mirror of
https://github.com/UberGames/RPG-X2.git
synced 2025-03-09 18:00:51 +00:00
Added missing md5.c and md5.h
This commit is contained in:
parent
44910ac294
commit
3a3a4ac90d
3 changed files with 319 additions and 2 deletions
|
@ -86,7 +86,7 @@ OBJ = \
|
||||||
lua_trace.o \
|
lua_trace.o \
|
||||||
lua_cvar.o \
|
lua_cvar.o \
|
||||||
sqlite3.o \
|
sqlite3.o \
|
||||||
#md5.o
|
md5.o
|
||||||
|
|
||||||
# game object for syscalls to the engine
|
# game object for syscalls to the engine
|
||||||
SOOBJ = \
|
SOOBJ = \
|
||||||
|
@ -197,7 +197,7 @@ lua_weapons.o: lua_weapons.c; $(DO_CC)
|
||||||
lua_trace.o: lua_trace.c; $(DO_CC)
|
lua_trace.o: lua_trace.c; $(DO_CC)
|
||||||
lua_cvar.o: lua_cvar.c; $(DO_CC)
|
lua_cvar.o: lua_cvar.c; $(DO_CC)
|
||||||
sqlite3.o: sqlite3.c; $(DO_CC)
|
sqlite3.o: sqlite3.c; $(DO_CC)
|
||||||
#md5.o: md5.c; $(DO_CC)
|
md5.o: md5.c; $(DO_CC)
|
||||||
|
|
||||||
# game syscalls
|
# game syscalls
|
||||||
g_syscalls.o : g_syscalls.c; $(DO_CC)
|
g_syscalls.o : g_syscalls.c; $(DO_CC)
|
||||||
|
|
259
game/md5.c
Executable file
259
game/md5.c
Executable file
|
@ -0,0 +1,259 @@
|
||||||
|
/*
|
||||||
|
* This code implements the MD5 message-digest algorithm.
|
||||||
|
* The algorithm is due to Ron Rivest. This code was
|
||||||
|
* written by Colin Plumb in 1993, no copyright is claimed.
|
||||||
|
* This code is in the public domain; do with it what you wish.
|
||||||
|
*
|
||||||
|
* Equivalent code is available from RSA Data Security, Inc.
|
||||||
|
* This code has been tested against that, and is equivalent,
|
||||||
|
* except that you don't need to include two pages of legalese
|
||||||
|
* with every copy.
|
||||||
|
*
|
||||||
|
* To compute the message digest of a chunk of bytes, declare an
|
||||||
|
* MD5Context structure, pass it to MD5Init, call MD5Update as
|
||||||
|
* needed on buffers full of bytes, and then call MD5Final, which
|
||||||
|
* will fill a supplied 16-byte array with the digest.
|
||||||
|
*/
|
||||||
|
|
||||||
|
/* Brutally hacked by John Walker back from ANSI C to K&R (no
|
||||||
|
prototypes) to maintain the tradition that Netfone will compile
|
||||||
|
with Sun's original "cc". */
|
||||||
|
|
||||||
|
#ifdef SQL
|
||||||
|
|
||||||
|
#include <memory.h> /* for memcpy() */
|
||||||
|
#include "md5.h"
|
||||||
|
|
||||||
|
#ifndef HIGHFIRST
|
||||||
|
#define byteReverse(buf, len) /* Nothing */
|
||||||
|
#else
|
||||||
|
/*
|
||||||
|
* Note: this code is harmless on little-endian machines.
|
||||||
|
*/
|
||||||
|
void byteReverse(buf, longs)
|
||||||
|
unsigned char *buf; unsigned longs;
|
||||||
|
{
|
||||||
|
uint32 t;
|
||||||
|
do {
|
||||||
|
t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
|
||||||
|
((unsigned) buf[1] << 8 | buf[0]);
|
||||||
|
*(uint32 *) buf = t;
|
||||||
|
buf += 4;
|
||||||
|
} while (--longs);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
|
||||||
|
* initialization constants.
|
||||||
|
*/
|
||||||
|
void MD5Init(ctx)
|
||||||
|
struct MD5Context *ctx;
|
||||||
|
{
|
||||||
|
ctx->buf[0] = 0x67452301;
|
||||||
|
ctx->buf[1] = 0xefcdab89;
|
||||||
|
ctx->buf[2] = 0x98badcfe;
|
||||||
|
ctx->buf[3] = 0x10325476;
|
||||||
|
|
||||||
|
ctx->bits[0] = 0;
|
||||||
|
ctx->bits[1] = 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Update context to reflect the concatenation of another buffer full
|
||||||
|
* of bytes.
|
||||||
|
*/
|
||||||
|
void MD5Update(ctx, buf, len)
|
||||||
|
struct MD5Context *ctx; unsigned char *buf; unsigned len;
|
||||||
|
{
|
||||||
|
uint32 t;
|
||||||
|
|
||||||
|
/* Update bitcount */
|
||||||
|
|
||||||
|
t = ctx->bits[0];
|
||||||
|
if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
|
||||||
|
ctx->bits[1]++; /* Carry from low to high */
|
||||||
|
ctx->bits[1] += len >> 29;
|
||||||
|
|
||||||
|
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
|
||||||
|
|
||||||
|
/* Handle any leading odd-sized chunks */
|
||||||
|
|
||||||
|
if (t) {
|
||||||
|
unsigned char *p = (unsigned char *) ctx->in + t;
|
||||||
|
|
||||||
|
t = 64 - t;
|
||||||
|
if (len < t) {
|
||||||
|
memcpy(p, buf, len);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
memcpy(p, buf, t);
|
||||||
|
byteReverse(ctx->in, 16);
|
||||||
|
MD5Transform(ctx->buf, (uint32 *) ctx->in);
|
||||||
|
buf += t;
|
||||||
|
len -= t;
|
||||||
|
}
|
||||||
|
/* Process data in 64-byte chunks */
|
||||||
|
|
||||||
|
while (len >= 64) {
|
||||||
|
memcpy(ctx->in, buf, 64);
|
||||||
|
byteReverse(ctx->in, 16);
|
||||||
|
MD5Transform(ctx->buf, (uint32 *) ctx->in);
|
||||||
|
buf += 64;
|
||||||
|
len -= 64;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Handle any remaining bytes of data. */
|
||||||
|
|
||||||
|
memcpy(ctx->in, buf, len);
|
||||||
|
}
|
||||||
|
|
||||||
|
/*
|
||||||
|
* Final wrapup - pad to 64-byte boundary with the bit pattern
|
||||||
|
* 1 0* (64-bit count of bits processed, MSB-first)
|
||||||
|
*/
|
||||||
|
void MD5Final(digest, ctx)
|
||||||
|
unsigned char digest[16]; struct MD5Context *ctx;
|
||||||
|
{
|
||||||
|
unsigned count;
|
||||||
|
unsigned char *p;
|
||||||
|
|
||||||
|
/* Compute number of bytes mod 64 */
|
||||||
|
count = (ctx->bits[0] >> 3) & 0x3F;
|
||||||
|
|
||||||
|
/* Set the first char of padding to 0x80. This is safe since there is
|
||||||
|
always at least one byte free */
|
||||||
|
p = ctx->in + count;
|
||||||
|
*p++ = 0x80;
|
||||||
|
|
||||||
|
/* Bytes of padding needed to make 64 bytes */
|
||||||
|
count = 64 - 1 - count;
|
||||||
|
|
||||||
|
/* Pad out to 56 mod 64 */
|
||||||
|
if (count < 8) {
|
||||||
|
/* Two lots of padding: Pad the first block to 64 bytes */
|
||||||
|
memset(p, 0, count);
|
||||||
|
byteReverse(ctx->in, 16);
|
||||||
|
MD5Transform(ctx->buf, (uint32 *) ctx->in);
|
||||||
|
|
||||||
|
/* Now fill the next block with 56 bytes */
|
||||||
|
memset(ctx->in, 0, 56);
|
||||||
|
} else {
|
||||||
|
/* Pad block to 56 bytes */
|
||||||
|
memset(p, 0, count - 8);
|
||||||
|
}
|
||||||
|
byteReverse(ctx->in, 14);
|
||||||
|
|
||||||
|
/* Append length in bits and transform */
|
||||||
|
((uint32 *) ctx->in)[14] = ctx->bits[0];
|
||||||
|
((uint32 *) ctx->in)[15] = ctx->bits[1];
|
||||||
|
|
||||||
|
MD5Transform(ctx->buf, (uint32 *) ctx->in);
|
||||||
|
byteReverse((unsigned char *) ctx->buf, 4);
|
||||||
|
memcpy(digest, ctx->buf, 16);
|
||||||
|
memset(ctx, 0, sizeof(ctx)); /* In case it's sensitive */
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
/* The four core functions - F1 is optimized somewhat */
|
||||||
|
|
||||||
|
/* #define F1(x, y, z) (x & y | ~x & z) */
|
||||||
|
#define F1(x, y, z) (z ^ (x & (y ^ z)))
|
||||||
|
#define F2(x, y, z) F1(z, x, y)
|
||||||
|
#define F3(x, y, z) (x ^ y ^ z)
|
||||||
|
#define F4(x, y, z) (y ^ (x | ~z))
|
||||||
|
|
||||||
|
/* This is the central step in the MD5 algorithm. */
|
||||||
|
#define MD5STEP(f, w, x, y, z, data, s) \
|
||||||
|
( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
|
||||||
|
|
||||||
|
/*
|
||||||
|
* The core of the MD5 algorithm, this alters an existing MD5 hash to
|
||||||
|
* reflect the addition of 16 longwords of new data. MD5Update blocks
|
||||||
|
* the data and converts bytes into longwords for this routine.
|
||||||
|
*/
|
||||||
|
void MD5Transform(buf, in)
|
||||||
|
uint32 buf[4]; uint32 in[16];
|
||||||
|
{
|
||||||
|
register uint32 a, b, c, d;
|
||||||
|
|
||||||
|
a = buf[0];
|
||||||
|
b = buf[1];
|
||||||
|
c = buf[2];
|
||||||
|
d = buf[3];
|
||||||
|
|
||||||
|
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
|
||||||
|
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
|
||||||
|
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
|
||||||
|
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
|
||||||
|
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
|
||||||
|
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
|
||||||
|
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
|
||||||
|
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
|
||||||
|
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
|
||||||
|
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
|
||||||
|
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
|
||||||
|
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
|
||||||
|
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
|
||||||
|
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
|
||||||
|
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
|
||||||
|
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
|
||||||
|
|
||||||
|
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
|
||||||
|
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
|
||||||
|
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
|
||||||
|
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
|
||||||
|
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
|
||||||
|
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
|
||||||
|
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
|
||||||
|
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
|
||||||
|
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
|
||||||
|
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
|
||||||
|
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
|
||||||
|
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
|
||||||
|
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
|
||||||
|
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
|
||||||
|
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
|
||||||
|
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
|
||||||
|
|
||||||
|
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
|
||||||
|
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
|
||||||
|
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
|
||||||
|
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
|
||||||
|
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
|
||||||
|
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
|
||||||
|
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
|
||||||
|
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
|
||||||
|
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
|
||||||
|
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
|
||||||
|
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
|
||||||
|
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
|
||||||
|
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
|
||||||
|
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
|
||||||
|
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
|
||||||
|
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
|
||||||
|
|
||||||
|
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
|
||||||
|
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
|
||||||
|
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
|
||||||
|
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
|
||||||
|
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
|
||||||
|
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
|
||||||
|
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
|
||||||
|
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
|
||||||
|
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
|
||||||
|
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
|
||||||
|
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
|
||||||
|
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
|
||||||
|
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
|
||||||
|
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
|
||||||
|
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
|
||||||
|
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
|
||||||
|
|
||||||
|
buf[0] += a;
|
||||||
|
buf[1] += b;
|
||||||
|
buf[2] += c;
|
||||||
|
buf[3] += d;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
58
game/md5.h
Executable file
58
game/md5.h
Executable file
|
@ -0,0 +1,58 @@
|
||||||
|
#ifdef SQL
|
||||||
|
|
||||||
|
#ifndef MD5_H
|
||||||
|
#define MD5_H
|
||||||
|
|
||||||
|
/* The following tests optimise behaviour on little-endian
|
||||||
|
machines, where there is no need to reverse the byte order
|
||||||
|
of 32 bit words in the MD5 computation. By default,
|
||||||
|
HIGHFIRST is defined, which indicates we're running on a
|
||||||
|
big-endian (most significant byte first) machine, on which
|
||||||
|
the byteReverse function in md5.c must be invoked. However,
|
||||||
|
byteReverse is coded in such a way that it is an identity
|
||||||
|
function when run on a little-endian machine, so calling it
|
||||||
|
on such a platform causes no harm apart from wasting time.
|
||||||
|
If the platform is known to be little-endian, we speed
|
||||||
|
things up by undefining HIGHFIRST, which defines
|
||||||
|
byteReverse as a null macro. Doing things in this manner
|
||||||
|
insures we work on new platforms regardless of their byte
|
||||||
|
order. */
|
||||||
|
|
||||||
|
#define HIGHFIRST
|
||||||
|
|
||||||
|
#ifdef __i386__
|
||||||
|
#undef HIGHFIRST
|
||||||
|
#endif
|
||||||
|
|
||||||
|
/* On machines where "long" is 64 bits, we need to declare
|
||||||
|
uint32 as something guaranteed to be 32 bits. */
|
||||||
|
|
||||||
|
#ifdef __alpha
|
||||||
|
typedef unsigned int uint32;
|
||||||
|
#else
|
||||||
|
typedef unsigned long uint32;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
struct MD5Context {
|
||||||
|
uint32 buf[4];
|
||||||
|
uint32 bits[2];
|
||||||
|
unsigned char in[64];
|
||||||
|
};
|
||||||
|
|
||||||
|
extern void MD5Init();
|
||||||
|
extern void MD5Update();
|
||||||
|
extern void MD5Final();
|
||||||
|
extern void MD5Transform();
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This is needed to make RSAREF happy on some MS-DOS compilers.
|
||||||
|
*/
|
||||||
|
typedef struct MD5Context MD5_CTX;
|
||||||
|
|
||||||
|
/* Define CHECK_HARDWARE_PROPERTIES to have main,c verify
|
||||||
|
byte order and uint32 settings. */
|
||||||
|
#define CHECK_HARDWARE_PROPERTIES
|
||||||
|
|
||||||
|
#endif /* !MD5_H */
|
||||||
|
|
||||||
|
#endif
|
Loading…
Reference in a new issue