lilium-voyager/code/rend2/tr_bsp.c
2012-10-26 01:23:06 +00:00

3321 lines
85 KiB
C

/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.
This file is part of Quake III Arena source code.
Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
===========================================================================
*/
// tr_map.c
#include "tr_local.h"
/*
Loads and prepares a map file for scene rendering.
A single entry point:
void RE_LoadWorldMap( const char *name );
*/
static world_t s_worldData;
static byte *fileBase;
int c_subdivisions;
int c_gridVerts;
//===============================================================================
static void HSVtoRGB( float h, float s, float v, float rgb[3] )
{
int i;
float f;
float p, q, t;
h *= 5;
i = floor( h );
f = h - i;
p = v * ( 1 - s );
q = v * ( 1 - s * f );
t = v * ( 1 - s * ( 1 - f ) );
switch ( i )
{
case 0:
rgb[0] = v;
rgb[1] = t;
rgb[2] = p;
break;
case 1:
rgb[0] = q;
rgb[1] = v;
rgb[2] = p;
break;
case 2:
rgb[0] = p;
rgb[1] = v;
rgb[2] = t;
break;
case 3:
rgb[0] = p;
rgb[1] = q;
rgb[2] = v;
break;
case 4:
rgb[0] = t;
rgb[1] = p;
rgb[2] = v;
break;
case 5:
rgb[0] = v;
rgb[1] = p;
rgb[2] = q;
break;
}
}
/*
===============
R_ColorShiftLightingBytes
===============
*/
static void R_ColorShiftLightingBytes( byte in[4], byte out[4] ) {
int shift, r, g, b;
// shift the color data based on overbright range
shift = r_mapOverBrightBits->integer - tr.overbrightBits;
// shift the data based on overbright range
r = in[0] << shift;
g = in[1] << shift;
b = in[2] << shift;
// normalize by color instead of saturating to white
if ( ( r | g | b ) > 255 ) {
int max;
max = r > g ? r : g;
max = max > b ? max : b;
r = r * 255 / max;
g = g * 255 / max;
b = b * 255 / max;
}
out[0] = r;
out[1] = g;
out[2] = b;
out[3] = in[3];
}
/*
===============
R_ColorShiftLightingBytes
===============
*/
static void R_ColorShiftLightingFloats(float in[4], float out[4], float scale )
{
scale *= pow(2.0f, r_mapOverBrightBits->integer - tr.overbrightBits);
out[0] = in[0] * scale;
out[1] = in[1] * scale;
out[2] = in[2] * scale;
out[3] = in[3];
}
void ColorToRGBE(const vec3_t color, unsigned char rgbe[4])
{
vec3_t sample;
float maxComponent;
int e;
VectorCopy(color, sample);
maxComponent = sample[0];
if(sample[1] > maxComponent)
maxComponent = sample[1];
if(sample[2] > maxComponent)
maxComponent = sample[2];
if(maxComponent < 1e-32)
{
rgbe[0] = 0;
rgbe[1] = 0;
rgbe[2] = 0;
rgbe[3] = 0;
}
else
{
#if 0
maxComponent = frexp(maxComponent, &e) * 255.0 / maxComponent;
rgbe[0] = (unsigned char) (sample[0] * maxComponent);
rgbe[1] = (unsigned char) (sample[1] * maxComponent);
rgbe[2] = (unsigned char) (sample[2] * maxComponent);
rgbe[3] = (unsigned char) (e + 128);
#else
e = ceil(log(maxComponent) / log(2.0f));//ceil(log2(maxComponent));
VectorScale(sample, 1.0 / pow(2.0f, e)/*exp2(e)*/, sample);
rgbe[0] = (unsigned char) (sample[0] * 255);
rgbe[1] = (unsigned char) (sample[1] * 255);
rgbe[2] = (unsigned char) (sample[2] * 255);
rgbe[3] = (unsigned char) (e + 128);
#endif
}
}
void ColorToRGBA16F(const vec3_t color, unsigned short rgba16f[4])
{
rgba16f[0] = FloatToHalf(color[0]);
rgba16f[1] = FloatToHalf(color[1]);
rgba16f[2] = FloatToHalf(color[2]);
rgba16f[3] = FloatToHalf(1.0f);
}
/*
===============
R_LoadLightmaps
===============
*/
#define DEFAULT_LIGHTMAP_SIZE 128
#define MAX_LIGHTMAP_PAGES 2
static void R_LoadLightmaps( lump_t *l, lump_t *surfs ) {
byte *buf, *buf_p;
dsurface_t *surf;
int len;
byte *image;
int i, j, numLightmaps, textureInternalFormat = 0;
float maxIntensity = 0;
double sumIntensity = 0;
len = l->filelen;
if ( !len ) {
return;
}
buf = fileBase + l->fileofs;
// we are about to upload textures
R_SyncRenderThread();
tr.lightmapSize = DEFAULT_LIGHTMAP_SIZE;
numLightmaps = len / (tr.lightmapSize * tr.lightmapSize * 3);
// check for deluxe mapping
if (numLightmaps <= 1)
{
tr.worldDeluxeMapping = qfalse;
}
else
{
tr.worldDeluxeMapping = qtrue;
for( i = 0, surf = (dsurface_t *)(fileBase + surfs->fileofs);
i < surfs->filelen / sizeof(dsurface_t); i++, surf++ ) {
int lightmapNum = LittleLong( surf->lightmapNum );
if ( lightmapNum >= 0 && (lightmapNum & 1) != 0 ) {
tr.worldDeluxeMapping = qfalse;
break;
}
}
}
image = ri.Malloc(tr.lightmapSize * tr.lightmapSize * 4 * 2);
if (tr.worldDeluxeMapping)
numLightmaps >>= 1;
if(numLightmaps == 1)
{
//FIXME: HACK: maps with only one lightmap turn up fullbright for some reason.
//this avoids this, but isn't the correct solution.
numLightmaps++;
}
else if (r_mergeLightmaps->integer && numLightmaps >= 1024 )
{
// FIXME: fat light maps don't support more than 1024 light maps
ri.Printf(PRINT_WARNING, "WARNING: number of lightmaps > 1024\n");
numLightmaps = 1024;
}
// use fat lightmaps of an appropriate size
if (r_mergeLightmaps->integer)
{
tr.fatLightmapSize = 512;
tr.fatLightmapStep = tr.fatLightmapSize / tr.lightmapSize;
// at most MAX_LIGHTMAP_PAGES
while (tr.fatLightmapStep * tr.fatLightmapStep * MAX_LIGHTMAP_PAGES < numLightmaps && tr.fatLightmapSize != glConfig.maxTextureSize )
{
tr.fatLightmapSize <<= 1;
tr.fatLightmapStep = tr.fatLightmapSize / tr.lightmapSize;
}
tr.numLightmaps = numLightmaps / (tr.fatLightmapStep * tr.fatLightmapStep);
if (numLightmaps % (tr.fatLightmapStep * tr.fatLightmapStep) != 0)
tr.numLightmaps++;
}
else
{
tr.numLightmaps = numLightmaps;
}
tr.lightmaps = ri.Hunk_Alloc( tr.numLightmaps * sizeof(image_t *), h_low );
if (tr.worldDeluxeMapping)
{
tr.deluxemaps = ri.Hunk_Alloc( tr.numLightmaps * sizeof(image_t *), h_low );
}
if (r_hdr->integer && glRefConfig.textureFloat && glRefConfig.halfFloatPixel)
textureInternalFormat = GL_RGBA16F_ARB;
if (r_mergeLightmaps->integer)
{
for (i = 0; i < tr.numLightmaps; i++)
{
tr.lightmaps[i] = R_CreateImage(va("_fatlightmap%d", i), NULL, tr.fatLightmapSize, tr.fatLightmapSize, IMGTYPE_COLORALPHA, IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, textureInternalFormat );
if (tr.worldDeluxeMapping)
{
tr.deluxemaps[i] = R_CreateImage(va("_fatdeluxemap%d", i), NULL, tr.fatLightmapSize, tr.fatLightmapSize, IMGTYPE_DELUXE, IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, 0 );
}
}
}
for(i = 0; i < numLightmaps; i++)
{
int xoff = 0, yoff = 0;
int lightmapnum = i;
// expand the 24 bit on-disk to 32 bit
if (r_mergeLightmaps->integer)
{
int lightmaponpage = i % (tr.fatLightmapStep * tr.fatLightmapStep);
xoff = (lightmaponpage % tr.fatLightmapStep) * tr.lightmapSize;
yoff = (lightmaponpage / tr.fatLightmapStep) * tr.lightmapSize;
lightmapnum /= (tr.fatLightmapStep * tr.fatLightmapStep);
}
// if (tr.worldLightmapping)
{
char filename[MAX_QPATH];
byte *hdrLightmap = NULL;
float lightScale = 1.0f;
int size = 0;
// look for hdr lightmaps
if (r_hdr->integer)
{
Com_sprintf( filename, sizeof( filename ), "maps/%s/lm_%04d.hdr", s_worldData.baseName, i * (tr.worldDeluxeMapping ? 2 : 1) );
//ri.Printf(PRINT_ALL, "looking for %s\n", filename);
size = ri.FS_ReadFile(filename, (void **)&hdrLightmap);
}
if (hdrLightmap)
{
byte *p = hdrLightmap;
//ri.Printf(PRINT_ALL, "found!\n");
/* FIXME: don't just skip over this header and actually parse it */
while (size && !(*p == '\n' && *(p+1) == '\n'))
{
size--;
p++;
}
if (!size)
ri.Error(ERR_DROP, "Bad header for %s!\n", filename);
size -= 2;
p += 2;
while (size && !(*p == '\n'))
{
size--;
p++;
}
size--;
p++;
buf_p = (byte *)p;
#if 0 // HDRFILE_RGBE
if (size != tr.lightmapSize * tr.lightmapSize * 4)
ri.Error(ERR_DROP, "Bad size for %s (%i)!\n", filename, size);
#else // HDRFILE_FLOAT
if (size != tr.lightmapSize * tr.lightmapSize * 12)
ri.Error(ERR_DROP, "Bad size for %s (%i)!\n", filename, size);
#endif
}
else
{
if (tr.worldDeluxeMapping)
buf_p = buf + (i * 2) * tr.lightmapSize * tr.lightmapSize * 3;
else
buf_p = buf + i * tr.lightmapSize * tr.lightmapSize * 3;
}
lightScale = pow(2, r_mapOverBrightBits->integer - tr.overbrightBits - 8); //exp2(r_mapOverBrightBits->integer - tr.overbrightBits - 8);
for ( j = 0 ; j < tr.lightmapSize * tr.lightmapSize; j++ )
{
if (r_hdr->integer)
{
float color[3];
if (hdrLightmap)
{
#if 0 // HDRFILE_RGBE
float exponent = exp2(buf_p[j*4+3] - 128);
color[0] = buf_p[j*4+0] * exponent;
color[1] = buf_p[j*4+1] * exponent;
color[2] = buf_p[j*4+2] * exponent;
#else // HDRFILE_FLOAT
memcpy(color, &buf_p[j*12], 12);
color[0] = LittleFloat(color[0]);
color[1] = LittleFloat(color[1]);
color[2] = LittleFloat(color[2]);
#endif
}
else
{
//hack: convert LDR lightmap to HDR one
color[0] = (buf_p[j*3+0] + 1.0f);
color[1] = (buf_p[j*3+1] + 1.0f);
color[2] = (buf_p[j*3+2] + 1.0f);
// if under an arbitrary value (say 12) grey it out
// this prevents weird splotches in dimly lit areas
if (color[0] + color[1] + color[2] < 12.0f)
{
float avg = (color[0] + color[1] + color[2]) * 0.3333f;
color[0] = avg;
color[1] = avg;
color[2] = avg;
}
}
VectorScale(color, lightScale, color);
if (glRefConfig.textureFloat && glRefConfig.halfFloatPixel)
ColorToRGBA16F(color, (unsigned short *)(&image[j*8]));
else
ColorToRGBE(color, &image[j*4]);
}
else
{
if ( r_lightmap->integer == 2 )
{ // color code by intensity as development tool (FIXME: check range)
float r = buf_p[j*3+0];
float g = buf_p[j*3+1];
float b = buf_p[j*3+2];
float intensity;
float out[3] = {0.0, 0.0, 0.0};
intensity = 0.33f * r + 0.685f * g + 0.063f * b;
if ( intensity > 255 )
intensity = 1.0f;
else
intensity /= 255.0f;
if ( intensity > maxIntensity )
maxIntensity = intensity;
HSVtoRGB( intensity, 1.00, 0.50, out );
image[j*4+0] = out[0] * 255;
image[j*4+1] = out[1] * 255;
image[j*4+2] = out[2] * 255;
image[j*4+3] = 255;
sumIntensity += intensity;
}
else
{
R_ColorShiftLightingBytes( &buf_p[j*3], &image[j*4] );
image[j*4+3] = 255;
}
}
}
if (r_mergeLightmaps->integer)
R_UpdateSubImage(tr.lightmaps[lightmapnum], image, xoff, yoff, tr.lightmapSize, tr.lightmapSize);
else
tr.lightmaps[i] = R_CreateImage(va("*lightmap%d", i), image, tr.lightmapSize, tr.lightmapSize, IMGTYPE_COLORALPHA, IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, textureInternalFormat );
if (hdrLightmap)
ri.FS_FreeFile(hdrLightmap);
}
if (tr.worldDeluxeMapping)
{
buf_p = buf + (i * 2 + 1) * tr.lightmapSize * tr.lightmapSize * 3;
for ( j = 0 ; j < tr.lightmapSize * tr.lightmapSize; j++ ) {
image[j*4+0] = buf_p[j*3+0];
image[j*4+1] = buf_p[j*3+1];
image[j*4+2] = buf_p[j*3+2];
// make 0,0,0 into 127,127,127
if ((image[j*4+0] == 0) && (image[j*4+0] == 0) && (image[j*4+2] == 0))
{
image[j*4+0] =
image[j*4+1] =
image[j*4+2] = 127;
}
image[j*4+3] = 255;
}
if (r_mergeLightmaps->integer)
{
R_UpdateSubImage(tr.deluxemaps[lightmapnum], image, xoff, yoff, tr.lightmapSize, tr.lightmapSize );
}
else
{
tr.deluxemaps[i] = R_CreateImage(va("*deluxemap%d", i), image, tr.lightmapSize, tr.lightmapSize, IMGTYPE_DELUXE, IMGFLAG_NOLIGHTSCALE | IMGFLAG_NO_COMPRESSION | IMGFLAG_CLAMPTOEDGE, 0 );
}
}
}
if ( r_lightmap->integer == 2 ) {
ri.Printf( PRINT_ALL, "Brightest lightmap value: %d\n", ( int ) ( maxIntensity * 255 ) );
}
ri.Free(image);
}
static float FatPackU(float input, int lightmapnum)
{
if (lightmapnum < 0)
return input;
if (tr.worldDeluxeMapping)
lightmapnum >>= 1;
lightmapnum %= (tr.fatLightmapStep * tr.fatLightmapStep);
if(tr.fatLightmapSize > 0)
{
int x = lightmapnum % tr.fatLightmapStep;
return (input / ((float)tr.fatLightmapStep)) + ((1.0 / ((float)tr.fatLightmapStep)) * (float)x);
}
return input;
}
static float FatPackV(float input, int lightmapnum)
{
if (lightmapnum < 0)
return input;
if (tr.worldDeluxeMapping)
lightmapnum >>= 1;
lightmapnum %= (tr.fatLightmapStep * tr.fatLightmapStep);
if(tr.fatLightmapSize > 0)
{
int y = lightmapnum / tr.fatLightmapStep;
return (input / ((float)tr.fatLightmapStep)) + ((1.0 / ((float)tr.fatLightmapStep)) * (float)y);
}
return input;
}
static int FatLightmap(int lightmapnum)
{
if (lightmapnum < 0)
return lightmapnum;
if (tr.worldDeluxeMapping)
lightmapnum >>= 1;
if (tr.fatLightmapSize > 0)
{
return lightmapnum / (tr.fatLightmapStep * tr.fatLightmapStep);
}
return lightmapnum;
}
/*
=================
RE_SetWorldVisData
This is called by the clipmodel subsystem so we can share the 1.8 megs of
space in big maps...
=================
*/
void RE_SetWorldVisData( const byte *vis ) {
tr.externalVisData = vis;
}
/*
=================
R_LoadVisibility
=================
*/
static void R_LoadVisibility( lump_t *l ) {
int len;
byte *buf;
len = ( s_worldData.numClusters + 63 ) & ~63;
s_worldData.novis = ri.Hunk_Alloc( len, h_low );
Com_Memset( s_worldData.novis, 0xff, len );
len = l->filelen;
if ( !len ) {
return;
}
buf = fileBase + l->fileofs;
s_worldData.numClusters = LittleLong( ((int *)buf)[0] );
s_worldData.clusterBytes = LittleLong( ((int *)buf)[1] );
// CM_Load should have given us the vis data to share, so
// we don't need to allocate another copy
if ( tr.externalVisData ) {
s_worldData.vis = tr.externalVisData;
} else {
byte *dest;
dest = ri.Hunk_Alloc( len - 8, h_low );
Com_Memcpy( dest, buf + 8, len - 8 );
s_worldData.vis = dest;
}
}
//===============================================================================
/*
===============
ShaderForShaderNum
===============
*/
static shader_t *ShaderForShaderNum( int shaderNum, int lightmapNum ) {
shader_t *shader;
dshader_t *dsh;
int _shaderNum = LittleLong( shaderNum );
if ( _shaderNum < 0 || _shaderNum >= s_worldData.numShaders ) {
ri.Error( ERR_DROP, "ShaderForShaderNum: bad num %i", _shaderNum );
}
dsh = &s_worldData.shaders[ _shaderNum ];
if ( r_vertexLight->integer || glConfig.hardwareType == GLHW_PERMEDIA2 ) {
lightmapNum = LIGHTMAP_BY_VERTEX;
}
if ( r_fullbright->integer ) {
lightmapNum = LIGHTMAP_WHITEIMAGE;
}
shader = R_FindShader( dsh->shader, lightmapNum, qtrue );
// if the shader had errors, just use default shader
if ( shader->defaultShader ) {
return tr.defaultShader;
}
return shader;
}
/*
===============
ParseFace
===============
*/
static void ParseFace( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf, int *indexes ) {
int i, j;
srfSurfaceFace_t *cv;
srfTriangle_t *tri;
int numVerts, numTriangles, badTriangles;
int realLightmapNum;
realLightmapNum = LittleLong( ds->lightmapNum );
// get fog volume
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
// get shader value
surf->shader = ShaderForShaderNum( ds->shaderNum, FatLightmap(realLightmapNum) );
if ( r_singleShader->integer && !surf->shader->isSky ) {
surf->shader = tr.defaultShader;
}
numVerts = LittleLong(ds->numVerts);
if (numVerts > MAX_FACE_POINTS) {
ri.Printf( PRINT_WARNING, "WARNING: MAX_FACE_POINTS exceeded: %i\n", numVerts);
numVerts = MAX_FACE_POINTS;
surf->shader = tr.defaultShader;
}
numTriangles = LittleLong(ds->numIndexes) / 3;
//cv = ri.Hunk_Alloc(sizeof(*cv), h_low);
cv = (void *)surf->data;
cv->surfaceType = SF_FACE;
cv->numTriangles = numTriangles;
cv->triangles = ri.Hunk_Alloc(numTriangles * sizeof(cv->triangles[0]), h_low);
cv->numVerts = numVerts;
cv->verts = ri.Hunk_Alloc(numVerts * sizeof(cv->verts[0]), h_low);
// copy vertexes
surf->cullinfo.type = CULLINFO_PLANE | CULLINFO_BOX;
ClearBounds(surf->cullinfo.bounds[0], surf->cullinfo.bounds[1]);
verts += LittleLong(ds->firstVert);
for(i = 0; i < numVerts; i++)
{
vec4_t color;
for(j = 0; j < 3; j++)
{
cv->verts[i].xyz[j] = LittleFloat(verts[i].xyz[j]);
cv->verts[i].normal[j] = LittleFloat(verts[i].normal[j]);
}
AddPointToBounds(cv->verts[i].xyz, surf->cullinfo.bounds[0], surf->cullinfo.bounds[1]);
for(j = 0; j < 2; j++)
{
cv->verts[i].st[j] = LittleFloat(verts[i].st[j]);
//cv->verts[i].lightmap[j] = LittleFloat(verts[i].lightmap[j]);
}
cv->verts[i].lightmap[0] = FatPackU(LittleFloat(verts[i].lightmap[0]), realLightmapNum);
cv->verts[i].lightmap[1] = FatPackV(LittleFloat(verts[i].lightmap[1]), realLightmapNum);
if (hdrVertColors)
{
color[0] = hdrVertColors[(ds->firstVert + i) * 3 ];
color[1] = hdrVertColors[(ds->firstVert + i) * 3 + 1];
color[2] = hdrVertColors[(ds->firstVert + i) * 3 + 2];
}
else
{
//hack: convert LDR vertex colors to HDR
if (r_hdr->integer)
{
color[0] = verts[i].color[0] + 1.0f;
color[1] = verts[i].color[1] + 1.0f;
color[2] = verts[i].color[2] + 1.0f;
}
else
{
color[0] = verts[i].color[0];
color[1] = verts[i].color[1];
color[2] = verts[i].color[2];
}
}
color[3] = verts[i].color[3] / 255.0f;
R_ColorShiftLightingFloats( color, cv->verts[i].vertexColors, 1.0f / 255.0f );
}
// copy triangles
badTriangles = 0;
indexes += LittleLong(ds->firstIndex);
for(i = 0, tri = cv->triangles; i < numTriangles; i++, tri++)
{
for(j = 0; j < 3; j++)
{
tri->indexes[j] = LittleLong(indexes[i * 3 + j]);
if(tri->indexes[j] < 0 || tri->indexes[j] >= numVerts)
{
ri.Error(ERR_DROP, "Bad index in face surface");
}
}
if ((tri->indexes[0] == tri->indexes[1]) || (tri->indexes[1] == tri->indexes[2]) || (tri->indexes[0] == tri->indexes[2]))
{
tri--;
badTriangles++;
}
}
if (badTriangles)
{
ri.Printf(PRINT_WARNING, "Face has bad triangles, originally shader %s %d tris %d verts, now %d tris\n", surf->shader->name, numTriangles, numVerts, numTriangles - badTriangles);
cv->numTriangles -= badTriangles;
}
// take the plane information from the lightmap vector
for ( i = 0 ; i < 3 ; i++ ) {
cv->plane.normal[i] = LittleFloat( ds->lightmapVecs[2][i] );
}
cv->plane.dist = DotProduct( cv->verts[0].xyz, cv->plane.normal );
SetPlaneSignbits( &cv->plane );
cv->plane.type = PlaneTypeForNormal( cv->plane.normal );
surf->cullinfo.plane = cv->plane;
surf->data = (surfaceType_t *)cv;
#ifdef USE_VERT_TANGENT_SPACE
// Tr3B - calc tangent spaces
{
srfVert_t *dv[3];
for(i = 0, tri = cv->triangles; i < numTriangles; i++, tri++)
{
dv[0] = &cv->verts[tri->indexes[0]];
dv[1] = &cv->verts[tri->indexes[1]];
dv[2] = &cv->verts[tri->indexes[2]];
R_CalcTangentVectors(dv);
}
}
#endif
}
/*
===============
ParseMesh
===============
*/
static void ParseMesh ( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf ) {
srfGridMesh_t *grid;
int i, j;
int width, height, numPoints;
srfVert_t points[MAX_PATCH_SIZE*MAX_PATCH_SIZE];
vec3_t bounds[2];
vec3_t tmpVec;
static surfaceType_t skipData = SF_SKIP;
int realLightmapNum;
realLightmapNum = LittleLong( ds->lightmapNum );
// get fog volume
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
// get shader value
surf->shader = ShaderForShaderNum( ds->shaderNum, FatLightmap(realLightmapNum) );
if ( r_singleShader->integer && !surf->shader->isSky ) {
surf->shader = tr.defaultShader;
}
// we may have a nodraw surface, because they might still need to
// be around for movement clipping
if ( s_worldData.shaders[ LittleLong( ds->shaderNum ) ].surfaceFlags & SURF_NODRAW ) {
surf->data = &skipData;
return;
}
width = LittleLong( ds->patchWidth );
height = LittleLong( ds->patchHeight );
if(width < 0 || width > MAX_PATCH_SIZE || height < 0 || height > MAX_PATCH_SIZE)
ri.Error(ERR_DROP, "ParseMesh: bad size");
verts += LittleLong( ds->firstVert );
numPoints = width * height;
for(i = 0; i < numPoints; i++)
{
vec4_t color;
for(j = 0; j < 3; j++)
{
points[i].xyz[j] = LittleFloat(verts[i].xyz[j]);
points[i].normal[j] = LittleFloat(verts[i].normal[j]);
}
for(j = 0; j < 2; j++)
{
points[i].st[j] = LittleFloat(verts[i].st[j]);
//points[i].lightmap[j] = LittleFloat(verts[i].lightmap[j]);
}
points[i].lightmap[0] = FatPackU(LittleFloat(verts[i].lightmap[0]), realLightmapNum);
points[i].lightmap[1] = FatPackV(LittleFloat(verts[i].lightmap[1]), realLightmapNum);
if (hdrVertColors)
{
color[0] = hdrVertColors[(ds->firstVert + i) * 3 ];
color[1] = hdrVertColors[(ds->firstVert + i) * 3 + 1];
color[2] = hdrVertColors[(ds->firstVert + i) * 3 + 2];
}
else
{
//hack: convert LDR vertex colors to HDR
if (r_hdr->integer)
{
color[0] = verts[i].color[0] + 1.0f;
color[1] = verts[i].color[1] + 1.0f;
color[2] = verts[i].color[2] + 1.0f;
}
else
{
color[0] = verts[i].color[0];
color[1] = verts[i].color[1];
color[2] = verts[i].color[2];
}
}
color[3] = verts[i].color[3] / 255.0f;
R_ColorShiftLightingFloats( color, points[i].vertexColors, 1.0f / 255.0f );
}
// pre-tesseleate
grid = R_SubdividePatchToGrid( width, height, points );
surf->data = (surfaceType_t *)grid;
// copy the level of detail origin, which is the center
// of the group of all curves that must subdivide the same
// to avoid cracking
for ( i = 0 ; i < 3 ; i++ ) {
bounds[0][i] = LittleFloat( ds->lightmapVecs[0][i] );
bounds[1][i] = LittleFloat( ds->lightmapVecs[1][i] );
}
VectorAdd( bounds[0], bounds[1], bounds[1] );
VectorScale( bounds[1], 0.5f, grid->lodOrigin );
VectorSubtract( bounds[0], grid->lodOrigin, tmpVec );
grid->lodRadius = VectorLength( tmpVec );
}
/*
===============
ParseTriSurf
===============
*/
static void ParseTriSurf( dsurface_t *ds, drawVert_t *verts, float *hdrVertColors, msurface_t *surf, int *indexes ) {
srfTriangles_t *cv;
srfTriangle_t *tri;
int i, j;
int numVerts, numTriangles, badTriangles;
// get fog volume
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
// get shader
surf->shader = ShaderForShaderNum( ds->shaderNum, LIGHTMAP_BY_VERTEX );
if ( r_singleShader->integer && !surf->shader->isSky ) {
surf->shader = tr.defaultShader;
}
numVerts = LittleLong(ds->numVerts);
numTriangles = LittleLong(ds->numIndexes) / 3;
//cv = ri.Hunk_Alloc(sizeof(*cv), h_low);
cv = (void *)surf->data;
cv->surfaceType = SF_TRIANGLES;
cv->numTriangles = numTriangles;
cv->triangles = ri.Hunk_Alloc(numTriangles * sizeof(cv->triangles[0]), h_low);
cv->numVerts = numVerts;
cv->verts = ri.Hunk_Alloc(numVerts * sizeof(cv->verts[0]), h_low);
surf->data = (surfaceType_t *) cv;
// copy vertexes
surf->cullinfo.type = CULLINFO_BOX;
ClearBounds(surf->cullinfo.bounds[0], surf->cullinfo.bounds[1]);
verts += LittleLong(ds->firstVert);
for(i = 0; i < numVerts; i++)
{
vec4_t color;
for(j = 0; j < 3; j++)
{
cv->verts[i].xyz[j] = LittleFloat(verts[i].xyz[j]);
cv->verts[i].normal[j] = LittleFloat(verts[i].normal[j]);
}
AddPointToBounds( cv->verts[i].xyz, surf->cullinfo.bounds[0], surf->cullinfo.bounds[1] );
for(j = 0; j < 2; j++)
{
cv->verts[i].st[j] = LittleFloat(verts[i].st[j]);
cv->verts[i].lightmap[j] = LittleFloat(verts[i].lightmap[j]);
}
if (hdrVertColors)
{
color[0] = hdrVertColors[(ds->firstVert + i) * 3 ];
color[1] = hdrVertColors[(ds->firstVert + i) * 3 + 1];
color[2] = hdrVertColors[(ds->firstVert + i) * 3 + 2];
}
else
{
//hack: convert LDR vertex colors to HDR
if (r_hdr->integer)
{
color[0] = verts[i].color[0] + 1.0f;
color[1] = verts[i].color[1] + 1.0f;
color[2] = verts[i].color[2] + 1.0f;
}
else
{
color[0] = verts[i].color[0];
color[1] = verts[i].color[1];
color[2] = verts[i].color[2];
}
}
color[3] = verts[i].color[3] / 255.0f;
R_ColorShiftLightingFloats( color, cv->verts[i].vertexColors, 1.0f / 255.0f );
}
// copy triangles
badTriangles = 0;
indexes += LittleLong(ds->firstIndex);
for(i = 0, tri = cv->triangles; i < numTriangles; i++, tri++)
{
for(j = 0; j < 3; j++)
{
tri->indexes[j] = LittleLong(indexes[i * 3 + j]);
if(tri->indexes[j] < 0 || tri->indexes[j] >= numVerts)
{
ri.Error(ERR_DROP, "Bad index in face surface");
}
}
if ((tri->indexes[0] == tri->indexes[1]) || (tri->indexes[1] == tri->indexes[2]) || (tri->indexes[0] == tri->indexes[2]))
{
tri--;
badTriangles++;
}
}
if (badTriangles)
{
ri.Printf(PRINT_WARNING, "Trisurf has bad triangles, originally shader %s %d tris %d verts, now %d tris\n", surf->shader->name, numTriangles, numVerts, numTriangles - badTriangles);
cv->numTriangles -= badTriangles;
}
#ifdef USE_VERT_TANGENT_SPACE
// Tr3B - calc tangent spaces
{
srfVert_t *dv[3];
for(i = 0, tri = cv->triangles; i < numTriangles; i++, tri++)
{
dv[0] = &cv->verts[tri->indexes[0]];
dv[1] = &cv->verts[tri->indexes[1]];
dv[2] = &cv->verts[tri->indexes[2]];
R_CalcTangentVectors(dv);
}
}
#endif
}
/*
===============
ParseFlare
===============
*/
static void ParseFlare( dsurface_t *ds, drawVert_t *verts, msurface_t *surf, int *indexes ) {
srfFlare_t *flare;
int i;
// get fog volume
surf->fogIndex = LittleLong( ds->fogNum ) + 1;
// get shader
surf->shader = ShaderForShaderNum( ds->shaderNum, LIGHTMAP_BY_VERTEX );
if ( r_singleShader->integer && !surf->shader->isSky ) {
surf->shader = tr.defaultShader;
}
//flare = ri.Hunk_Alloc( sizeof( *flare ), h_low );
flare = (void *)surf->data;
flare->surfaceType = SF_FLARE;
surf->data = (surfaceType_t *)flare;
for ( i = 0 ; i < 3 ; i++ ) {
flare->origin[i] = LittleFloat( ds->lightmapOrigin[i] );
flare->color[i] = LittleFloat( ds->lightmapVecs[0][i] );
flare->normal[i] = LittleFloat( ds->lightmapVecs[2][i] );
}
}
/*
=================
R_MergedWidthPoints
returns true if there are grid points merged on a width edge
=================
*/
int R_MergedWidthPoints(srfGridMesh_t *grid, int offset) {
int i, j;
for (i = 1; i < grid->width-1; i++) {
for (j = i + 1; j < grid->width-1; j++) {
if ( fabs(grid->verts[i + offset].xyz[0] - grid->verts[j + offset].xyz[0]) > .1) continue;
if ( fabs(grid->verts[i + offset].xyz[1] - grid->verts[j + offset].xyz[1]) > .1) continue;
if ( fabs(grid->verts[i + offset].xyz[2] - grid->verts[j + offset].xyz[2]) > .1) continue;
return qtrue;
}
}
return qfalse;
}
/*
=================
R_MergedHeightPoints
returns true if there are grid points merged on a height edge
=================
*/
int R_MergedHeightPoints(srfGridMesh_t *grid, int offset) {
int i, j;
for (i = 1; i < grid->height-1; i++) {
for (j = i + 1; j < grid->height-1; j++) {
if ( fabs(grid->verts[grid->width * i + offset].xyz[0] - grid->verts[grid->width * j + offset].xyz[0]) > .1) continue;
if ( fabs(grid->verts[grid->width * i + offset].xyz[1] - grid->verts[grid->width * j + offset].xyz[1]) > .1) continue;
if ( fabs(grid->verts[grid->width * i + offset].xyz[2] - grid->verts[grid->width * j + offset].xyz[2]) > .1) continue;
return qtrue;
}
}
return qfalse;
}
/*
=================
R_FixSharedVertexLodError_r
NOTE: never sync LoD through grid edges with merged points!
FIXME: write generalized version that also avoids cracks between a patch and one that meets half way?
=================
*/
void R_FixSharedVertexLodError_r( int start, srfGridMesh_t *grid1 ) {
int j, k, l, m, n, offset1, offset2, touch;
srfGridMesh_t *grid2;
for ( j = start; j < s_worldData.numsurfaces; j++ ) {
//
grid2 = (srfGridMesh_t *) s_worldData.surfaces[j].data;
// if this surface is not a grid
if ( grid2->surfaceType != SF_GRID ) continue;
// if the LOD errors are already fixed for this patch
if ( grid2->lodFixed == 2 ) continue;
// grids in the same LOD group should have the exact same lod radius
if ( grid1->lodRadius != grid2->lodRadius ) continue;
// grids in the same LOD group should have the exact same lod origin
if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue;
if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue;
if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue;
//
touch = qfalse;
for (n = 0; n < 2; n++) {
//
if (n) offset1 = (grid1->height-1) * grid1->width;
else offset1 = 0;
if (R_MergedWidthPoints(grid1, offset1)) continue;
for (k = 1; k < grid1->width-1; k++) {
for (m = 0; m < 2; m++) {
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
if (R_MergedWidthPoints(grid2, offset2)) continue;
for ( l = 1; l < grid2->width-1; l++) {
//
if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue;
if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue;
if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue;
// ok the points are equal and should have the same lod error
grid2->widthLodError[l] = grid1->widthLodError[k];
touch = qtrue;
}
}
for (m = 0; m < 2; m++) {
if (m) offset2 = grid2->width-1;
else offset2 = 0;
if (R_MergedHeightPoints(grid2, offset2)) continue;
for ( l = 1; l < grid2->height-1; l++) {
//
if ( fabs(grid1->verts[k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue;
if ( fabs(grid1->verts[k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue;
if ( fabs(grid1->verts[k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue;
// ok the points are equal and should have the same lod error
grid2->heightLodError[l] = grid1->widthLodError[k];
touch = qtrue;
}
}
}
}
for (n = 0; n < 2; n++) {
//
if (n) offset1 = grid1->width-1;
else offset1 = 0;
if (R_MergedHeightPoints(grid1, offset1)) continue;
for (k = 1; k < grid1->height-1; k++) {
for (m = 0; m < 2; m++) {
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
if (R_MergedWidthPoints(grid2, offset2)) continue;
for ( l = 1; l < grid2->width-1; l++) {
//
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[l + offset2].xyz[0]) > .1) continue;
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[l + offset2].xyz[1]) > .1) continue;
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[l + offset2].xyz[2]) > .1) continue;
// ok the points are equal and should have the same lod error
grid2->widthLodError[l] = grid1->heightLodError[k];
touch = qtrue;
}
}
for (m = 0; m < 2; m++) {
if (m) offset2 = grid2->width-1;
else offset2 = 0;
if (R_MergedHeightPoints(grid2, offset2)) continue;
for ( l = 1; l < grid2->height-1; l++) {
//
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[0] - grid2->verts[grid2->width * l + offset2].xyz[0]) > .1) continue;
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[1] - grid2->verts[grid2->width * l + offset2].xyz[1]) > .1) continue;
if ( fabs(grid1->verts[grid1->width * k + offset1].xyz[2] - grid2->verts[grid2->width * l + offset2].xyz[2]) > .1) continue;
// ok the points are equal and should have the same lod error
grid2->heightLodError[l] = grid1->heightLodError[k];
touch = qtrue;
}
}
}
}
if (touch) {
grid2->lodFixed = 2;
R_FixSharedVertexLodError_r ( start, grid2 );
//NOTE: this would be correct but makes things really slow
//grid2->lodFixed = 1;
}
}
}
/*
=================
R_FixSharedVertexLodError
This function assumes that all patches in one group are nicely stitched together for the highest LoD.
If this is not the case this function will still do its job but won't fix the highest LoD cracks.
=================
*/
void R_FixSharedVertexLodError( void ) {
int i;
srfGridMesh_t *grid1;
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
//
grid1 = (srfGridMesh_t *) s_worldData.surfaces[i].data;
// if this surface is not a grid
if ( grid1->surfaceType != SF_GRID )
continue;
//
if ( grid1->lodFixed )
continue;
//
grid1->lodFixed = 2;
// recursively fix other patches in the same LOD group
R_FixSharedVertexLodError_r( i + 1, grid1);
}
}
/*
===============
R_StitchPatches
===============
*/
int R_StitchPatches( int grid1num, int grid2num ) {
float *v1, *v2;
srfGridMesh_t *grid1, *grid2;
int k, l, m, n, offset1, offset2, row, column;
grid1 = (srfGridMesh_t *) s_worldData.surfaces[grid1num].data;
grid2 = (srfGridMesh_t *) s_worldData.surfaces[grid2num].data;
for (n = 0; n < 2; n++) {
//
if (n) offset1 = (grid1->height-1) * grid1->width;
else offset1 = 0;
if (R_MergedWidthPoints(grid1, offset1))
continue;
for (k = 0; k < grid1->width-2; k += 2) {
for (m = 0; m < 2; m++) {
if ( grid2->width >= MAX_GRID_SIZE )
break;
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
for ( l = 0; l < grid2->width-1; l++) {
//
v1 = grid1->verts[k + offset1].xyz;
v2 = grid2->verts[l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[k + 2 + offset1].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[l + offset2].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert column into grid2 right after after column l
if (m) row = grid2->height-1;
else row = 0;
grid2 = R_GridInsertColumn( grid2, l+1, row,
grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
for (m = 0; m < 2; m++) {
if (grid2->height >= MAX_GRID_SIZE)
break;
if (m) offset2 = grid2->width-1;
else offset2 = 0;
for ( l = 0; l < grid2->height-1; l++) {
//
v1 = grid1->verts[k + offset1].xyz;
v2 = grid2->verts[grid2->width * l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[k + 2 + offset1].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[grid2->width * l + offset2].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert row into grid2 right after after row l
if (m) column = grid2->width-1;
else column = 0;
grid2 = R_GridInsertRow( grid2, l+1, column,
grid1->verts[k + 1 + offset1].xyz, grid1->widthLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
}
}
for (n = 0; n < 2; n++) {
//
if (n) offset1 = grid1->width-1;
else offset1 = 0;
if (R_MergedHeightPoints(grid1, offset1))
continue;
for (k = 0; k < grid1->height-2; k += 2) {
for (m = 0; m < 2; m++) {
if ( grid2->width >= MAX_GRID_SIZE )
break;
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
for ( l = 0; l < grid2->width-1; l++) {
//
v1 = grid1->verts[grid1->width * k + offset1].xyz;
v2 = grid2->verts[l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[l + offset2].xyz;
v2 = grid2->verts[(l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert column into grid2 right after after column l
if (m) row = grid2->height-1;
else row = 0;
grid2 = R_GridInsertColumn( grid2, l+1, row,
grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
for (m = 0; m < 2; m++) {
if (grid2->height >= MAX_GRID_SIZE)
break;
if (m) offset2 = grid2->width-1;
else offset2 = 0;
for ( l = 0; l < grid2->height-1; l++) {
//
v1 = grid1->verts[grid1->width * k + offset1].xyz;
v2 = grid2->verts[grid2->width * l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[grid1->width * (k + 2) + offset1].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[grid2->width * l + offset2].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert row into grid2 right after after row l
if (m) column = grid2->width-1;
else column = 0;
grid2 = R_GridInsertRow( grid2, l+1, column,
grid1->verts[grid1->width * (k + 1) + offset1].xyz, grid1->heightLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
}
}
for (n = 0; n < 2; n++) {
//
if (n) offset1 = (grid1->height-1) * grid1->width;
else offset1 = 0;
if (R_MergedWidthPoints(grid1, offset1))
continue;
for (k = grid1->width-1; k > 1; k -= 2) {
for (m = 0; m < 2; m++) {
if ( grid2->width >= MAX_GRID_SIZE )
break;
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
for ( l = 0; l < grid2->width-1; l++) {
//
v1 = grid1->verts[k + offset1].xyz;
v2 = grid2->verts[l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[k - 2 + offset1].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[l + offset2].xyz;
v2 = grid2->verts[(l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert column into grid2 right after after column l
if (m) row = grid2->height-1;
else row = 0;
grid2 = R_GridInsertColumn( grid2, l+1, row,
grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
for (m = 0; m < 2; m++) {
if (grid2->height >= MAX_GRID_SIZE)
break;
if (m) offset2 = grid2->width-1;
else offset2 = 0;
for ( l = 0; l < grid2->height-1; l++) {
//
v1 = grid1->verts[k + offset1].xyz;
v2 = grid2->verts[grid2->width * l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[k - 2 + offset1].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[grid2->width * l + offset2].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert row into grid2 right after after row l
if (m) column = grid2->width-1;
else column = 0;
grid2 = R_GridInsertRow( grid2, l+1, column,
grid1->verts[k - 1 + offset1].xyz, grid1->widthLodError[k+1]);
if (!grid2)
break;
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
}
}
for (n = 0; n < 2; n++) {
//
if (n) offset1 = grid1->width-1;
else offset1 = 0;
if (R_MergedHeightPoints(grid1, offset1))
continue;
for (k = grid1->height-1; k > 1; k -= 2) {
for (m = 0; m < 2; m++) {
if ( grid2->width >= MAX_GRID_SIZE )
break;
if (m) offset2 = (grid2->height-1) * grid2->width;
else offset2 = 0;
for ( l = 0; l < grid2->width-1; l++) {
//
v1 = grid1->verts[grid1->width * k + offset1].xyz;
v2 = grid2->verts[l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz;
v2 = grid2->verts[l + 1 + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[l + offset2].xyz;
v2 = grid2->verts[(l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert column into grid2 right after after column l
if (m) row = grid2->height-1;
else row = 0;
grid2 = R_GridInsertColumn( grid2, l+1, row,
grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
for (m = 0; m < 2; m++) {
if (grid2->height >= MAX_GRID_SIZE)
break;
if (m) offset2 = grid2->width-1;
else offset2 = 0;
for ( l = 0; l < grid2->height-1; l++) {
//
v1 = grid1->verts[grid1->width * k + offset1].xyz;
v2 = grid2->verts[grid2->width * l + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
v1 = grid1->verts[grid1->width * (k - 2) + offset1].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) > .1)
continue;
if ( fabs(v1[1] - v2[1]) > .1)
continue;
if ( fabs(v1[2] - v2[2]) > .1)
continue;
//
v1 = grid2->verts[grid2->width * l + offset2].xyz;
v2 = grid2->verts[grid2->width * (l + 1) + offset2].xyz;
if ( fabs(v1[0] - v2[0]) < .01 &&
fabs(v1[1] - v2[1]) < .01 &&
fabs(v1[2] - v2[2]) < .01)
continue;
//
//ri.Printf( PRINT_ALL, "found highest LoD crack between two patches\n" );
// insert row into grid2 right after after row l
if (m) column = grid2->width-1;
else column = 0;
grid2 = R_GridInsertRow( grid2, l+1, column,
grid1->verts[grid1->width * (k - 1) + offset1].xyz, grid1->heightLodError[k+1]);
grid2->lodStitched = qfalse;
s_worldData.surfaces[grid2num].data = (void *) grid2;
return qtrue;
}
}
}
}
return qfalse;
}
/*
===============
R_TryStitchPatch
This function will try to stitch patches in the same LoD group together for the highest LoD.
Only single missing vertice cracks will be fixed.
Vertices will be joined at the patch side a crack is first found, at the other side
of the patch (on the same row or column) the vertices will not be joined and cracks
might still appear at that side.
===============
*/
int R_TryStitchingPatch( int grid1num ) {
int j, numstitches;
srfGridMesh_t *grid1, *grid2;
numstitches = 0;
grid1 = (srfGridMesh_t *) s_worldData.surfaces[grid1num].data;
for ( j = 0; j < s_worldData.numsurfaces; j++ ) {
//
grid2 = (srfGridMesh_t *) s_worldData.surfaces[j].data;
// if this surface is not a grid
if ( grid2->surfaceType != SF_GRID ) continue;
// grids in the same LOD group should have the exact same lod radius
if ( grid1->lodRadius != grid2->lodRadius ) continue;
// grids in the same LOD group should have the exact same lod origin
if ( grid1->lodOrigin[0] != grid2->lodOrigin[0] ) continue;
if ( grid1->lodOrigin[1] != grid2->lodOrigin[1] ) continue;
if ( grid1->lodOrigin[2] != grid2->lodOrigin[2] ) continue;
//
while (R_StitchPatches(grid1num, j))
{
numstitches++;
}
}
return numstitches;
}
/*
===============
R_StitchAllPatches
===============
*/
void R_StitchAllPatches( void ) {
int i, stitched, numstitches;
srfGridMesh_t *grid1;
numstitches = 0;
do
{
stitched = qfalse;
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
//
grid1 = (srfGridMesh_t *) s_worldData.surfaces[i].data;
// if this surface is not a grid
if ( grid1->surfaceType != SF_GRID )
continue;
//
if ( grid1->lodStitched )
continue;
//
grid1->lodStitched = qtrue;
stitched = qtrue;
//
numstitches += R_TryStitchingPatch( i );
}
}
while (stitched);
ri.Printf( PRINT_ALL, "stitched %d LoD cracks\n", numstitches );
}
/*
===============
R_MovePatchSurfacesToHunk
===============
*/
void R_MovePatchSurfacesToHunk(void) {
int i, size;
srfGridMesh_t *grid, *hunkgrid;
for ( i = 0; i < s_worldData.numsurfaces; i++ ) {
//
grid = (srfGridMesh_t *) s_worldData.surfaces[i].data;
// if this surface is not a grid
if ( grid->surfaceType != SF_GRID )
continue;
//
size = sizeof(*grid);
hunkgrid = ri.Hunk_Alloc(size, h_low);
Com_Memcpy(hunkgrid, grid, size);
hunkgrid->widthLodError = ri.Hunk_Alloc( grid->width * 4, h_low );
Com_Memcpy( hunkgrid->widthLodError, grid->widthLodError, grid->width * 4 );
hunkgrid->heightLodError = ri.Hunk_Alloc( grid->height * 4, h_low );
Com_Memcpy( hunkgrid->heightLodError, grid->heightLodError, grid->height * 4 );
hunkgrid->numTriangles = grid->numTriangles;
hunkgrid->triangles = ri.Hunk_Alloc(grid->numTriangles * sizeof(srfTriangle_t), h_low);
Com_Memcpy(hunkgrid->triangles, grid->triangles, grid->numTriangles * sizeof(srfTriangle_t));
hunkgrid->numVerts = grid->numVerts;
hunkgrid->verts = ri.Hunk_Alloc(grid->numVerts * sizeof(srfVert_t), h_low);
Com_Memcpy(hunkgrid->verts, grid->verts, grid->numVerts * sizeof(srfVert_t));
R_FreeSurfaceGridMesh( grid );
s_worldData.surfaces[i].data = (void *) hunkgrid;
}
}
/*
=================
BSPSurfaceCompare
compare function for qsort()
=================
*/
static int BSPSurfaceCompare(const void *a, const void *b)
{
msurface_t *aa, *bb;
aa = *(msurface_t **) a;
bb = *(msurface_t **) b;
// shader first
if(aa->shader->sortedIndex < bb->shader->sortedIndex)
return -1;
else if(aa->shader->sortedIndex > bb->shader->sortedIndex)
return 1;
// by fogIndex
if(aa->fogIndex < bb->fogIndex)
return -1;
else if(aa->fogIndex > bb->fogIndex)
return 1;
return 0;
}
static void CopyVert(const srfVert_t * in, srfVert_t * out)
{
int j;
for(j = 0; j < 3; j++)
{
out->xyz[j] = in->xyz[j];
#ifdef USE_VERT_TANGENT_SPACE
out->tangent[j] = in->tangent[j];
out->bitangent[j] = in->bitangent[j];
#endif
out->normal[j] = in->normal[j];
out->lightdir[j] = in->lightdir[j];
}
for(j = 0; j < 2; j++)
{
out->st[j] = in->st[j];
out->lightmap[j] = in->lightmap[j];
}
for(j = 0; j < 4; j++)
{
out->vertexColors[j] = in->vertexColors[j];
}
}
/*
===============
R_CreateWorldVBO
===============
*/
static void R_CreateWorldVBO(void)
{
int i, j, k;
int numVerts;
srfVert_t *verts;
int numTriangles;
srfTriangle_t *triangles;
int numSurfaces;
msurface_t *surface;
msurface_t **surfacesSorted;
int startTime, endTime;
startTime = ri.Milliseconds();
numVerts = 0;
numTriangles = 0;
numSurfaces = 0;
for(k = 0, surface = &s_worldData.surfaces[0]; k < s_worldData.numsurfaces /* s_worldData.numWorldSurfaces */; k++, surface++)
{
if(*surface->data == SF_FACE)
{
srfSurfaceFace_t *face = (srfSurfaceFace_t *) surface->data;
if(face->numVerts)
numVerts += face->numVerts;
if(face->numTriangles)
numTriangles += face->numTriangles;
numSurfaces++;
}
else if(*surface->data == SF_GRID)
{
srfGridMesh_t *grid = (srfGridMesh_t *) surface->data;
if(grid->numVerts)
numVerts += grid->numVerts;
if(grid->numTriangles)
numTriangles += grid->numTriangles;
numSurfaces++;
}
else if(*surface->data == SF_TRIANGLES)
{
srfTriangles_t *tri = (srfTriangles_t *) surface->data;
if(tri->numVerts)
numVerts += tri->numVerts;
if(tri->numTriangles)
numTriangles += tri->numTriangles;
numSurfaces++;
}
}
if(!numVerts || !numTriangles)
return;
ri.Printf(PRINT_ALL, "...calculating world VBO ( %i verts %i tris )\n", numVerts, numTriangles);
// create arrays
verts = ri.Hunk_AllocateTempMemory(numVerts * sizeof(srfVert_t));
triangles = ri.Hunk_AllocateTempMemory(numTriangles * sizeof(srfTriangle_t));
// presort surfaces
surfacesSorted = ri.Malloc(numSurfaces * sizeof(*surfacesSorted));
j = 0;
for(k = 0, surface = &s_worldData.surfaces[0]; k < s_worldData.numsurfaces; k++, surface++)
{
if(*surface->data == SF_FACE || *surface->data == SF_GRID || *surface->data == SF_TRIANGLES)
{
surfacesSorted[j++] = surface;
}
}
qsort(surfacesSorted, numSurfaces, sizeof(*surfacesSorted), BSPSurfaceCompare);
// set up triangle indices
numVerts = 0;
numTriangles = 0;
for(k = 0, surface = surfacesSorted[k]; k < numSurfaces; k++, surface = surfacesSorted[k])
{
if(*surface->data == SF_FACE)
{
srfSurfaceFace_t *srf = (srfSurfaceFace_t *) surface->data;
srf->firstIndex = numTriangles * 3;
if(srf->numTriangles)
{
srfTriangle_t *tri;
for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++)
{
for(j = 0; j < 3; j++)
{
triangles[numTriangles + i].indexes[j] = numVerts + tri->indexes[j];
}
}
numTriangles += srf->numTriangles;
}
if(srf->numVerts)
numVerts += srf->numVerts;
}
else if(*surface->data == SF_GRID)
{
srfGridMesh_t *srf = (srfGridMesh_t *) surface->data;
srf->firstIndex = numTriangles * 3;
if(srf->numTriangles)
{
srfTriangle_t *tri;
for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++)
{
for(j = 0; j < 3; j++)
{
triangles[numTriangles + i].indexes[j] = numVerts + tri->indexes[j];
}
}
numTriangles += srf->numTriangles;
}
if(srf->numVerts)
numVerts += srf->numVerts;
}
else if(*surface->data == SF_TRIANGLES)
{
srfTriangles_t *srf = (srfTriangles_t *) surface->data;
srf->firstIndex = numTriangles * 3;
if(srf->numTriangles)
{
srfTriangle_t *tri;
for(i = 0, tri = srf->triangles; i < srf->numTriangles; i++, tri++)
{
for(j = 0; j < 3; j++)
{
triangles[numTriangles + i].indexes[j] = numVerts + tri->indexes[j];
}
}
numTriangles += srf->numTriangles;
}
if(srf->numVerts)
numVerts += srf->numVerts;
}
}
// build vertices
numVerts = 0;
for(k = 0, surface = surfacesSorted[k]; k < numSurfaces; k++, surface = surfacesSorted[k])
{
if(*surface->data == SF_FACE)
{
srfSurfaceFace_t *srf = (srfSurfaceFace_t *) surface->data;
srf->firstVert = numVerts;
if(srf->numVerts)
{
for(i = 0; i < srf->numVerts; i++)
{
CopyVert(&srf->verts[i], &verts[numVerts + i]);
}
numVerts += srf->numVerts;
}
}
else if(*surface->data == SF_GRID)
{
srfGridMesh_t *srf = (srfGridMesh_t *) surface->data;
srf->firstVert = numVerts;
if(srf->numVerts)
{
for(i = 0; i < srf->numVerts; i++)
{
CopyVert(&srf->verts[i], &verts[numVerts + i]);
}
numVerts += srf->numVerts;
}
}
else if(*surface->data == SF_TRIANGLES)
{
srfTriangles_t *srf = (srfTriangles_t *) surface->data;
srf->firstVert = numVerts;
if(srf->numVerts)
{
for(i = 0; i < srf->numVerts; i++)
{
CopyVert(&srf->verts[i], &verts[numVerts + i]);
}
numVerts += srf->numVerts;
}
}
}
#ifdef USE_VERT_TANGENT_SPACE
s_worldData.vbo = R_CreateVBO2(va("staticBspModel0_VBO %i", 0), numVerts, verts,
ATTR_POSITION | ATTR_TEXCOORD | ATTR_LIGHTCOORD | ATTR_TANGENT | ATTR_BITANGENT |
ATTR_NORMAL | ATTR_COLOR | ATTR_LIGHTDIRECTION, VBO_USAGE_STATIC);
#else
s_worldData.vbo = R_CreateVBO2(va("staticBspModel0_VBO %i", 0), numVerts, verts,
ATTR_POSITION | ATTR_TEXCOORD | ATTR_LIGHTCOORD |
ATTR_NORMAL | ATTR_COLOR | ATTR_LIGHTDIRECTION, VBO_USAGE_STATIC);
#endif
s_worldData.ibo = R_CreateIBO2(va("staticBspModel0_IBO %i", 0), numTriangles, triangles, VBO_USAGE_STATIC);
endTime = ri.Milliseconds();
ri.Printf(PRINT_ALL, "world VBO calculation time = %5.2f seconds\n", (endTime - startTime) / 1000.0);
// point triangle surfaces to world VBO
for(k = 0, surface = surfacesSorted[k]; k < numSurfaces; k++, surface = surfacesSorted[k])
{
if(*surface->data == SF_FACE)
{
srfSurfaceFace_t *srf = (srfSurfaceFace_t *) surface->data;
if( srf->numVerts && srf->numTriangles)
{
srf->vbo = s_worldData.vbo;
srf->ibo = s_worldData.ibo;
}
}
else if(*surface->data == SF_GRID)
{
srfGridMesh_t *srf = (srfGridMesh_t *) surface->data;
if( srf->numVerts && srf->numTriangles)
{
srf->vbo = s_worldData.vbo;
srf->ibo = s_worldData.ibo;
}
}
else if(*surface->data == SF_TRIANGLES)
{
srfTriangles_t *srf = (srfTriangles_t *) surface->data;
if( srf->numVerts && srf->numTriangles)
{
srf->vbo = s_worldData.vbo;
srf->ibo = s_worldData.ibo;
}
}
}
startTime = ri.Milliseconds();
ri.Free(surfacesSorted);
ri.Hunk_FreeTempMemory(triangles);
ri.Hunk_FreeTempMemory(verts);
}
/*
===============
R_LoadSurfaces
===============
*/
static void R_LoadSurfaces( lump_t *surfs, lump_t *verts, lump_t *indexLump ) {
dsurface_t *in;
msurface_t *out;
drawVert_t *dv;
int *indexes;
int count;
int numFaces, numMeshes, numTriSurfs, numFlares;
int i;
float *hdrVertColors = NULL;
numFaces = 0;
numMeshes = 0;
numTriSurfs = 0;
numFlares = 0;
in = (void *)(fileBase + surfs->fileofs);
if (surfs->filelen % sizeof(*in))
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
count = surfs->filelen / sizeof(*in);
dv = (void *)(fileBase + verts->fileofs);
if (verts->filelen % sizeof(*dv))
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
indexes = (void *)(fileBase + indexLump->fileofs);
if ( indexLump->filelen % sizeof(*indexes))
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
out = ri.Hunk_Alloc ( count * sizeof(*out), h_low );
s_worldData.surfaces = out;
s_worldData.numsurfaces = count;
s_worldData.surfacesViewCount = ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesViewCount), h_low );
s_worldData.surfacesDlightBits = ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesDlightBits), h_low );
s_worldData.surfacesPshadowBits = ri.Hunk_Alloc ( count * sizeof(*s_worldData.surfacesPshadowBits), h_low );
// load hdr vertex colors
if (r_hdr->integer)
{
char filename[MAX_QPATH];
int size;
Com_sprintf( filename, sizeof( filename ), "maps/%s/vertlight.raw", s_worldData.baseName);
//ri.Printf(PRINT_ALL, "looking for %s\n", filename);
size = ri.FS_ReadFile(filename, (void **)&hdrVertColors);
if (hdrVertColors)
{
//ri.Printf(PRINT_ALL, "Found!\n");
if (size != sizeof(float) * 3 * (verts->filelen / sizeof(*dv)))
ri.Error(ERR_DROP, "Bad size for %s (%i, expected %i)!\n", filename, size, (int)(sizeof(float)) * 3 * (verts->filelen / sizeof(*dv)));
}
}
// Two passes, allocate surfaces first, then load them full of data
// This ensures surfaces are close together to reduce L2 cache misses when using VBOs,
// which don't actually use the verts and tris
in = (void *)(fileBase + surfs->fileofs);
out = s_worldData.surfaces;
for ( i = 0 ; i < count ; i++, in++, out++ ) {
switch ( LittleLong( in->surfaceType ) ) {
case MST_PATCH:
// FIXME: do this
break;
case MST_TRIANGLE_SOUP:
out->data = ri.Hunk_Alloc( sizeof(srfTriangles_t), h_low);
break;
case MST_PLANAR:
out->data = ri.Hunk_Alloc( sizeof(srfSurfaceFace_t), h_low);
break;
case MST_FLARE:
out->data = ri.Hunk_Alloc( sizeof(srfFlare_t), h_low);
break;
default:
break;
}
}
in = (void *)(fileBase + surfs->fileofs);
out = s_worldData.surfaces;
for ( i = 0 ; i < count ; i++, in++, out++ ) {
switch ( LittleLong( in->surfaceType ) ) {
case MST_PATCH:
ParseMesh ( in, dv, hdrVertColors, out );
{
srfGridMesh_t *surface = (srfGridMesh_t *)out->data;
out->cullinfo.type = CULLINFO_BOX | CULLINFO_SPHERE;
VectorCopy(surface->meshBounds[0], out->cullinfo.bounds[0]);
VectorCopy(surface->meshBounds[1], out->cullinfo.bounds[1]);
VectorCopy(surface->localOrigin, out->cullinfo.localOrigin);
out->cullinfo.radius = surface->meshRadius;
}
numMeshes++;
break;
case MST_TRIANGLE_SOUP:
ParseTriSurf( in, dv, hdrVertColors, out, indexes );
numTriSurfs++;
break;
case MST_PLANAR:
ParseFace( in, dv, hdrVertColors, out, indexes );
numFaces++;
break;
case MST_FLARE:
ParseFlare( in, dv, out, indexes );
{
out->cullinfo.type = CULLINFO_NONE;
}
numFlares++;
break;
default:
ri.Error( ERR_DROP, "Bad surfaceType" );
}
}
if (hdrVertColors)
{
ri.FS_FreeFile(hdrVertColors);
}
#ifdef PATCH_STITCHING
R_StitchAllPatches();
#endif
R_FixSharedVertexLodError();
#ifdef PATCH_STITCHING
R_MovePatchSurfacesToHunk();
#endif
ri.Printf( PRINT_ALL, "...loaded %d faces, %i meshes, %i trisurfs, %i flares\n",
numFaces, numMeshes, numTriSurfs, numFlares );
}
/*
=================
R_LoadSubmodels
=================
*/
static void R_LoadSubmodels( lump_t *l ) {
dmodel_t *in;
bmodel_t *out;
int i, j, count;
in = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*in))
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
count = l->filelen / sizeof(*in);
s_worldData.numBModels = count;
s_worldData.bmodels = out = ri.Hunk_Alloc( count * sizeof(*out), h_low );
for ( i=0 ; i<count ; i++, in++, out++ ) {
model_t *model;
model = R_AllocModel();
assert( model != NULL ); // this should never happen
if ( model == NULL ) {
ri.Error(ERR_DROP, "R_LoadSubmodels: R_AllocModel() failed");
}
model->type = MOD_BRUSH;
model->bmodel = out;
Com_sprintf( model->name, sizeof( model->name ), "*%d", i );
for (j=0 ; j<3 ; j++) {
out->bounds[0][j] = LittleFloat (in->mins[j]);
out->bounds[1][j] = LittleFloat (in->maxs[j]);
}
out->firstSurface = LittleLong( in->firstSurface );
out->numSurfaces = LittleLong( in->numSurfaces );
if(i == 0)
{
// Tr3B: add this for limiting VBO surface creation
s_worldData.numWorldSurfaces = out->numSurfaces;
}
}
}
//==================================================================
/*
=================
R_SetParent
=================
*/
static void R_SetParent (mnode_t *node, mnode_t *parent)
{
node->parent = parent;
if (node->contents != -1)
return;
R_SetParent (node->children[0], node);
R_SetParent (node->children[1], node);
}
/*
=================
R_LoadNodesAndLeafs
=================
*/
static void R_LoadNodesAndLeafs (lump_t *nodeLump, lump_t *leafLump) {
int i, j, p;
dnode_t *in;
dleaf_t *inLeaf;
mnode_t *out;
int numNodes, numLeafs;
in = (void *)(fileBase + nodeLump->fileofs);
if (nodeLump->filelen % sizeof(dnode_t) ||
leafLump->filelen % sizeof(dleaf_t) ) {
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
}
numNodes = nodeLump->filelen / sizeof(dnode_t);
numLeafs = leafLump->filelen / sizeof(dleaf_t);
out = ri.Hunk_Alloc ( (numNodes + numLeafs) * sizeof(*out), h_low);
s_worldData.nodes = out;
s_worldData.numnodes = numNodes + numLeafs;
s_worldData.numDecisionNodes = numNodes;
// load nodes
for ( i=0 ; i<numNodes; i++, in++, out++)
{
for (j=0 ; j<3 ; j++)
{
out->mins[j] = LittleLong (in->mins[j]);
out->maxs[j] = LittleLong (in->maxs[j]);
}
p = LittleLong(in->planeNum);
out->plane = s_worldData.planes + p;
out->contents = CONTENTS_NODE; // differentiate from leafs
for (j=0 ; j<2 ; j++)
{
p = LittleLong (in->children[j]);
if (p >= 0)
out->children[j] = s_worldData.nodes + p;
else
out->children[j] = s_worldData.nodes + numNodes + (-1 - p);
}
}
// load leafs
inLeaf = (void *)(fileBase + leafLump->fileofs);
for ( i=0 ; i<numLeafs ; i++, inLeaf++, out++)
{
for (j=0 ; j<3 ; j++)
{
out->mins[j] = LittleLong (inLeaf->mins[j]);
out->maxs[j] = LittleLong (inLeaf->maxs[j]);
}
out->cluster = LittleLong(inLeaf->cluster);
out->area = LittleLong(inLeaf->area);
if ( out->cluster >= s_worldData.numClusters ) {
s_worldData.numClusters = out->cluster + 1;
}
out->firstmarksurface = LittleLong(inLeaf->firstLeafSurface);
out->nummarksurfaces = LittleLong(inLeaf->numLeafSurfaces);
}
// chain decendants
R_SetParent (s_worldData.nodes, NULL);
}
//=============================================================================
/*
=================
R_LoadShaders
=================
*/
static void R_LoadShaders( lump_t *l ) {
int i, count;
dshader_t *in, *out;
in = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*in))
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
count = l->filelen / sizeof(*in);
out = ri.Hunk_Alloc ( count*sizeof(*out), h_low );
s_worldData.shaders = out;
s_worldData.numShaders = count;
Com_Memcpy( out, in, count*sizeof(*out) );
for ( i=0 ; i<count ; i++ ) {
out[i].surfaceFlags = LittleLong( out[i].surfaceFlags );
out[i].contentFlags = LittleLong( out[i].contentFlags );
}
}
/*
=================
R_LoadMarksurfaces
=================
*/
static void R_LoadMarksurfaces (lump_t *l)
{
int i, j, count;
int *in;
int *out;
in = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*in))
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
count = l->filelen / sizeof(*in);
out = ri.Hunk_Alloc ( count*sizeof(*out), h_low);
s_worldData.marksurfaces = out;
s_worldData.nummarksurfaces = count;
for ( i=0 ; i<count ; i++)
{
j = LittleLong(in[i]);
out[i] = j;
}
}
/*
=================
R_LoadPlanes
=================
*/
static void R_LoadPlanes( lump_t *l ) {
int i, j;
cplane_t *out;
dplane_t *in;
int count;
int bits;
in = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*in))
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
count = l->filelen / sizeof(*in);
out = ri.Hunk_Alloc ( count*2*sizeof(*out), h_low);
s_worldData.planes = out;
s_worldData.numplanes = count;
for ( i=0 ; i<count ; i++, in++, out++) {
bits = 0;
for (j=0 ; j<3 ; j++) {
out->normal[j] = LittleFloat (in->normal[j]);
if (out->normal[j] < 0) {
bits |= 1<<j;
}
}
out->dist = LittleFloat (in->dist);
out->type = PlaneTypeForNormal( out->normal );
out->signbits = bits;
}
}
/*
=================
R_LoadFogs
=================
*/
static void R_LoadFogs( lump_t *l, lump_t *brushesLump, lump_t *sidesLump ) {
int i;
fog_t *out;
dfog_t *fogs;
dbrush_t *brushes, *brush;
dbrushside_t *sides;
int count, brushesCount, sidesCount;
int sideNum;
int planeNum;
shader_t *shader;
float d;
int firstSide;
fogs = (void *)(fileBase + l->fileofs);
if (l->filelen % sizeof(*fogs)) {
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
}
count = l->filelen / sizeof(*fogs);
// create fog strucutres for them
s_worldData.numfogs = count + 1;
s_worldData.fogs = ri.Hunk_Alloc ( s_worldData.numfogs*sizeof(*out), h_low);
out = s_worldData.fogs + 1;
if ( !count ) {
return;
}
brushes = (void *)(fileBase + brushesLump->fileofs);
if (brushesLump->filelen % sizeof(*brushes)) {
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
}
brushesCount = brushesLump->filelen / sizeof(*brushes);
sides = (void *)(fileBase + sidesLump->fileofs);
if (sidesLump->filelen % sizeof(*sides)) {
ri.Error (ERR_DROP, "LoadMap: funny lump size in %s",s_worldData.name);
}
sidesCount = sidesLump->filelen / sizeof(*sides);
for ( i=0 ; i<count ; i++, fogs++) {
out->originalBrushNumber = LittleLong( fogs->brushNum );
if ( (unsigned)out->originalBrushNumber >= brushesCount ) {
ri.Error( ERR_DROP, "fog brushNumber out of range" );
}
brush = brushes + out->originalBrushNumber;
firstSide = LittleLong( brush->firstSide );
if ( (unsigned)firstSide > sidesCount - 6 ) {
ri.Error( ERR_DROP, "fog brush sideNumber out of range" );
}
// brushes are always sorted with the axial sides first
sideNum = firstSide + 0;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[0][0] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 1;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[1][0] = s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 2;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[0][1] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 3;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[1][1] = s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 4;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[0][2] = -s_worldData.planes[ planeNum ].dist;
sideNum = firstSide + 5;
planeNum = LittleLong( sides[ sideNum ].planeNum );
out->bounds[1][2] = s_worldData.planes[ planeNum ].dist;
// get information from the shader for fog parameters
shader = R_FindShader( fogs->shader, LIGHTMAP_NONE, qtrue );
out->parms = shader->fogParms;
out->colorInt = ColorBytes4 ( shader->fogParms.color[0] * tr.identityLight,
shader->fogParms.color[1] * tr.identityLight,
shader->fogParms.color[2] * tr.identityLight, 1.0 );
d = shader->fogParms.depthForOpaque < 1 ? 1 : shader->fogParms.depthForOpaque;
out->tcScale = 1.0f / ( d * 8 );
// set the gradient vector
sideNum = LittleLong( fogs->visibleSide );
if ( sideNum == -1 ) {
out->hasSurface = qfalse;
} else {
out->hasSurface = qtrue;
planeNum = LittleLong( sides[ firstSide + sideNum ].planeNum );
VectorSubtract( vec3_origin, s_worldData.planes[ planeNum ].normal, out->surface );
out->surface[3] = -s_worldData.planes[ planeNum ].dist;
}
out++;
}
}
/*
================
R_LoadLightGrid
================
*/
void R_LoadLightGrid( lump_t *l ) {
int i;
vec3_t maxs;
int numGridPoints;
world_t *w;
float *wMins, *wMaxs;
w = &s_worldData;
w->lightGridInverseSize[0] = 1.0f / w->lightGridSize[0];
w->lightGridInverseSize[1] = 1.0f / w->lightGridSize[1];
w->lightGridInverseSize[2] = 1.0f / w->lightGridSize[2];
wMins = w->bmodels[0].bounds[0];
wMaxs = w->bmodels[0].bounds[1];
for ( i = 0 ; i < 3 ; i++ ) {
w->lightGridOrigin[i] = w->lightGridSize[i] * ceil( wMins[i] / w->lightGridSize[i] );
maxs[i] = w->lightGridSize[i] * floor( wMaxs[i] / w->lightGridSize[i] );
w->lightGridBounds[i] = (maxs[i] - w->lightGridOrigin[i])/w->lightGridSize[i] + 1;
}
numGridPoints = w->lightGridBounds[0] * w->lightGridBounds[1] * w->lightGridBounds[2];
if ( l->filelen != numGridPoints * 8 ) {
ri.Printf( PRINT_WARNING, "WARNING: light grid mismatch\n" );
w->lightGridData = NULL;
return;
}
w->lightGridData = ri.Hunk_Alloc( l->filelen, h_low );
Com_Memcpy( w->lightGridData, (void *)(fileBase + l->fileofs), l->filelen );
// deal with overbright bits
for ( i = 0 ; i < numGridPoints ; i++ ) {
R_ColorShiftLightingBytes( &w->lightGridData[i*8], &w->lightGridData[i*8] );
R_ColorShiftLightingBytes( &w->lightGridData[i*8+3], &w->lightGridData[i*8+3] );
}
// load hdr lightgrid
if (r_hdr->integer)
{
char filename[MAX_QPATH];
float *hdrLightGrid;
int size;
Com_sprintf( filename, sizeof( filename ), "maps/%s/lightgrid.raw", s_worldData.baseName);
//ri.Printf(PRINT_ALL, "looking for %s\n", filename);
size = ri.FS_ReadFile(filename, (void **)&hdrLightGrid);
if (hdrLightGrid)
{
float lightScale = pow(2, r_mapOverBrightBits->integer - tr.overbrightBits);
//ri.Printf(PRINT_ALL, "found!\n");
if (size != sizeof(float) * 6 * numGridPoints)
{
ri.Error(ERR_DROP, "Bad size for %s (%i, expected %i)!\n", filename, size, (int)(sizeof(float)) * 6 * numGridPoints);
}
w->hdrLightGrid = ri.Hunk_Alloc(size, h_low);
for (i = 0; i < numGridPoints ; i++)
{
w->hdrLightGrid[i * 6 ] = hdrLightGrid[i * 6 ] * lightScale;
w->hdrLightGrid[i * 6 + 1] = hdrLightGrid[i * 6 + 1] * lightScale;
w->hdrLightGrid[i * 6 + 2] = hdrLightGrid[i * 6 + 2] * lightScale;
w->hdrLightGrid[i * 6 + 3] = hdrLightGrid[i * 6 + 3] * lightScale;
w->hdrLightGrid[i * 6 + 4] = hdrLightGrid[i * 6 + 4] * lightScale;
w->hdrLightGrid[i * 6 + 5] = hdrLightGrid[i * 6 + 5] * lightScale;
}
}
if (hdrLightGrid)
ri.FS_FreeFile(hdrLightGrid);
}
}
/*
================
R_LoadEntities
================
*/
void R_LoadEntities( lump_t *l ) {
char *p, *token, *s;
char keyname[MAX_TOKEN_CHARS];
char value[MAX_TOKEN_CHARS];
world_t *w;
w = &s_worldData;
w->lightGridSize[0] = 64;
w->lightGridSize[1] = 64;
w->lightGridSize[2] = 128;
p = (char *)(fileBase + l->fileofs);
// store for reference by the cgame
w->entityString = ri.Hunk_Alloc( l->filelen + 1, h_low );
strcpy( w->entityString, p );
w->entityParsePoint = w->entityString;
token = COM_ParseExt( &p, qtrue );
if (!*token || *token != '{') {
return;
}
// only parse the world spawn
while ( 1 ) {
// parse key
token = COM_ParseExt( &p, qtrue );
if ( !*token || *token == '}' ) {
break;
}
Q_strncpyz(keyname, token, sizeof(keyname));
// parse value
token = COM_ParseExt( &p, qtrue );
if ( !*token || *token == '}' ) {
break;
}
Q_strncpyz(value, token, sizeof(value));
// check for remapping of shaders for vertex lighting
s = "vertexremapshader";
if (!Q_strncmp(keyname, s, strlen(s)) ) {
s = strchr(value, ';');
if (!s) {
ri.Printf( PRINT_WARNING, "WARNING: no semi colon in vertexshaderremap '%s'\n", value );
break;
}
*s++ = 0;
if (r_vertexLight->integer) {
R_RemapShader(value, s, "0");
}
continue;
}
// check for remapping of shaders
s = "remapshader";
if (!Q_strncmp(keyname, s, strlen(s)) ) {
s = strchr(value, ';');
if (!s) {
ri.Printf( PRINT_WARNING, "WARNING: no semi colon in shaderremap '%s'\n", value );
break;
}
*s++ = 0;
R_RemapShader(value, s, "0");
continue;
}
// check for a different grid size
if (!Q_stricmp(keyname, "gridsize")) {
sscanf(value, "%f %f %f", &w->lightGridSize[0], &w->lightGridSize[1], &w->lightGridSize[2] );
continue;
}
// check for auto exposure
if (!Q_stricmp(keyname, "autoExposureMinMax")) {
sscanf(value, "%f %f", &tr.autoExposureMinMax[0], &tr.autoExposureMinMax[1]);
continue;
}
}
}
/*
=================
R_GetEntityToken
=================
*/
qboolean R_GetEntityToken( char *buffer, int size ) {
const char *s;
s = COM_Parse( &s_worldData.entityParsePoint );
Q_strncpyz( buffer, s, size );
if ( !s_worldData.entityParsePoint || !s[0] ) {
s_worldData.entityParsePoint = s_worldData.entityString;
return qfalse;
} else {
return qtrue;
}
}
/*
=================
R_MergeLeafSurfaces
Merges surfaces that share a common leaf
=================
*/
void R_MergeLeafSurfaces(void)
{
int i, j, k;
int numWorldSurfaces;
int mergedSurfIndex;
int numMergedSurfaces;
int numUnmergedSurfaces;
IBO_t *ibo;
msurface_t *mergedSurf;
glIndex_t *iboIndexes, *outIboIndexes;
int numIboIndexes;
int startTime, endTime;
startTime = ri.Milliseconds();
numWorldSurfaces = s_worldData.numWorldSurfaces;
// use viewcount to keep track of mergers
for (i = 0; i < numWorldSurfaces; i++)
{
s_worldData.surfacesViewCount[i] = -1;
}
// create ibo
ibo = tr.ibos[tr.numIBOs++] = ri.Hunk_Alloc(sizeof(*ibo), h_low);
memset(ibo, 0, sizeof(*ibo));
Q_strncpyz(ibo->name, "staticWorldMesh_IBO_mergedSurfs", sizeof(ibo->name));
// allocate more than we need
iboIndexes = outIboIndexes = ri.Malloc(s_worldData.ibo->indexesSize);
// mark matching surfaces
for (i = 0; i < s_worldData.numnodes - s_worldData.numDecisionNodes; i++)
{
mnode_t *leaf = s_worldData.nodes + s_worldData.numDecisionNodes + i;
for (j = 0; j < leaf->nummarksurfaces; j++)
{
msurface_t *surf1;
shader_t *shader1;
int fogIndex1;
int surfNum1;
surfNum1 = *(s_worldData.marksurfaces + leaf->firstmarksurface + j);
if (s_worldData.surfacesViewCount[surfNum1] != -1)
continue;
surf1 = s_worldData.surfaces + surfNum1;
if ((*surf1->data != SF_GRID) && (*surf1->data != SF_TRIANGLES) && (*surf1->data != SF_FACE))
continue;
shader1 = surf1->shader;
if(shader1->isSky)
continue;
if(shader1->isPortal)
continue;
if(ShaderRequiresCPUDeforms(shader1))
continue;
fogIndex1 = surf1->fogIndex;
s_worldData.surfacesViewCount[surfNum1] = surfNum1;
for (k = j + 1; k < leaf->nummarksurfaces; k++)
{
msurface_t *surf2;
shader_t *shader2;
int fogIndex2;
int surfNum2;
surfNum2 = *(s_worldData.marksurfaces + leaf->firstmarksurface + k);
if (s_worldData.surfacesViewCount[surfNum2] != -1)
continue;
surf2 = s_worldData.surfaces + surfNum2;
if ((*surf2->data != SF_GRID) && (*surf2->data != SF_TRIANGLES) && (*surf2->data != SF_FACE))
continue;
shader2 = surf2->shader;
if (shader1 != shader2)
continue;
fogIndex2 = surf2->fogIndex;
if (fogIndex1 != fogIndex2)
continue;
s_worldData.surfacesViewCount[surfNum2] = surfNum1;
}
}
}
// count merged/unmerged surfaces
numMergedSurfaces = 0;
numUnmergedSurfaces = 0;
for (i = 0; i < numWorldSurfaces; i++)
{
if (s_worldData.surfacesViewCount[i] == i)
{
numMergedSurfaces++;
}
else if (s_worldData.surfacesViewCount[i] == -1)
{
numUnmergedSurfaces++;
}
}
// Allocate merged surfaces
s_worldData.mergedSurfaces = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfaces) * numMergedSurfaces, h_low);
s_worldData.mergedSurfacesViewCount = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesViewCount) * numMergedSurfaces, h_low);
s_worldData.mergedSurfacesDlightBits = ri.Hunk_Alloc(sizeof(*s_worldData.mergedSurfacesDlightBits) * numMergedSurfaces, h_low);
s_worldData.numMergedSurfaces = numMergedSurfaces;
// view surfaces are like mark surfaces, except negative ones represent merged surfaces
// -1 represents 0, -2 represents 1, and so on
s_worldData.viewSurfaces = ri.Hunk_Alloc(sizeof(*s_worldData.viewSurfaces) * s_worldData.nummarksurfaces, h_low);
// copy view surfaces into mark surfaces
for (i = 0; i < s_worldData.nummarksurfaces; i++)
{
s_worldData.viewSurfaces[i] = s_worldData.marksurfaces[i];
}
// actually merge surfaces
numIboIndexes = 0;
mergedSurfIndex = 0;
mergedSurf = s_worldData.mergedSurfaces;
for (i = 0; i < numWorldSurfaces; i++)
{
msurface_t *surf1;
vec3_t bounds[2];
int numSurfsToMerge;
int numTriangles;
int numVerts;
int firstIndex;
srfVBOMesh_t *vboSurf;
if (s_worldData.surfacesViewCount[i] != i)
continue;
surf1 = s_worldData.surfaces + i;
// count verts, indexes, and surfaces
numSurfsToMerge = 0;
numTriangles = 0;
numVerts = 0;
for (j = i; j < numWorldSurfaces; j++)
{
msurface_t *surf2;
if (s_worldData.surfacesViewCount[j] != i)
continue;
surf2 = s_worldData.surfaces + j;
switch(*surf2->data)
{
case SF_FACE:
{
srfSurfaceFace_t *face;
face = (srfSurfaceFace_t *) surf2->data;
numTriangles += face->numTriangles;
numVerts += face->numVerts;
}
break;
case SF_GRID:
{
srfGridMesh_t *grid;
grid = (srfGridMesh_t *) surf2->data;
numTriangles += grid->numTriangles;
numVerts += grid->numVerts;
}
break;
case SF_TRIANGLES:
{
srfTriangles_t *tris;
tris = (srfTriangles_t *) surf2->data;
numTriangles += tris->numTriangles;
numVerts += tris->numVerts;
}
break;
default:
break;
}
numSurfsToMerge++;
}
if (numVerts == 0 || numTriangles == 0 || numSurfsToMerge < 2)
{
continue;
}
// Merge surfaces (indexes) and calculate bounds
ClearBounds(bounds[0], bounds[1]);
firstIndex = numIboIndexes;
for (j = i; j < numWorldSurfaces; j++)
{
msurface_t *surf2;
if (s_worldData.surfacesViewCount[j] != i)
continue;
surf2 = s_worldData.surfaces + j;
AddPointToBounds(surf2->cullinfo.bounds[0], bounds[0], bounds[1]);
AddPointToBounds(surf2->cullinfo.bounds[1], bounds[0], bounds[1]);
switch(*surf2->data)
{
case SF_FACE:
{
srfSurfaceFace_t *face;
face = (srfSurfaceFace_t *) surf2->data;
for (k = 0; k < face->numTriangles; k++)
{
*outIboIndexes++ = face->triangles[k].indexes[0] + face->firstVert;
*outIboIndexes++ = face->triangles[k].indexes[1] + face->firstVert;
*outIboIndexes++ = face->triangles[k].indexes[2] + face->firstVert;
numIboIndexes += 3;
}
}
break;
case SF_GRID:
{
srfGridMesh_t *grid;
grid = (srfGridMesh_t *) surf2->data;
for (k = 0; k < grid->numTriangles; k++)
{
*outIboIndexes++ = grid->triangles[k].indexes[0] + grid->firstVert;
*outIboIndexes++ = grid->triangles[k].indexes[1] + grid->firstVert;
*outIboIndexes++ = grid->triangles[k].indexes[2] + grid->firstVert;
numIboIndexes += 3;
}
}
break;
case SF_TRIANGLES:
{
srfTriangles_t *tris;
tris = (srfTriangles_t *) surf2->data;
for (k = 0; k < tris->numTriangles; k++)
{
*outIboIndexes++ = tris->triangles[k].indexes[0] + tris->firstVert;
*outIboIndexes++ = tris->triangles[k].indexes[1] + tris->firstVert;
*outIboIndexes++ = tris->triangles[k].indexes[2] + tris->firstVert;
numIboIndexes += 3;
}
}
break;
// never happens, but silences a compile warning
default:
break;
}
}
vboSurf = ri.Hunk_Alloc(sizeof(*vboSurf), h_low);
memset(vboSurf, 0, sizeof(*vboSurf));
vboSurf->surfaceType = SF_VBO_MESH;
vboSurf->vbo = s_worldData.vbo;
vboSurf->ibo = ibo;
vboSurf->numIndexes = numTriangles * 3;
vboSurf->numVerts = numVerts;
vboSurf->firstIndex = firstIndex;
vboSurf->shader = surf1->shader;
vboSurf->fogIndex = surf1->fogIndex;
VectorCopy(bounds[0], vboSurf->bounds[0]);
VectorCopy(bounds[1], vboSurf->bounds[1]);
VectorCopy(bounds[0], mergedSurf->cullinfo.bounds[0]);
VectorCopy(bounds[1], mergedSurf->cullinfo.bounds[1]);
mergedSurf->cullinfo.type = CULLINFO_BOX;
mergedSurf->data = (surfaceType_t *)vboSurf;
mergedSurf->fogIndex = surf1->fogIndex;
mergedSurf->shader = surf1->shader;
// redirect view surfaces to this surf
for (j = i; j < numWorldSurfaces; j++)
{
if (s_worldData.surfacesViewCount[j] != i)
continue;
for (k = 0; k < s_worldData.nummarksurfaces; k++)
{
int *mark = s_worldData.marksurfaces + k;
int *view = s_worldData.viewSurfaces + k;
if (*mark == j)
*view = -(mergedSurfIndex + 1);
}
}
mergedSurfIndex++;
mergedSurf++;
}
// finish up the ibo
R_SyncRenderThread();
qglGenBuffersARB(1, &ibo->indexesVBO);
R_BindIBO(ibo);
qglBufferDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, numIboIndexes * sizeof(*iboIndexes), iboIndexes, GL_STATIC_DRAW_ARB);
R_BindNullIBO();
GL_CheckErrors();
ri.Free(iboIndexes);
endTime = ri.Milliseconds();
ri.Printf(PRINT_ALL, "Processed %d surfaces into %d merged, %d unmerged in %5.2f seconds\n",
numWorldSurfaces, numMergedSurfaces, numUnmergedSurfaces, (endTime - startTime) / 1000.0f);
// reset viewcounts
for (i = 0; i < numWorldSurfaces; i++)
{
s_worldData.surfacesViewCount[i] = -1;
}
}
void R_CalcVertexLightDirs( void )
{
int i, k;
msurface_t *surface;
for(k = 0, surface = &s_worldData.surfaces[0]; k < s_worldData.numsurfaces /* s_worldData.numWorldSurfaces */; k++, surface++)
{
if(*surface->data == SF_FACE)
{
srfSurfaceFace_t *srf = (srfSurfaceFace_t *) surface->data;
if(srf->numVerts)
{
for(i = 0; i < srf->numVerts; i++)
{
R_LightDirForPoint( srf->verts[i].xyz, srf->verts[i].lightdir, srf->verts[i].normal, &s_worldData );
}
}
}
else if(*surface->data == SF_GRID)
{
srfGridMesh_t *srf = (srfGridMesh_t *) surface->data;
if(srf->numVerts)
{
for(i = 0; i < srf->numVerts; i++)
{
R_LightDirForPoint( srf->verts[i].xyz, srf->verts[i].lightdir, srf->verts[i].normal, &s_worldData );
}
}
}
else if(*surface->data == SF_TRIANGLES)
{
srfTriangles_t *srf = (srfTriangles_t *) surface->data;
if(srf->numVerts)
{
for(i = 0; i < srf->numVerts; i++)
{
R_LightDirForPoint( srf->verts[i].xyz, srf->verts[i].lightdir, srf->verts[i].normal, &s_worldData );
}
}
}
}
}
/*
=================
RE_LoadWorldMap
Called directly from cgame
=================
*/
void RE_LoadWorldMap( const char *name ) {
int i;
dheader_t *header;
union {
byte *b;
void *v;
} buffer;
byte *startMarker;
if ( tr.worldMapLoaded ) {
ri.Error( ERR_DROP, "ERROR: attempted to redundantly load world map\n" );
}
// set default map light scale
tr.mapLightScale = 1.0f;
// set default sun direction to be used if it isn't
// overridden by a shader
tr.sunDirection[0] = 0.45f;
tr.sunDirection[1] = 0.3f;
tr.sunDirection[2] = 0.9f;
VectorNormalize( tr.sunDirection );
// set default autoexposure settings
tr.autoExposureMinMax[0] = -2.0f;
tr.autoExposureMinMax[1] = 2.0f;
// set default tone mapping settings
tr.toneMinAvgMaxLevel[0] = -3.25f;
tr.toneMinAvgMaxLevel[1] = -1.0f;
tr.toneMinAvgMaxLevel[2] = 1.0f;
tr.worldMapLoaded = qtrue;
// load it
ri.FS_ReadFile( name, &buffer.v );
if ( !buffer.b ) {
ri.Error (ERR_DROP, "RE_LoadWorldMap: %s not found", name);
}
// clear tr.world so if the level fails to load, the next
// try will not look at the partially loaded version
tr.world = NULL;
Com_Memset( &s_worldData, 0, sizeof( s_worldData ) );
Q_strncpyz( s_worldData.name, name, sizeof( s_worldData.name ) );
Q_strncpyz( s_worldData.baseName, COM_SkipPath( s_worldData.name ), sizeof( s_worldData.name ) );
COM_StripExtension(s_worldData.baseName, s_worldData.baseName, sizeof(s_worldData.baseName));
startMarker = ri.Hunk_Alloc(0, h_low);
c_gridVerts = 0;
header = (dheader_t *)buffer.b;
fileBase = (byte *)header;
i = LittleLong (header->version);
if ( i != BSP_VERSION ) {
ri.Error (ERR_DROP, "RE_LoadWorldMap: %s has wrong version number (%i should be %i)",
name, i, BSP_VERSION);
}
// swap all the lumps
for (i=0 ; i<sizeof(dheader_t)/4 ; i++) {
((int *)header)[i] = LittleLong ( ((int *)header)[i]);
}
// load into heap
R_LoadEntities( &header->lumps[LUMP_ENTITIES] );
R_LoadShaders( &header->lumps[LUMP_SHADERS] );
R_LoadLightmaps( &header->lumps[LUMP_LIGHTMAPS], &header->lumps[LUMP_SURFACES] );
R_LoadPlanes (&header->lumps[LUMP_PLANES]);
R_LoadFogs( &header->lumps[LUMP_FOGS], &header->lumps[LUMP_BRUSHES], &header->lumps[LUMP_BRUSHSIDES] );
R_LoadSurfaces( &header->lumps[LUMP_SURFACES], &header->lumps[LUMP_DRAWVERTS], &header->lumps[LUMP_DRAWINDEXES] );
R_LoadMarksurfaces (&header->lumps[LUMP_LEAFSURFACES]);
R_LoadNodesAndLeafs (&header->lumps[LUMP_NODES], &header->lumps[LUMP_LEAFS]);
R_LoadSubmodels (&header->lumps[LUMP_MODELS]);
R_LoadVisibility( &header->lumps[LUMP_VISIBILITY] );
R_LoadLightGrid( &header->lumps[LUMP_LIGHTGRID] );
// determine vertex light directions
R_CalcVertexLightDirs();
// create static VBOS from the world
R_CreateWorldVBO();
if (r_mergeLeafSurfaces->integer)
{
R_MergeLeafSurfaces();
}
s_worldData.dataSize = (byte *)ri.Hunk_Alloc(0, h_low) - startMarker;
// only set tr.world now that we know the entire level has loaded properly
tr.world = &s_worldData;
// make sure the VBO glState entries are safe
R_BindNullVBO();
R_BindNullIBO();
ri.FS_FreeFile( buffer.v );
}