// Copyright (C) 1999-2000 Id Software, Inc. // // q_math.c -- stateless support routines that are included in each code module #include "q_shared.h" vec3_t vec3_origin = {0,0,0}; vec3_t axisDefault[3] = { { 1, 0, 0 }, { 0, 1, 0 }, { 0, 0, 1 } }; vec4_t colorTable[CT_MAX] = { {0, 0, 0, 0}, // CT_NONE {0, 0, 0, 1}, // CT_BLACK {1, 0, 0, 1}, // CT_RED {0, 1, 0, 1}, // CT_GREEN {0, 0, 1, 1}, // CT_BLUE {1, 1, 0, 1}, // CT_YELLOW {1, 0, 1, 1}, // CT_MAGENTA {0, 1, 1, 1}, // CT_CYAN {0.071, 0.271, 0.29, 1},// CT_TEAL {0.529, 0.373, 0.017, 1},//CT_GOLD {1, 1, 1, 1}, // CT_WHITE {0.75, 0.75, 0.75, 1}, // CT_LTGREY {0.50, 0.50, 0.50, 1}, // CT_MDGREY {0.25, 0.25, 0.25, 1}, // CT_DKGREY {0.15, 0.15, 0.15, 1}, // CT_DKGREY2 {0.688, 0.797, 1, 1}, // CT_VLTORANGE -- needs values {0.688, 0.797, 1, 1}, // CT_LTORANGE {0.620, 0.710, 0.894, 1}, // CT_DKORANGE {0.463, 0.525, 0.671, 1}, // CT_VDKORANGE {0.616, 0.718, 0.898, 1}, // CT_VLTBLUE1 {0.286, 0.506, 0.898, 1}, // CT_LTBLUE1 {0.082, 0.388, 0.898, 1}, // CT_DKBLUE1 {0.063, 0.278, 0.514, 1}, // CT_VDKBLUE1 {0.302, 0.380, 0.612, 1}, // CT_VLTBLUE2 -- needs values {0.196, 0.314, 0.612, 1}, // CT_LTBLUE2 {0.060, 0.227, 0.611, 1}, // CT_DKBLUE2 {0.043, 0.161, 0.459, 1}, // CT_VDKBLUE2 {0.082, 0.388, 0.898, 1}, // CT_VLTBROWN1 -- needs values {0.082, 0.388, 0.898, 1}, // CT_LTBROWN1 {0.078, 0.320, 0.813, 1}, // CT_DKBROWN1 {0.060, 0.227, 0.611, 1}, // CT_VDKBROWN1 {1, 0.784, 0.365, 1}, // CT_VLTGOLD1 -- needs values {1, 0.706, 0.153, 1}, // CT_LTGOLD1 {0.733, 0.514, 0.086, 1}, // CT_DKGOLD1 {0.549, 0.384, 0.063, 1}, // CT_VDKGOLD1 {0.688, 0.797, 1, 1}, // CT_VLTPURPLE1 -- needs values {0.688, 0.797, 1, 1}, // CT_LTPURPLE1 {0.313, 0.578, 1, 1}, // CT_DKPURPLE1 {0.031, 0.110, 0.341, 1}, // CT_VDKPURPLE1 {0.688, 0.797, 1, 1}, // CT_VLTPURPLE2 -- needs values {0.688, 0.797, 1, 1}, // CT_LTPURPLE2 {0.688, 0.797, 1, 1}, // CT_DKPURPLE2 {0.031, 0.110, 0.341, 1}, // CT_VDKPURPLE2 {0.686, 0.808, 0.1, 1}, // CT_VLTPURPLE3 {0.188, 0.494, 1, 1}, // CT_LTPURPLE3 {0.094, 0.471, 1, 1}, // CT_DKPURPLE3 {0.067, 0.325, 0.749, 1}, // CT_VDKPURPLE3 {1, 0.612, 0.325, 1}, // CT_VLTRED1 {1, 0.478, 0.098, 1}, // CT_LTRED1 {1, 0.438, 0, 1}, // CT_DKRED1 {0.784, 0.329, 0, 1}, // CT_VDKRED1 }; vec4_t colorBlack = {0, 0, 0, 1}; vec4_t colorRed = {1, 0, 0, 1}; vec4_t colorGreen = {0, 1, 0, 1}; vec4_t colorBlue = {0, 0, 1, 1}; vec4_t colorYellow = {1, 1, 0, 1}; vec4_t colorMagenta= {1, 0, 1, 1}; vec4_t colorCyan = {0, 1, 1, 1}; vec4_t colorWhite = {1, 1, 1, 1}; vec4_t colorLtGrey = {0.75, 0.75, 0.75, 1}; vec4_t colorMdGrey = {0.5, 0.5, 0.5, 1}; vec4_t colorDkGrey = {0.25, 0.25, 0.25, 1}; vec4_t g_color_table[8] = { {0.0, 0.0, 0.0, 1.0}, {1.0, 0.0, 0.0, 1.0}, {0.0, 1.0, 0.0, 1.0}, {1.0, 1.0, 0.0, 1.0}, {0.0, 0.0, 1.0, 1.0}, {0.0, 1.0, 1.0, 1.0}, {1.0, 0.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0}, }; vec3_t bytedirs[NUMVERTEXNORMALS] = { {-0.525731, 0.000000, 0.850651}, {-0.442863, 0.238856, 0.864188}, {-0.295242, 0.000000, 0.955423}, {-0.309017, 0.500000, 0.809017}, {-0.162460, 0.262866, 0.951056}, {0.000000, 0.000000, 1.000000}, {0.000000, 0.850651, 0.525731}, {-0.147621, 0.716567, 0.681718}, {0.147621, 0.716567, 0.681718}, {0.000000, 0.525731, 0.850651}, {0.309017, 0.500000, 0.809017}, {0.525731, 0.000000, 0.850651}, {0.295242, 0.000000, 0.955423}, {0.442863, 0.238856, 0.864188}, {0.162460, 0.262866, 0.951056}, {-0.681718, 0.147621, 0.716567}, {-0.809017, 0.309017, 0.500000},{-0.587785, 0.425325, 0.688191}, {-0.850651, 0.525731, 0.000000},{-0.864188, 0.442863, 0.238856}, {-0.716567, 0.681718, 0.147621},{-0.688191, 0.587785, 0.425325}, {-0.500000, 0.809017, 0.309017}, {-0.238856, 0.864188, 0.442863}, {-0.425325, 0.688191, 0.587785}, {-0.716567, 0.681718, -0.147621}, {-0.500000, 0.809017, -0.309017}, {-0.525731, 0.850651, 0.000000}, {0.000000, 0.850651, -0.525731}, {-0.238856, 0.864188, -0.442863}, {0.000000, 0.955423, -0.295242}, {-0.262866, 0.951056, -0.162460}, {0.000000, 1.000000, 0.000000}, {0.000000, 0.955423, 0.295242}, {-0.262866, 0.951056, 0.162460}, {0.238856, 0.864188, 0.442863}, {0.262866, 0.951056, 0.162460}, {0.500000, 0.809017, 0.309017}, {0.238856, 0.864188, -0.442863},{0.262866, 0.951056, -0.162460}, {0.500000, 0.809017, -0.309017},{0.850651, 0.525731, 0.000000}, {0.716567, 0.681718, 0.147621}, {0.716567, 0.681718, -0.147621}, {0.525731, 0.850651, 0.000000}, {0.425325, 0.688191, 0.587785}, {0.864188, 0.442863, 0.238856}, {0.688191, 0.587785, 0.425325}, {0.809017, 0.309017, 0.500000}, {0.681718, 0.147621, 0.716567}, {0.587785, 0.425325, 0.688191}, {0.955423, 0.295242, 0.000000}, {1.000000, 0.000000, 0.000000}, {0.951056, 0.162460, 0.262866}, {0.850651, -0.525731, 0.000000},{0.955423, -0.295242, 0.000000}, {0.864188, -0.442863, 0.238856}, {0.951056, -0.162460, 0.262866}, {0.809017, -0.309017, 0.500000}, {0.681718, -0.147621, 0.716567}, {0.850651, 0.000000, 0.525731}, {0.864188, 0.442863, -0.238856}, {0.809017, 0.309017, -0.500000}, {0.951056, 0.162460, -0.262866}, {0.525731, 0.000000, -0.850651}, {0.681718, 0.147621, -0.716567}, {0.681718, -0.147621, -0.716567},{0.850651, 0.000000, -0.525731}, {0.809017, -0.309017, -0.500000}, {0.864188, -0.442863, -0.238856}, {0.951056, -0.162460, -0.262866}, {0.147621, 0.716567, -0.681718}, {0.309017, 0.500000, -0.809017}, {0.425325, 0.688191, -0.587785}, {0.442863, 0.238856, -0.864188}, {0.587785, 0.425325, -0.688191}, {0.688191, 0.587785, -0.425325}, {-0.147621, 0.716567, -0.681718}, {-0.309017, 0.500000, -0.809017}, {0.000000, 0.525731, -0.850651}, {-0.525731, 0.000000, -0.850651}, {-0.442863, 0.238856, -0.864188}, {-0.295242, 0.000000, -0.955423}, {-0.162460, 0.262866, -0.951056}, {0.000000, 0.000000, -1.000000}, {0.295242, 0.000000, -0.955423}, {0.162460, 0.262866, -0.951056}, {-0.442863, -0.238856, -0.864188}, {-0.309017, -0.500000, -0.809017}, {-0.162460, -0.262866, -0.951056}, {0.000000, -0.850651, -0.525731}, {-0.147621, -0.716567, -0.681718}, {0.147621, -0.716567, -0.681718}, {0.000000, -0.525731, -0.850651}, {0.309017, -0.500000, -0.809017}, {0.442863, -0.238856, -0.864188}, {0.162460, -0.262866, -0.951056}, {0.238856, -0.864188, -0.442863}, {0.500000, -0.809017, -0.309017}, {0.425325, -0.688191, -0.587785}, {0.716567, -0.681718, -0.147621}, {0.688191, -0.587785, -0.425325}, {0.587785, -0.425325, -0.688191}, {0.000000, -0.955423, -0.295242}, {0.000000, -1.000000, 0.000000}, {0.262866, -0.951056, -0.162460}, {0.000000, -0.850651, 0.525731}, {0.000000, -0.955423, 0.295242}, {0.238856, -0.864188, 0.442863}, {0.262866, -0.951056, 0.162460}, {0.500000, -0.809017, 0.309017}, {0.716567, -0.681718, 0.147621}, {0.525731, -0.850651, 0.000000}, {-0.238856, -0.864188, -0.442863}, {-0.500000, -0.809017, -0.309017}, {-0.262866, -0.951056, -0.162460}, {-0.850651, -0.525731, 0.000000}, {-0.716567, -0.681718, -0.147621}, {-0.716567, -0.681718, 0.147621}, {-0.525731, -0.850651, 0.000000}, {-0.500000, -0.809017, 0.309017}, {-0.238856, -0.864188, 0.442863}, {-0.262866, -0.951056, 0.162460}, {-0.864188, -0.442863, 0.238856}, {-0.809017, -0.309017, 0.500000}, {-0.688191, -0.587785, 0.425325}, {-0.681718, -0.147621, 0.716567}, {-0.442863, -0.238856, 0.864188}, {-0.587785, -0.425325, 0.688191}, {-0.309017, -0.500000, 0.809017}, {-0.147621, -0.716567, 0.681718}, {-0.425325, -0.688191, 0.587785}, {-0.162460, -0.262866, 0.951056}, {0.442863, -0.238856, 0.864188}, {0.162460, -0.262866, 0.951056}, {0.309017, -0.500000, 0.809017}, {0.147621, -0.716567, 0.681718}, {0.000000, -0.525731, 0.850651}, {0.425325, -0.688191, 0.587785}, {0.587785, -0.425325, 0.688191}, {0.688191, -0.587785, 0.425325}, {-0.955423, 0.295242, 0.000000}, {-0.951056, 0.162460, 0.262866}, {-1.000000, 0.000000, 0.000000}, {-0.850651, 0.000000, 0.525731}, {-0.955423, -0.295242, 0.000000}, {-0.951056, -0.162460, 0.262866}, {-0.864188, 0.442863, -0.238856}, {-0.951056, 0.162460, -0.262866}, {-0.809017, 0.309017, -0.500000}, {-0.864188, -0.442863, -0.238856}, {-0.951056, -0.162460, -0.262866}, {-0.809017, -0.309017, -0.500000}, {-0.681718, 0.147621, -0.716567}, {-0.681718, -0.147621, -0.716567}, {-0.850651, 0.000000, -0.525731}, {-0.688191, 0.587785, -0.425325}, {-0.587785, 0.425325, -0.688191}, {-0.425325, 0.688191, -0.587785}, {-0.425325, -0.688191, -0.587785}, {-0.587785, -0.425325, -0.688191}, {-0.688191, -0.587785, -0.425325} }; //============================================================== int Q_rand( int *seed ) { *seed = (69069 * *seed + 1); return *seed; } float Q_random( int *seed ) { return ( Q_rand( seed ) & 0xffff ) / (float)0x10000; } float Q_crandom( int *seed ) { return 2.0 * ( Q_random( seed ) - 0.5 ); } //======================================================= signed char ClampChar( int i ) { if ( i < -128 ) { return -128; } if ( i > 127 ) { return 127; } return i; } signed short ClampShort( int i ) { if ( i < (short)0x8000 ) { return (short)0x8000; } if ( i > 0x7fff ) { return 0x7fff; } return i; } // this isn't a real cheap function to call! int DirToByte( vec3_t dir ) { int i, best; float d, bestd; if ( !dir ) { return 0; } bestd = 0; best = 0; for (i=0 ; i bestd) { bestd = d; best = i; } } return best; } void ByteToDir( int b, vec3_t dir ) { if ( b < 0 || b >= NUMVERTEXNORMALS ) { VectorCopy( vec3_origin, dir ); return; } VectorCopy (bytedirs[b], dir); } unsigned ColorBytes3 (float r, float g, float b) { unsigned i; ( (byte *)&i )[0] = r * 255; ( (byte *)&i )[1] = g * 255; ( (byte *)&i )[2] = b * 255; return i; } unsigned ColorBytes4 (float r, float g, float b, float a) { unsigned i; ( (byte *)&i )[0] = r * 255; ( (byte *)&i )[1] = g * 255; ( (byte *)&i )[2] = b * 255; ( (byte *)&i )[3] = a * 255; return i; } float NormalizeColor( const vec3_t in, vec3_t out ) { float max; max = in[0]; if ( in[1] > max ) { max = in[1]; } if ( in[2] > max ) { max = in[2]; } if ( !max ) { VectorClear( out ); } else { out[0] = in[0] / max; out[1] = in[1] / max; out[2] = in[2] / max; } return max; } //============================================================================ /* ===================== PlaneFromPoints Returns false if the triangle is degenrate. The normal will point out of the clock for clockwise ordered points ===================== */ qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) { vec3_t d1, d2; VectorSubtract( b, a, d1 ); VectorSubtract( c, a, d2 ); CrossProduct( d2, d1, plane ); if ( VectorNormalize( plane ) == 0 ) { return qfalse; } plane[3] = DotProduct( a, plane ); return qtrue; } /* =============== RotatePointAroundVector This is not implemented very well... =============== */ void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, float degrees ) { float m[3][3]; float im[3][3]; float zrot[3][3]; float tmpmat[3][3]; float rot[3][3]; int i; vec3_t vr, vup, vf; float rad; vf[0] = dir[0]; vf[1] = dir[1]; vf[2] = dir[2]; PerpendicularVector( vr, dir ); CrossProduct( vr, vf, vup ); m[0][0] = vr[0]; m[1][0] = vr[1]; m[2][0] = vr[2]; m[0][1] = vup[0]; m[1][1] = vup[1]; m[2][1] = vup[2]; m[0][2] = vf[0]; m[1][2] = vf[1]; m[2][2] = vf[2]; memcpy( im, m, sizeof( im ) ); im[0][1] = m[1][0]; im[0][2] = m[2][0]; im[1][0] = m[0][1]; im[1][2] = m[2][1]; im[2][0] = m[0][2]; im[2][1] = m[1][2]; memset( zrot, 0, sizeof( zrot ) ); zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; rad = DEG2RAD( degrees ); zrot[0][0] = cos( rad ); zrot[0][1] = sin( rad ); zrot[1][0] = -sin( rad ); zrot[1][1] = cos( rad ); MatrixMultiply( m, zrot, tmpmat ); MatrixMultiply( tmpmat, im, rot ); for ( i = 0; i < 3; i++ ) { dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; } } /* =============== RotateAroundDirection =============== */ void RotateAroundDirection( vec3_t axis[3], float yaw ) { // create an arbitrary axis[1] PerpendicularVector( axis[1], axis[0] ); // rotate it around axis[0] by yaw if ( yaw ) { vec3_t temp; VectorCopy( axis[1], temp ); RotatePointAroundVector( axis[1], axis[0], temp, yaw ); } // cross to get axis[2] CrossProduct( axis[0], axis[1], axis[2] ); } void vectoangles( const vec3_t value1, vec3_t angles ) { float forward; float yaw, pitch; if ( value1[1] == 0 && value1[0] == 0 ) { yaw = 0; if ( value1[2] > 0 ) { pitch = 90; } else { pitch = 270; } } else { if ( value1[0] ) { yaw = ( atan2 ( value1[1], value1[0] ) * 180 / M_PI ); } else if ( value1[1] > 0 ) { yaw = 90; } else { yaw = 270; } if ( yaw < 0 ) { yaw += 360; } forward = sqrt ( value1[0]*value1[0] + value1[1]*value1[1] ); pitch = ( atan2(value1[2], forward) * 180 / M_PI ); if ( pitch < 0 ) { pitch += 360; } } angles[PITCH] = -pitch; angles[YAW] = yaw; angles[ROLL] = 0; } /* ================= AnglesToAxis ================= */ void AnglesToAxis( const vec3_t angles, vec3_t axis[3] ) { vec3_t right; // angle vectors returns "right" instead of "y axis" AngleVectors( angles, axis[0], right, axis[2] ); VectorSubtract( vec3_origin, right, axis[1] ); } void AxisClear( vec3_t axis[3] ) { axis[0][0] = 1; axis[0][1] = 0; axis[0][2] = 0; axis[1][0] = 0; axis[1][1] = 1; axis[1][2] = 0; axis[2][0] = 0; axis[2][1] = 0; axis[2][2] = 1; } void AxisCopy( vec3_t in[3], vec3_t out[3] ) { VectorCopy( in[0], out[0] ); VectorCopy( in[1], out[1] ); VectorCopy( in[2], out[2] ); } void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) { float d; vec3_t n; float inv_denom; inv_denom = 1.0F / DotProduct( normal, normal ); d = DotProduct( normal, p ) * inv_denom; n[0] = normal[0] * inv_denom; n[1] = normal[1] * inv_denom; n[2] = normal[2] * inv_denom; dst[0] = p[0] - d * n[0]; dst[1] = p[1] - d * n[1]; dst[2] = p[2] - d * n[2]; } /* ================ MakeNormalVectors Given a normalized forward vector, create two other perpendicular vectors ================ */ void MakeNormalVectors( const vec3_t forward, vec3_t right, vec3_t up) { float d; // this rotate and negate guarantees a vector // not colinear with the original right[1] = -forward[0]; right[2] = forward[1]; right[0] = forward[2]; d = DotProduct (right, forward); VectorMA (right, -d, forward, right); VectorNormalize (right); CrossProduct (right, forward, up); } void VectorRotate( vec3_t in, vec3_t matrix[3], vec3_t out ) { out[0] = DotProduct( in, matrix[0] ); out[1] = DotProduct( in, matrix[1] ); out[2] = DotProduct( in, matrix[2] ); } //============================================================================ /* ** float q_rsqrt( float number ) */ float Q_rsqrt( float number ) { long i; float x2, y; const float threehalfs = 1.5F; x2 = number * 0.5F; y = number; i = * ( long * ) &y; // evil floating point bit level hacking i = 0x5f3759df - ( i >> 1 ); // what the fuck? y = * ( float * ) &i; y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed return y; } float Q_fabs( float f ) { int tmp = * ( int * ) &f; tmp &= 0x7FFFFFFF; return * ( float * ) &tmp; } //============================================================ /* =============== LerpAngle =============== */ float LerpAngle (float from, float to, float frac) { float a; if ( to - from > 180 ) { to -= 360; } if ( to - from < -180 ) { to += 360; } a = from + frac * (to - from); return a; } /* ================= AngleSubtract Always returns a value from -180 to 180 ================= */ float AngleSubtract( float a1, float a2 ) { float a; a = a1 - a2; while ( a > 180 ) { a -= 360; } while ( a < -180 ) { a += 360; } return a; } void AnglesSubtract( vec3_t v1, vec3_t v2, vec3_t v3 ) { v3[0] = AngleSubtract( v1[0], v2[0] ); v3[1] = AngleSubtract( v1[1], v2[1] ); v3[2] = AngleSubtract( v1[2], v2[2] ); } float AngleMod(float a) { a = (360.0/65536) * ((int)(a*(65536/360.0)) & 65535); return a; } /* ================= AngleNormalize360 returns angle normalized to the range [0 <= angle < 360] ================= */ float AngleNormalize360 ( float angle ) { return (360.0 / 65536) * ((int)(angle * (65536 / 360.0)) & 65535); } /* ================= AngleNormalize180 returns angle normalized to the range [-180 < angle <= 180] ================= */ float AngleNormalize180 ( float angle ) { angle = AngleNormalize360( angle ); if ( angle > 180.0 ) { angle -= 360.0; } return angle; } /* ================= AngleDelta returns the normalized delta from angle1 to angle2 ================= */ float AngleDelta ( float angle1, float angle2 ) { return AngleNormalize180( angle1 - angle2 ); } //============================================================ /* ================= SetPlaneSignbits ================= */ void SetPlaneSignbits (cplane_t *out) { int bits, j; // for fast box on planeside test bits = 0; for (j=0 ; j<3 ; j++) { if (out->normal[j] < 0) { bits |= 1<signbits = bits; } /* ================== BoxOnPlaneSide Returns 1, 2, or 1 + 2 // this is the slow, general version int BoxOnPlaneSide2 (vec3_t emins, vec3_t emaxs, struct cplane_s *p) { int i; float dist1, dist2; int sides; vec3_t corners[2]; for (i=0 ; i<3 ; i++) { if (p->normal[i] < 0) { corners[0][i] = emins[i]; corners[1][i] = emaxs[i]; } else { corners[1][i] = emins[i]; corners[0][i] = emaxs[i]; } } dist1 = DotProduct (p->normal, corners[0]) - p->dist; dist2 = DotProduct (p->normal, corners[1]) - p->dist; sides = 0; if (dist1 >= 0) sides = 1; if (dist2 < 0) sides |= 2; return sides; } ================== */ #if !(defined __linux__ && defined __i386__ && !defined C_ONLY) #if defined __LCC__ || defined C_ONLY || !id386 int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p) { float dist1, dist2; int sides; // fast axial cases if (p->type < 3) { if (p->dist <= emins[p->type]) return 1; if (p->dist >= emaxs[p->type]) return 2; return 3; } // general case switch (p->signbits) { case 0: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 1: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; break; case 2: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 3: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; break; case 4: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 5: dist1 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emaxs[2]; break; case 6: dist1 = p->normal[0]*emaxs[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emins[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; case 7: dist1 = p->normal[0]*emins[0] + p->normal[1]*emins[1] + p->normal[2]*emins[2]; dist2 = p->normal[0]*emaxs[0] + p->normal[1]*emaxs[1] + p->normal[2]*emaxs[2]; break; default: dist1 = dist2 = 0; // shut up compiler break; } sides = 0; if (dist1 >= p->dist) sides = 1; if (dist2 < p->dist) sides |= 2; return sides; } #else #pragma warning( disable: 4035 ) __declspec( naked ) int BoxOnPlaneSide (vec3_t emins, vec3_t emaxs, struct cplane_s *p) { static int bops_initialized; static int Ljmptab[8]; __asm { push ebx cmp bops_initialized, 1 je initialized mov bops_initialized, 1 mov Ljmptab[0*4], offset Lcase0 mov Ljmptab[1*4], offset Lcase1 mov Ljmptab[2*4], offset Lcase2 mov Ljmptab[3*4], offset Lcase3 mov Ljmptab[4*4], offset Lcase4 mov Ljmptab[5*4], offset Lcase5 mov Ljmptab[6*4], offset Lcase6 mov Ljmptab[7*4], offset Lcase7 initialized: mov edx,dword ptr[4+12+esp] mov ecx,dword ptr[4+4+esp] xor eax,eax mov ebx,dword ptr[4+8+esp] mov al,byte ptr[17+edx] cmp al,8 jge Lerror fld dword ptr[0+edx] fld st(0) jmp dword ptr[Ljmptab+eax*4] Lcase0: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase1: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase2: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase3: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ebx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ecx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase4: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase5: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ebx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ecx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase6: fmul dword ptr[ebx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ecx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) jmp LSetSides Lcase7: fmul dword ptr[ecx] fld dword ptr[0+4+edx] fxch st(2) fmul dword ptr[ebx] fxch st(2) fld st(0) fmul dword ptr[4+ecx] fld dword ptr[0+8+edx] fxch st(2) fmul dword ptr[4+ebx] fxch st(2) fld st(0) fmul dword ptr[8+ecx] fxch st(5) faddp st(3),st(0) fmul dword ptr[8+ebx] fxch st(1) faddp st(3),st(0) fxch st(3) faddp st(2),st(0) LSetSides: faddp st(2),st(0) fcomp dword ptr[12+edx] xor ecx,ecx fnstsw ax fcomp dword ptr[12+edx] and ah,1 xor ah,1 add cl,ah fnstsw ax and ah,1 add ah,ah add cl,ah pop ebx mov eax,ecx ret Lerror: int 3 } } #pragma warning( default: 4035 ) #endif #endif /* ================= RadiusFromBounds ================= */ float RadiusFromBounds( const vec3_t mins, const vec3_t maxs ) { int i; vec3_t corner; float a, b; for (i=0 ; i<3 ; i++) { a = fabs( mins[i] ); b = fabs( maxs[i] ); corner[i] = a > b ? a : b; } return VectorLength (corner); } void ClearBounds( vec3_t mins, vec3_t maxs ) { mins[0] = mins[1] = mins[2] = 99999; maxs[0] = maxs[1] = maxs[2] = -99999; } void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) { if ( v[0] < mins[0] ) { mins[0] = v[0]; } if ( v[0] > maxs[0]) { maxs[0] = v[0]; } if ( v[1] < mins[1] ) { mins[1] = v[1]; } if ( v[1] > maxs[1]) { maxs[1] = v[1]; } if ( v[2] < mins[2] ) { mins[2] = v[2]; } if ( v[2] > maxs[2]) { maxs[2] = v[2]; } } int VectorCompare( const vec3_t v1, const vec3_t v2 ) { if (v1[0] != v2[0] || v1[1] != v2[1] || v1[2] != v2[2]) { return 0; } return 1; } vec_t VectorNormalize( vec3_t v ) { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; length = sqrt (length); if ( length ) { ilength = 1/length; v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } return length; } // // fast vector normalize routine that does not check to make sure // that length != 0, nor does it return length // void VectorNormalizeFast( vec3_t v ) { float ilength; ilength = Q_rsqrt( DotProduct( v, v ) ); v[0] *= ilength; v[1] *= ilength; v[2] *= ilength; } vec_t VectorNormalize2( const vec3_t v, vec3_t out) { float length, ilength; length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; length = sqrt (length); if (length) { ilength = 1/length; out[0] = v[0]*ilength; out[1] = v[1]*ilength; out[2] = v[2]*ilength; } else { VectorClear( out ); } return length; } void _VectorMA( const vec3_t veca, float scale, const vec3_t vecb, vec3_t vecc) { vecc[0] = veca[0] + scale*vecb[0]; vecc[1] = veca[1] + scale*vecb[1]; vecc[2] = veca[2] + scale*vecb[2]; } vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ) { return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; } void _VectorSubtract( const vec3_t veca, const vec3_t vecb, vec3_t out ) { out[0] = veca[0]-vecb[0]; out[1] = veca[1]-vecb[1]; out[2] = veca[2]-vecb[2]; } void _VectorAdd( const vec3_t veca, const vec3_t vecb, vec3_t out ) { out[0] = veca[0]+vecb[0]; out[1] = veca[1]+vecb[1]; out[2] = veca[2]+vecb[2]; } void _VectorCopy( const vec3_t in, vec3_t out ) { out[0] = in[0]; out[1] = in[1]; out[2] = in[2]; } void _VectorScale( const vec3_t in, vec_t scale, vec3_t out ) { out[0] = in[0]*scale; out[1] = in[1]*scale; out[2] = in[2]*scale; } void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) { cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; } vec_t VectorLength( const vec3_t v ) { return sqrt (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); } vec_t VectorLengthSquared( const vec3_t v ) { return (v[0]*v[0] + v[1]*v[1] + v[2]*v[2]); } vec_t Distance( const vec3_t p1, const vec3_t p2 ) { vec3_t v; VectorSubtract (p2, p1, v); return VectorLength( v ); } vec_t DistanceSquared( const vec3_t p1, const vec3_t p2 ) { vec3_t v; VectorSubtract (p2, p1, v); return v[0]*v[0] + v[1]*v[1] + v[2]*v[2]; } void VectorInverse( vec3_t v ){ v[0] = -v[0]; v[1] = -v[1]; v[2] = -v[2]; } void Vector4Scale( const vec4_t in, vec_t scale, vec4_t out ) { out[0] = in[0]*scale; out[1] = in[1]*scale; out[2] = in[2]*scale; out[3] = in[3]*scale; } int Q_log2( int val ) { int answer; answer = 0; while ( ( val>>=1 ) != 0 ) { answer++; } return answer; } /* ================= PlaneTypeForNormal ================= */ int PlaneTypeForNormal (vec3_t normal) { if ( normal[0] == 1.0 ) return PLANE_X; if ( normal[1] == 1.0 ) return PLANE_Y; if ( normal[2] == 1.0 ) return PLANE_Z; return PLANE_NON_AXIAL; } /* ================ MatrixMultiply ================ */ void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) { out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + in1[0][2] * in2[2][0]; out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + in1[0][2] * in2[2][1]; out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + in1[0][2] * in2[2][2]; out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + in1[1][2] * in2[2][0]; out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + in1[1][2] * in2[2][1]; out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + in1[1][2] * in2[2][2]; out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + in1[2][2] * in2[2][0]; out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + in1[2][2] * in2[2][1]; out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + in1[2][2] * in2[2][2]; } void AngleVectors( const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up) { float angle; static float sr, sp, sy, cr, cp, cy; // static to help MS compiler fp bugs angle = angles[YAW] * (M_PI*2 / 360); sy = sin(angle); cy = cos(angle); angle = angles[PITCH] * (M_PI*2 / 360); sp = sin(angle); cp = cos(angle); angle = angles[ROLL] * (M_PI*2 / 360); sr = sin(angle); cr = cos(angle); if (forward) { forward[0] = cp*cy; forward[1] = cp*sy; forward[2] = -sp; } if (right) { right[0] = (-1*sr*sp*cy+-1*cr*-sy); right[1] = (-1*sr*sp*sy+-1*cr*cy); right[2] = -1*sr*cp; } if (up) { up[0] = (cr*sp*cy+-sr*-sy); up[1] = (cr*sp*sy+-sr*cy); up[2] = cr*cp; } } /* ** assumes "src" is normalized */ void PerpendicularVector( vec3_t dst, const vec3_t src ) { int pos; int i; float minelem = 1.0F; vec3_t tempvec; /* ** find the smallest magnitude axially aligned vector ** bias towards using z instead of x or y */ // for ( pos = 0, i = 0; i < 3; i++ ) for ( pos = 0, i = 2; i >= 0; i-- ) { if ( fabs( src[i] ) < minelem ) { pos = i; minelem = fabs( src[i] ); } } tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; tempvec[pos] = 1.0F; /* ** project the point onto the plane defined by src */ ProjectPointOnPlane( dst, tempvec, src ); /* ** normalize the result */ VectorNormalize( dst ); } /* ** flrandom Returns a float min <= x < max (exclusive; will get max - 0.00001; but never max */ float flrandom(float min, float max) { return ((rand() * (max - min)) / 32768.0F) + min; } /* ** irandom Returns an integer min <= x <= max (ie inclusive) */ int irandom(int min, int max) { max++; //so it can round down return ((rand() * (max - min)) >> 15) + min; } // use for networking - normalizes a vector, then multiplies it by 65535.0, then calls snap vector on it // guarantee's a short per vector instead of 4 bytes. void VectorShort(vec3_t vect) { VectorNormalize(vect); vect[0] *= 8191.0; vect[1] *= 8191.0; vect[2] *= 8191.0; SnapVector(vect); } void UnVectorShort(vec3_t vect) { vect[0] /= 8191.0; vect[1] /= 8191.0; vect[2] /= 8191.0; } float powf( float x, int y ) { float r = x; for ( y--; y>0; y-- ) r = r * r; return r; } //TiM: Vector-Average. Good for calculating origins from bounding boxes void VectorAverage( vec3_t mins, vec3_t maxs, vec3_t result ) { vec3_t temp; /*int i; for ( i = 0; i < 3; i++ ) { result[i] = ( mins[i] + maxs[i] ) * 0.5; }*/ //TiM: I 'unno... this way looks l33ter lol VectorAdd( mins, maxs, temp ); VectorScale( temp, 0.5, result ); }