned char floatColorVecPerm, modulatePerm, colorChar; vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff); float *texCoords; byte *colors; byte clipBits[SHADER_MAX_VERTEXES]; float texCoordsArray[SHADER_MAX_VERTEXES][2]; byte colorArray[SHADER_MAX_VERTEXES][4]; unsigned hitIndexes[SHADER_MAX_INDEXES]; int numIndexes; float scale; float radius; vec3_t floatColor; float modulate = 0.0f; if ( !backEnd.refdef.num_dlights ) { return; } // There has to be a better way to do this so that floatColor // and/or modulate are already 16-byte aligned. floatColorVecPerm = vec_lvsl(0,(float *)floatColor); modulatePerm = vec_lvsl(0,(float *)&modulate); modulatePerm = (vector unsigned char)vec_splat((vector unsigned int)modulatePerm,0); zero = (vector float)vec_splat_s8(0); for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) { dlight_t *dl; if ( !( tess.dlightBits & ( 1 << l ) ) ) { continue; // this surface definately doesn't have any of this light } texCoords = texCoordsArray[0]; colors = colorArray[0]; dl = &backEnd.refdef.dlights[l]; origin0 = dl->transformed[0]; origin1 = dl->transformed[1]; origin2 = dl->transformed[2]; radius = dl->radius; scale = 1.0f / radius; if(r_greyscale->integer) { float luminance; luminance = LUMA(dl->color[0], dl->color[1], dl->color[2]) * 255.0f; floatColor[0] = floatColor[1] = floatColor[2] = luminance; } else if(r_greyscale->value) { float luminance; luminance = LUMA(dl->color[0], dl->color[1], dl->color[2]) * 255.0f; floatColor[0] = LERP(dl->color[0] * 255.0f, luminance, r_greyscale->value); floatColor[1] = LERP(dl->color[1] * 255.0f, luminance, r_greyscale->value); floatColor[2] = LERP(dl->color[2] * 255.0f, luminance, r_greyscale->value); } else { floatColor[0] = dl->color[0] * 255.0f; floatColor[1] = dl->color[1] * 255.0f; floatColor[2] = dl->color[2] * 255.0f; } floatColorVec0 = vec_ld(0, floatColor); floatColorVec1 = vec_ld(11, floatColor); floatColorVec0 = vec_perm(floatColorVec0,floatColorVec0,floatColorVecPerm); for ( i = 0 ; i < tess.numVertexes ; i++, texCoords += 2, colors += 4 ) { int clip = 0; vec_t dist0, dist1, dist2; dist0 = origin0 - tess.xyz[i][0]; dist1 = origin1 - tess.xyz[i][1]; dist2 = origin2 - tess.xyz[i][2]; backEnd.pc.c_dlightVertexes++; texCoords0 = 0.5f + dist0 * scale; texCoords1 = 0.5f + dist1 * scale; if( !r_dlightBacks->integer && // dist . tess.normal[i] ( dist0 * tess.normal[i][0] + dist1 * tess.normal[i][1] + dist2 * tess.normal[i][2] ) < 0.0f ) { clip = 63; } else { if ( texCoords0 < 0.0f ) { clip |= 1; } else if ( texCoords0 > 1.0f ) { clip |= 2; } if ( texCoords1 < 0.0f ) { clip |= 4; } else if ( texCoords1 > 1.0f ) { clip |= 8; } texCoords[0] = texCoords0; texCoords[1] = texCoords1; // modulate the strength based on the height and color if ( dist2 > radius ) { clip |= 16; modulate = 0.0f; } else if ( dist2 < -radius ) { clip |= 32; modulate = 0.0f; } else { dist2 = Q_fabs(dist2); if ( dist2 < radius * 0.5f ) { modulate = 1.0f; } else { modulate = 2.0f * (radius - dist2) * scale; } } } clipBits[i] = clip; modulateVec = vec_ld(0,(float *)&modulate); modulateVec = vec_perm(modulateVec,modulateVec,modulatePerm); colorVec = vec_madd(floatColorVec0,modulateVec,zero); colorInt = vec_cts(colorVec,0); // RGBx colorShort = vec_pack(colorInt,colorInt); // RGBxRGBx colorChar = vec_packsu(colorShort,colorShort); // RGBxRGBxRGBxRGBx colorChar = vec_sel(colorChar,vSel,vSel); // RGBARGBARGBARGBA replace alpha with 255 vec_ste((vector unsigned int)colorChar,0,(unsigned int *)colors); // store color } // build a list of triangles that need light numIndexes = 0; for ( i = 0 ; i < tess.numIndexes ; i += 3 ) { int a, b, c; a = tess.indexes[i]; b = tess.indexes[i+1]; c = tess.indexes[i+2]; if ( clipBits[a] & clipBits[b] & clipBits[c] ) { continue; // not lighted } hitIndexes[numIndexes] = a; hitIndexes[numIndexes+1] = b; hitIndexes[numIndexes+2] = c; numIndexes += 3; } if ( !numIndexes ) { continue; } qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); qglTexCoordPointer( 2, GL_FLOAT, 0, texCoordsArray[0] ); qglEnableClientState( GL_COLOR_ARRAY ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray ); GL_Bind( tr.dlightImage ); // include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light // where they aren't rendered if ( dl->additive ) { GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); } else { GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); } R_DrawElements( numIndexes, hitIndexes ); backEnd.pc.c_totalIndexes += numIndexes; backEnd.pc.c_dlightIndexes += numIndexes; } } #endif static void ProjectDlightTexture_scalar( void ) { int i, l; vec3_t origin; float *texCoords; byte *colors; byte clipBits[SHADER_MAX_VERTEXES]; float texCoordsArray[SHADER_MAX_VERTEXES][2]; byte colorArray[SHADER_MAX_VERTEXES][4]; unsigned hitIndexes[SHADER_MAX_INDEXES]; int numIndexes; float scale; float radius; vec3_t floatColor; float modulate = 0.0f; if ( !backEnd.refdef.num_dlights ) { return; } for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) { dlight_t *dl; if ( !( tess.dlightBits & ( 1 << l ) ) ) { continue; // this surface definately doesn't have any of this light } texCoords = texCoordsArray[0]; colors = colorArray[0]; dl = &backEnd.refdef.dlights[l]; VectorCopy( dl->transformed, origin ); radius = dl->radius; scale = 1.0f / radius; if(r_greyscale->integer) { float luminance; luminance = LUMA(dl->color[0], dl->color[1], dl->color[2]) * 255.0f; floatColor[0] = floatColor[1] = floatColor[2] = luminance; } else if(r_greyscale->value) { float luminance; luminance = LUMA(dl->color[0], dl->color[1], dl->color[2]) * 255.0f; floatColor[0] = LERP(dl->color[0] * 255.0f, luminance, r_greyscale->value); floatColor[1] = LERP(dl->color[1] * 255.0f, luminance, r_greyscale->value); floatColor[2] = LERP(dl->color[2] * 255.0f, luminance, r_greyscale->value); } else { floatColor[0] = dl->color[0] * 255.0f; floatColor[1] = dl->color[1] * 255.0f; floatColor[2] = dl->color[2] * 255.0f; } for ( i = 0 ; i < tess.numVertexes ; i++, texCoords += 2, colors += 4 ) { int clip = 0; vec3_t dist; VectorSubtract( origin, tess.xyz[i], dist ); backEnd.pc.c_dlightVertexes++; texCoords[0] = 0.5f + dist[0] * scale; texCoords[1] = 0.5f + dist[1] * scale; if( !r_dlightBacks->integer && // dist . tess.normal[i] ( dist[0] * tess.normal[i][0] + dist[1] * tess.normal[i][1] + dist[2] * tess.normal[i][2] ) < 0.0f ) { clip = 63; } else { if ( texCoords[0] < 0.0f ) { clip |= 1; } else if ( texCoords[0] > 1.0f ) { clip |= 2; } if ( texCoords[1] < 0.0f ) { clip |= 4; } else if ( texCoords[1] > 1.0f ) { clip |= 8; } texCoords[0] = texCoords[0]; texCoords[1] = texCoords[1]; // modulate the strength based on the height and color if ( dist[2] > radius ) { clip |= 16; modulate = 0.0f; } else if ( dist[2] < -radius ) { clip |= 32; modulate = 0.0f; } else { dist[2] = Q_fabs(dist[2]); if ( dist[2] < radius * 0.5f ) { modulate = 1.0f; } else { modulate = 2.0f * (radius - dist[2]) * scale; } } } clipBits[i] = clip; colors[0] = ri.ftol(floatColor[0] * modulate); colors[1] = ri.ftol(floatColor[1] * modulate); colors[2] = ri.ftol(floatColor[2] * modulate); colors[3] = 255; } // build a list of triangles that need light numIndexes = 0; for ( i = 0 ; i < tess.numIndexes ; i += 3 ) { int a, b, c; a = tess.indexes[i]; b = tess.indexes[i+1]; c = tess.indexes[i+2]; if ( clipBits[a] & clipBits[b] & clipBits[c] ) { continue; // not lighted } hitIndexes[numIndexes] = a; hitIndexes[numIndexes+1] = b; hitIndexes[numIndexes+2] = c; numIndexes += 3; } if ( !numIndexes ) { continue; } qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); qglTexCoordPointer( 2, GL_FLOAT, 0, texCoordsArray[0] ); qglEnableClientState( GL_COLOR_ARRAY ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, colorArray ); GL_Bind( tr.dlightImage ); // include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light // where they aren't rendered if ( dl->additive ) { GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); } else { GL_State( GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); } R_DrawElements( numIndexes, hitIndexes ); backEnd.pc.c_totalIndexes += numIndexes; backEnd.pc.c_dlightIndexes += numIndexes; } } static void ProjectDlightTexture( void ) { #if idppc_altivec if (com_altivec->integer) { // must be in a seperate function or G3 systems will crash. ProjectDlightTexture_altivec(); return; } #endif ProjectDlightTexture_scalar(); } /* =================== RB_FogPass Blends a fog texture on top of everything else =================== */ static void RB_FogPass( void ) { fog_t *fog; int i; qglEnableClientState( GL_COLOR_ARRAY ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors ); qglEnableClientState( GL_TEXTURE_COORD_ARRAY); qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords[0] ); fog = tr.world->fogs + tess.fogNum; for ( i = 0; i < tess.numVertexes; i++ ) { * ( int * )&tess.svars.colors[i] = fog->colorInt; } RB_CalcFogTexCoords( ( float * ) tess.svars.texcoords[0] ); GL_Bind( tr.fogImage ); if ( tess.shader->fogPass == FP_EQUAL ) { GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL ); } else { GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ); } R_DrawElements( tess.numIndexes, tess.indexes ); } /* =============== ComputeColors =============== */ static void ComputeColors( shaderStage_t *pStage ) { int i; // // rgbGen // switch ( pStage->rgbGen ) { case CGEN_IDENTITY: Com_Memset( tess.svars.colors, 0xff, tess.numVertexes * 4 ); break; default: case CGEN_IDENTITY_LIGHTING: Com_Memset( tess.svars.colors, tr.identityLightByte, tess.numVertexes * 4 ); break; case CGEN_LIGHTING_DIFFUSE: RB_CalcDiffuseColor( ( unsigned char * ) tess.svars.colors ); break; case CGEN_EXACT_VERTEX: Com_Memcpy( tess.svars.colors, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) ); break; case CGEN_CONST: for ( i = 0; i < tess.numVertexes; i++ ) { *(int *)tess.svars.colors[i] = *(int *)pStage->constantColor; } break; case CGEN_VERTEX: if ( tr.identityLight == 1 ) { Com_Memcpy( tess.svars.colors, tess.vertexColors, tess.numVertexes * sizeof( tess.vertexColors[0] ) ); } else { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i][0] = tess.vertexColors[i][0] * tr.identityLight; tess.svars.colors[i][1] = tess.vertexColors[i][1] * tr.identityLight; tess.svars.colors[i][2] = tess.vertexColors[i][2] * tr.identityLight; tess.svars.colors[i][3] = tess.vertexColors[i][3]; } } break; case CGEN_ONE_MINUS_VERTEX: if ( tr.identityLight == 1 ) { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i][0] = 255 - tess.vertexColors[i][0]; tess.svars.colors[i][1] = 255 - tess.vertexColors[i][1]; tess.svars.colors[i][2] = 255 - tess.vertexColors[i][2]; } } else { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i][0] = ( 255 - tess.vertexColors[i][0] ) * tr.identityLight; tess.svars.colors[i][1] = ( 255 - tess.vertexColors[i][1] ) * tr.identityLight; tess.svars.colors[i][2] = ( 255 - tess.vertexColors[i][2] ) * tr.identityLight; } } break; case CGEN_FOG: { fog_t *fog; fog = tr.world->fogs + tess.fogNum; for ( i = 0; i < tess.numVertexes; i++ ) { * ( int * )&tess.svars.colors[i] = fog->colorInt; } } break; case CGEN_WAVEFORM: RB_CalcWaveColor( &pStage->rgbWave, ( unsigned char * ) tess.svars.colors ); break; case CGEN_ENTITY: RB_CalcColorFromEntity( ( unsigned char * ) tess.svars.colors ); break; case CGEN_ONE_MINUS_ENTITY: RB_CalcColorFromOneMinusEntity( ( unsigned char * ) tess.svars.colors ); break; } // // alphaGen // switch ( pStage->alphaGen ) { case AGEN_SKIP: break; case AGEN_IDENTITY: if ( pStage->rgbGen != CGEN_IDENTITY ) { if ( ( pStage->rgbGen == CGEN_VERTEX && tr.identityLight != 1 ) || pStage->rgbGen != CGEN_VERTEX ) { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i][3] = 0xff; } } } break; case AGEN_CONST: if ( pStage->rgbGen != CGEN_CONST ) { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i][3] = pStage->constantColor[3]; } } break; case AGEN_WAVEFORM: RB_CalcWaveAlpha( &pStage->alphaWave, ( unsigned char * ) tess.svars.colors ); break; case AGEN_LIGHTING_SPECULAR: RB_CalcSpecularAlpha( ( unsigned char * ) tess.svars.colors ); break; case AGEN_ENTITY: RB_CalcAlphaFromEntity( ( unsigned char * ) tess.svars.colors ); break; case AGEN_ONE_MINUS_ENTITY: RB_CalcAlphaFromOneMinusEntity( ( unsigned char * ) tess.svars.colors ); break; case AGEN_VERTEX: if ( pStage->rgbGen != CGEN_VERTEX ) { for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i][3] = tess.vertexColors[i][3]; } } break; case AGEN_ONE_MINUS_VERTEX: for ( i = 0; i < tess.numVertexes; i++ ) { tess.svars.colors[i][3] = 255 - tess.vertexColors[i][3]; } break; case AGEN_PORTAL: { unsigned char alpha; for ( i = 0; i < tess.numVertexes; i++ ) { float len; vec3_t v; VectorSubtract( tess.xyz[i], backEnd.viewParms.or.origin, v ); len = VectorLength( v ); len /= tess.shader->portalRange; if ( len < 0 ) { alpha = 0; } else if ( len > 1 ) { alpha = 0xff; } else { alpha = len * 0xff; } tess.svars.colors[i][3] = alpha; } } break; } // // fog adjustment for colors to fade out as fog increases // if ( tess.fogNum ) { switch ( pStage->adjustColorsForFog ) { case ACFF_MODULATE_RGB: RB_CalcModulateColorsByFog( ( unsigned char * ) tess.svars.colors ); break; case ACFF_MODULATE_ALPHA: RB_CalcModulateAlphasByFog( ( unsigned char * ) tess.svars.colors ); break; case ACFF_MODULATE_RGBA: RB_CalcModulateRGBAsByFog( ( unsigned char * ) tess.svars.colors ); break; case ACFF_NONE: break; } } // if in greyscale rendering mode turn all color values into greyscale. if(r_greyscale->integer) { int scale; for(i = 0; i < tess.numVertexes; i++) { scale = LUMA(tess.svars.colors[i][0], tess.svars.colors[i][1], tess.svars.colors[i][2]); tess.svars.colors[i][0] = tess.svars.colors[i][1] = tess.svars.colors[i][2] = scale; } } else if(r_greyscale->value) { float scale; for(i = 0; i < tess.numVertexes; i++) { scale = LUMA(tess.svars.colors[i][0], tess.svars.colors[i][1], tess.svars.colors[i][2]); tess.svars.colors[i][0] = LERP(tess.svars.colors[i][0], scale, r_greyscale->value); tess.svars.colors[i][1] = LERP(tess.svars.colors[i][1], scale, r_greyscale->value); tess.svars.colors[i][2] = LERP(tess.svars.colors[i][2], scale, r_greyscale->value); } } } /* =============== ComputeTexCoords =============== */ static void ComputeTexCoords( shaderStage_t *pStage ) { int i; int b; for ( b = 0; b < NUM_TEXTURE_BUNDLES; b++ ) { int tm; // // generate the texture coordinates // switch ( pStage->bundle[b].tcGen ) { case TCGEN_IDENTITY: Com_Memset( tess.svars.texcoords[b], 0, sizeof( float ) * 2 * tess.numVertexes ); break; case TCGEN_TEXTURE: for ( i = 0 ; i < tess.numVertexes ; i++ ) { tess.svars.texcoords[b][i][0] = tess.texCoords[i][0][0]; tess.svars.texcoords[b][i][1] = tess.texCoords[i][0][1]; } break; case TCGEN_LIGHTMAP: for ( i = 0 ; i < tess.numVertexes ; i++ ) { tess.svars.texcoords[b][i][0] = tess.texCoords[i][1][0]; tess.svars.texcoords[b][i][1] = tess.texCoords[i][1][1]; } break; case TCGEN_VECTOR: for ( i = 0 ; i < tess.numVertexes ; i++ ) { tess.svars.texcoords[b][i][0] = DotProduct( tess.xyz[i], pStage->bundle[b].tcGenVectors[0] ); tess.svars.texcoords[b][i][1] = DotProduct( tess.xyz[i], pStage->bundle[b].tcGenVectors[1] ); } break; case TCGEN_FOG: RB_CalcFogTexCoords( ( float * ) tess.svars.texcoords[b] ); break; case TCGEN_ENVIRONMENT_MAPPED: RB_CalcEnvironmentTexCoords( ( float * ) tess.svars.texcoords[b] ); break; case TCGEN_BAD: return; } // // alter texture coordinates // for ( tm = 0; tm < pStage->bundle[b].numTexMods ; tm++ ) { switch ( pStage->bundle[b].texMods[tm].type ) { case TMOD_NONE: tm = TR_MAX_TEXMODS; // break out of for loop break; case TMOD_TURBULENT: RB_CalcTurbulentTexCoords( &pStage->bundle[b].texMods[tm].wave, ( float * ) tess.svars.texcoords[b] ); break; case TMOD_ENTITY_TRANSLATE: RB_CalcScrollTexCoords( backEnd.currentEntity->e.shaderTexCoord, ( float * ) tess.svars.texcoords[b] ); break; case TMOD_SCROLL: RB_CalcScrollTexCoords( pStage->bundle[b].texMods[tm].scroll, ( float * ) tess.svars.texcoords[b] ); break; case TMOD_SCALE: RB_CalcScaleTexCoords( pStage->bundle[b].texMods[tm].scale, ( float * ) tess.svars.texcoords[b] ); break; case TMOD_STRETCH: RB_CalcStretchTexCoords( &pStage->bundle[b].texMods[tm].wave, ( float * ) tess.svars.texcoords[b] ); break; case TMOD_TRANSFORM: RB_CalcTransformTexCoords( &pStage->bundle[b].texMods[tm], ( float * ) tess.svars.texcoords[b] ); break; case TMOD_ROTATE: RB_CalcRotateTexCoords( pStage->bundle[b].texMods[tm].rotateSpeed, ( float * ) tess.svars.texcoords[b] ); break; default: ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'", pStage->bundle[b].texMods[tm].type, tess.shader->name ); break; } } } } /* ** RB_IterateStagesGeneric */ static void RB_IterateStagesGeneric( shaderCommands_t *input ) { int stage; qboolean overridealpha; int oldalphaGen = 0; for ( stage = 0; stage < MAX_SHADER_STAGES; stage++ ) { shaderStage_t *pStage = tess.xstages[stage]; if ( !pStage ) { break; } // Override the shader alpha channel if requested. if(backEnd.currentEntity->e.renderfx & RF_FORCE_ENT_ALPHA) { overridealpha = qtrue; oldalphaGen = pStage->alphaGen; pStage->alphaGen = AGEN_ENTITY; } else overridealpha = qfalse; ComputeColors( pStage ); if(overridealpha) pStage->alphaGen = oldalphaGen; ComputeTexCoords( pStage ); if ( !setArraysOnce ) { qglEnableClientState( GL_COLOR_ARRAY ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, input->svars.colors ); } // // do multitexture // if ( pStage->bundle[1].image[0] != 0 ) { DrawMultitextured( input, stage ); } else { if ( !setArraysOnce ) { qglTexCoordPointer( 2, GL_FLOAT, 0, input->svars.texcoords[0] ); } // // set state // if ( pStage->bundle[0].vertexLightmap && ( (r_vertexLight->integer && !r_uiFullScreen->integer) || glConfig.hardwareType == GLHW_PERMEDIA2 ) && r_lightmap->integer ) { GL_Bind( tr.whiteImage ); } else R_BindAnimatedImage( &pStage->bundle[0] ); if(overridealpha && backEnd.currentEntity->e.shaderRGBA[3] < 0xFF && !(pStage->stateBits & GLS_ATEST_BITS)) { GL_State((pStage->stateBits & ~(GLS_SRCBLEND_BITS | GLS_DSTBLEND_BITS | GLS_ATEST_BITS)) // remove the shader set values. | GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_ATEST_GT_0); // Now add the default values. } else GL_State( pStage->stateBits ); // // draw // R_DrawElements( input->numIndexes, input->indexes ); } // allow skipping out to show just lightmaps during development if ( r_lightmap->integer && ( pStage->bundle[0].isLightmap || pStage->bundle[1].isLightmap || pStage->bundle[0].vertexLightmap ) ) { break; } } } /* ** RB_StageIteratorGeneric */ void RB_StageIteratorGeneric( void ) { shaderCommands_t *input; shader_t *shader; input = &tess; shader = input->shader; RB_DeformTessGeometry(); // // log this call // if ( r_logFile->integer ) { // don't just call LogComment, or we will get // a call to va() every frame! GLimp_LogComment( va("--- RB_StageIteratorGeneric( %s ) ---\n", tess.shader->name) ); } // // set face culling appropriately // GL_Cull( shader->cullType ); // set polygon offset if necessary if ( shader->polygonOffset ) { qglEnable( GL_POLYGON_OFFSET_FILL ); qglPolygonOffset( r_offsetFactor->value, r_offsetUnits->value ); } // // if there is only a single pass then we can enable color // and texture arrays before we compile, otherwise we need // to avoid compiling those arrays since they will change // during multipass rendering // if ( tess.numPasses > 1 || shader->multitextureEnv ) { setArraysOnce = qfalse; qglDisableClientState (GL_COLOR_ARRAY); qglDisableClientState (GL_TEXTURE_COORD_ARRAY); } else { setArraysOnce = qtrue; qglEnableClientState( GL_COLOR_ARRAY); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors ); qglEnableClientState( GL_TEXTURE_COORD_ARRAY); qglTexCoordPointer( 2, GL_FLOAT, 0, tess.svars.texcoords[0] ); } // // lock XYZ // qglVertexPointer (3, GL_FLOAT, 16, input->xyz); // padded for SIMD if (qglLockArraysEXT) { qglLockArraysEXT(0, input->numVertexes); GLimp_LogComment( "glLockArraysEXT\n" ); } // // enable color and texcoord arrays after the lock if necessary // if ( !setArraysOnce ) { qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); qglEnableClientState( GL_COLOR_ARRAY ); } // // call shader function // RB_IterateStagesGeneric( input ); // // now do any dynamic lighting needed // if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE && !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) ) { ProjectDlightTexture(); } // // now do fog // if ( tess.fogNum && tess.shader->fogPass ) { RB_FogPass(); } // // unlock arrays // if (qglUnlockArraysEXT) { qglUnlockArraysEXT(); GLimp_LogComment( "glUnlockArraysEXT\n" ); } // // reset polygon offset // if ( shader->polygonOffset ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } } /* ** RB_StageIteratorVertexLitTexture */ void RB_StageIteratorVertexLitTexture( void ) { shaderCommands_t *input; shader_t *shader; input = &tess; shader = input->shader; // // compute colors // RB_CalcDiffuseColor( ( unsigned char * ) tess.svars.colors ); // // log this call // if ( r_logFile->integer ) { // don't just call LogComment, or we will get // a call to va() every frame! GLimp_LogComment( va("--- RB_StageIteratorVertexLitTexturedUnfogged( %s ) ---\n", tess.shader->name) ); } // // set face culling appropriately // GL_Cull( shader->cullType ); // // set arrays and lock // qglEnableClientState( GL_COLOR_ARRAY); qglEnableClientState( GL_TEXTURE_COORD_ARRAY); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.svars.colors ); qglTexCoordPointer( 2, GL_FLOAT, 16, tess.texCoords[0][0] ); qglVertexPointer (3, GL_FLOAT, 16, input->xyz); if ( qglLockArraysEXT ) { qglLockArraysEXT(0, input->numVertexes); GLimp_LogComment( "glLockArraysEXT\n" ); } // // call special shade routine // R_BindAnimatedImage( &tess.xstages[0]->bundle[0] ); GL_State( tess.xstages[0]->stateBits ); R_DrawElements( input->numIndexes, input->indexes ); // // now do any dynamic lighting needed // if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE ) { ProjectDlightTexture(); } // // now do fog // if ( tess.fogNum && tess.shader->fogPass ) { RB_FogPass(); } // // unlock arrays // if (qglUnlockArraysEXT) { qglUnlockArraysEXT(); GLimp_LogComment( "glUnlockArraysEXT\n" ); } } //define REPLACE_MODE void RB_StageIteratorLightmappedMultitexture( void ) { shaderCommands_t *input; shader_t *shader; input = &tess; shader = input->shader; // // log this call // if ( r_logFile->integer ) { // don't just call LogComment, or we will get // a call to va() every frame! GLimp_LogComment( va("--- RB_StageIteratorLightmappedMultitexture( %s ) ---\n", tess.shader->name) ); } // // set face culling appropriately // GL_Cull( shader->cullType ); // // set color, pointers, and lock // GL_State( GLS_DEFAULT ); qglVertexPointer( 3, GL_FLOAT, 16, input->xyz ); #ifdef REPLACE_MODE qglDisableClientState( GL_COLOR_ARRAY ); qglColor3f( 1, 1, 1 ); qglShadeModel( GL_FLAT ); #else qglEnableClientState( GL_COLOR_ARRAY ); qglColorPointer( 4, GL_UNSIGNED_BYTE, 0, tess.constantColor255 ); #endif // // select base stage // GL_SelectTexture( 0 ); qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); R_BindAnimatedImage( &tess.xstages[0]->bundle[0] ); qglTexCoordPointer( 2, GL_FLOAT, 16, tess.texCoords[0][0] ); // // configure second stage // GL_SelectTexture( 1 ); qglEnable( GL_TEXTURE_2D ); if ( r_lightmap->integer ) { GL_TexEnv( GL_REPLACE ); } else { GL_TexEnv( GL_MODULATE ); } R_BindAnimatedImage( &tess.xstages[0]->bundle[1] ); qglEnableClientState( GL_TEXTURE_COORD_ARRAY ); qglTexCoordPointer( 2, GL_FLOAT, 16, tess.texCoords[0][1] ); // // lock arrays // if ( qglLockArraysEXT ) { qglLockArraysEXT(0, input->numVertexes); GLimp_LogComment( "glLockArraysEXT\n" ); } R_DrawElements( input->numIndexes, input->indexes ); // // disable texturing on TEXTURE1, then select TEXTURE0 // qglDisable( GL_TEXTURE_2D ); qglDisableClientState( GL_TEXTURE_COORD_ARRAY ); GL_SelectTexture( 0 ); #ifdef REPLACE_MODE GL_TexEnv( GL_MODULATE ); qglShadeModel( GL_SMOOTH ); #endif // // now do any dynamic lighting needed // if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE ) { ProjectDlightTexture(); } // // now do fog // if ( tess.fogNum && tess.shader->fogPass ) { RB_FogPass(); } // // unlock arrays // if ( qglUnlockArraysEXT ) { qglUnlockArraysEXT(); GLimp_LogComment( "glUnlockArraysEXT\n" ); } } /* ** RB_EndSurface */ void RB_EndSurface( void ) { shaderCommands_t *input; input = &tess; if (input->numIndexes == 0) { return; } if (input->indexes[SHADER_MAX_INDEXES-1] != 0) { ri.Error (ERR_DROP, "RB_EndSurface() - SHADER_MAX_INDEXES hit"); } if (input->xyz[SHADER_MAX_VERTEXES-1][0] != 0) { ri.Error (ERR_DROP, "RB_EndSurface() - SHADER_MAX_VERTEXES hit"); } if ( tess.shader == tr.shadowShader ) { RB_ShadowTessEnd(); return; } // for debugging of sort order issues, stop rendering after a given sort value if ( r_debugSort->integer && r_debugSort->integer < tess.shader->sort ) { return; } // // update performance counters // backEnd.pc.c_shaders++; backEnd.pc.c_vertexes += tess.numVertexes; backEnd.pc.c_indexes += tess.numIndexes; backEnd.pc.c_totalIndexes += tess.numIndexes * tess.numPasses; // // call off to shader specific tess end function // tess.currentStageIteratorFunc(); // // draw debugging stuff // if ( r_showtris->integer ) { DrawTris (input); } if ( r_shownormals->integer ) { DrawNormals (input); } // clear shader so we can tell we don't have any unclosed surfaces tess.numIndexes = 0; GLimp_LogComment( "----------\n" ); }