/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_shade.c #include "tr_local.h" #if idppc_altivec && !defined(__APPLE__) #include #endif /* THIS ENTIRE FILE IS BACK END This file deals with applying shaders to surface data in the tess struct. */ /* ================== R_DrawElements ================== */ void R_DrawElements( int numIndexes, glIndex_t firstIndex) { qglDrawElements(GL_TRIANGLES, numIndexes, GL_INDEX_TYPE, BUFFER_OFFSET(firstIndex * sizeof(glIndex_t))); } /* ============================================================= SURFACE SHADERS ============================================================= */ shaderCommands_t tess; /* ================= R_BindAnimatedImageToTMU ================= */ static void R_BindAnimatedImageToTMU( textureBundle_t *bundle, int tmu ) { int64_t index; if ( bundle->isVideoMap ) { ri.CIN_RunCinematic(bundle->videoMapHandle); ri.CIN_UploadCinematic(bundle->videoMapHandle); GL_BindToTMU(tr.scratchImage[bundle->videoMapHandle], tmu); return; } if ( bundle->numImageAnimations <= 1 ) { GL_BindToTMU( bundle->image[0], tmu); return; } // it is necessary to do this messy calc to make sure animations line up // exactly with waveforms of the same frequency index = tess.shaderTime * bundle->imageAnimationSpeed * FUNCTABLE_SIZE; index >>= FUNCTABLE_SIZE2; if ( index < 0 ) { index = 0; // may happen with shader time offsets } // Windows x86 doesn't load renderer DLL with 64 bit modulus //index %= bundle->numImageAnimations; while ( index >= bundle->numImageAnimations ) { index -= bundle->numImageAnimations; } GL_BindToTMU( bundle->image[ index ], tmu ); } /* ================ DrawTris Draws triangle outlines for debugging ================ */ static void DrawTris (shaderCommands_t *input) { GL_BindToTMU( tr.whiteImage, TB_COLORMAP ); GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE ); qglDepthRange( 0, 0 ); { shaderProgram_t *sp = &tr.textureColorShader; vec4_t color; GLSL_BindProgram(sp); GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection); VectorSet4(color, 1, 1, 1, 1); GLSL_SetUniformVec4(sp, UNIFORM_COLOR, color); GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0); R_DrawElements(input->numIndexes, input->firstIndex); } qglDepthRange( 0, 1 ); } /* ================ DrawNormals Draws vertex normals for debugging ================ */ static void DrawNormals (shaderCommands_t *input) { //FIXME: implement this } /* ============== RB_BeginSurface We must set some things up before beginning any tesselation, because a surface may be forced to perform a RB_End due to overflow. ============== */ void RB_BeginSurface( shader_t *shader, int fogNum, int cubemapIndex ) { shader_t *state = (shader->remappedShader) ? shader->remappedShader : shader; tess.numIndexes = 0; tess.firstIndex = 0; tess.numVertexes = 0; tess.shader = state; tess.fogNum = fogNum; tess.cubemapIndex = cubemapIndex; tess.dlightBits = 0; // will be OR'd in by surface functions tess.pshadowBits = 0; // will be OR'd in by surface functions tess.xstages = state->stages; tess.numPasses = state->numUnfoggedPasses; tess.currentStageIteratorFunc = state->optimalStageIteratorFunc; tess.useInternalVao = qtrue; tess.useCacheVao = qfalse; tess.shaderTime = backEnd.refdef.floatTime - tess.shader->timeOffset; if (tess.shader->clampTime && tess.shaderTime >= tess.shader->clampTime) { tess.shaderTime = tess.shader->clampTime; } if (backEnd.viewParms.flags & VPF_SHADOWMAP) { tess.currentStageIteratorFunc = RB_StageIteratorGeneric; } } extern float EvalWaveForm( const waveForm_t *wf ); extern float EvalWaveFormClamped( const waveForm_t *wf ); static void ComputeTexMods( shaderStage_t *pStage, int bundleNum, float *outMatrix, float *outOffTurb) { int tm; float matrix[6], currentmatrix[6]; textureBundle_t *bundle = &pStage->bundle[bundleNum]; matrix[0] = 1.0f; matrix[2] = 0.0f; matrix[4] = 0.0f; matrix[1] = 0.0f; matrix[3] = 1.0f; matrix[5] = 0.0f; currentmatrix[0] = 1.0f; currentmatrix[2] = 0.0f; currentmatrix[4] = 0.0f; currentmatrix[1] = 0.0f; currentmatrix[3] = 1.0f; currentmatrix[5] = 0.0f; outMatrix[0] = 1.0f; outMatrix[2] = 0.0f; outMatrix[1] = 0.0f; outMatrix[3] = 1.0f; outOffTurb[0] = 0.0f; outOffTurb[1] = 0.0f; outOffTurb[2] = 0.0f; outOffTurb[3] = 0.0f; for ( tm = 0; tm < bundle->numTexMods ; tm++ ) { switch ( bundle->texMods[tm].type ) { case TMOD_NONE: tm = TR_MAX_TEXMODS; // break out of for loop break; case TMOD_TURBULENT: RB_CalcTurbulentFactors(&bundle->texMods[tm].wave, &outOffTurb[2], &outOffTurb[3]); break; case TMOD_ENTITY_TRANSLATE: RB_CalcScrollTexMatrix( backEnd.currentEntity->e.shaderTexCoord, matrix ); break; case TMOD_SCROLL: RB_CalcScrollTexMatrix( bundle->texMods[tm].scroll, matrix ); break; case TMOD_SCALE: RB_CalcScaleTexMatrix( bundle->texMods[tm].scale, matrix ); break; case TMOD_STRETCH: RB_CalcStretchTexMatrix( &bundle->texMods[tm].wave, matrix ); break; case TMOD_TRANSFORM: RB_CalcTransformTexMatrix( &bundle->texMods[tm], matrix ); break; case TMOD_ROTATE: RB_CalcRotateTexMatrix( bundle->texMods[tm].rotateSpeed, matrix ); break; default: ri.Error( ERR_DROP, "ERROR: unknown texmod '%d' in shader '%s'", bundle->texMods[tm].type, tess.shader->name ); break; } switch ( bundle->texMods[tm].type ) { case TMOD_NONE: case TMOD_TURBULENT: default: break; case TMOD_ENTITY_TRANSLATE: case TMOD_SCROLL: case TMOD_SCALE: case TMOD_STRETCH: case TMOD_TRANSFORM: case TMOD_ROTATE: outMatrix[0] = matrix[0] * currentmatrix[0] + matrix[2] * currentmatrix[1]; outMatrix[1] = matrix[1] * currentmatrix[0] + matrix[3] * currentmatrix[1]; outMatrix[2] = matrix[0] * currentmatrix[2] + matrix[2] * currentmatrix[3]; outMatrix[3] = matrix[1] * currentmatrix[2] + matrix[3] * currentmatrix[3]; outOffTurb[0] = matrix[0] * currentmatrix[4] + matrix[2] * currentmatrix[5] + matrix[4]; outOffTurb[1] = matrix[1] * currentmatrix[4] + matrix[3] * currentmatrix[5] + matrix[5]; currentmatrix[0] = outMatrix[0]; currentmatrix[1] = outMatrix[1]; currentmatrix[2] = outMatrix[2]; currentmatrix[3] = outMatrix[3]; currentmatrix[4] = outOffTurb[0]; currentmatrix[5] = outOffTurb[1]; break; } } } static void ComputeDeformValues(int *deformGen, vec5_t deformParams) { // u_DeformGen *deformGen = DGEN_NONE; if(!ShaderRequiresCPUDeforms(tess.shader)) { deformStage_t *ds; // only support the first one ds = &tess.shader->deforms[0]; switch (ds->deformation) { case DEFORM_WAVE: *deformGen = ds->deformationWave.func; deformParams[0] = ds->deformationWave.base; deformParams[1] = ds->deformationWave.amplitude; deformParams[2] = ds->deformationWave.phase; deformParams[3] = ds->deformationWave.frequency; deformParams[4] = ds->deformationSpread; break; case DEFORM_BULGE: *deformGen = DGEN_BULGE; deformParams[0] = 0; deformParams[1] = ds->bulgeHeight; // amplitude deformParams[2] = ds->bulgeWidth; // phase deformParams[3] = ds->bulgeSpeed; // frequency deformParams[4] = 0; break; default: break; } } } static void ProjectDlightTexture( void ) { int l; vec3_t origin; float scale; float radius; int deformGen; vec5_t deformParams; if ( !backEnd.refdef.num_dlights ) { return; } ComputeDeformValues(&deformGen, deformParams); for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) { dlight_t *dl; shaderProgram_t *sp; vec4_t vector; if ( !( tess.dlightBits & ( 1 << l ) ) ) { continue; // this surface definately doesn't have any of this light } dl = &backEnd.refdef.dlights[l]; VectorCopy( dl->transformed, origin ); radius = dl->radius; scale = 1.0f / radius; sp = &tr.dlightShader[deformGen == DGEN_NONE ? 0 : 1]; backEnd.pc.c_dlightDraws++; GLSL_BindProgram(sp); GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection); GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation); GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen); if (deformGen != DGEN_NONE) { GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams); GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime); } vector[0] = dl->color[0]; vector[1] = dl->color[1]; vector[2] = dl->color[2]; vector[3] = 1.0f; GLSL_SetUniformVec4(sp, UNIFORM_COLOR, vector); vector[0] = origin[0]; vector[1] = origin[1]; vector[2] = origin[2]; vector[3] = scale; GLSL_SetUniformVec4(sp, UNIFORM_DLIGHTINFO, vector); GL_BindToTMU( tr.dlightImage, TB_COLORMAP ); // include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light // where they aren't rendered if ( dl->additive ) { GL_State( GLS_ATEST_GT_0 | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); } else { GL_State( GLS_ATEST_GT_0 | GLS_SRCBLEND_DST_COLOR | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); } GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 1); R_DrawElements(tess.numIndexes, tess.firstIndex); backEnd.pc.c_totalIndexes += tess.numIndexes; backEnd.pc.c_dlightIndexes += tess.numIndexes; backEnd.pc.c_dlightVertexes += tess.numVertexes; } } static void ComputeShaderColors( shaderStage_t *pStage, vec4_t baseColor, vec4_t vertColor, int blend ) { qboolean isBlend = ((blend & GLS_SRCBLEND_BITS) == GLS_SRCBLEND_DST_COLOR) || ((blend & GLS_SRCBLEND_BITS) == GLS_SRCBLEND_ONE_MINUS_DST_COLOR) || ((blend & GLS_DSTBLEND_BITS) == GLS_DSTBLEND_SRC_COLOR) || ((blend & GLS_DSTBLEND_BITS) == GLS_DSTBLEND_ONE_MINUS_SRC_COLOR); qboolean is2DDraw = backEnd.currentEntity == &backEnd.entity2D; float overbright = (isBlend || is2DDraw) ? 1.0f : (float)(1 << tr.overbrightBits); fog_t *fog; baseColor[0] = baseColor[1] = baseColor[2] = baseColor[3] = 1.0f; vertColor[0] = vertColor[1] = vertColor[2] = vertColor[3] = 0.0f; // // rgbGen // switch ( pStage->rgbGen ) { case CGEN_EXACT_VERTEX: case CGEN_EXACT_VERTEX_LIT: baseColor[0] = baseColor[1] = baseColor[2] = baseColor[3] = 0.0f; vertColor[0] = vertColor[1] = vertColor[2] = overbright; vertColor[3] = 1.0f; break; case CGEN_CONST: baseColor[0] = pStage->constantColor[0] / 255.0f; baseColor[1] = pStage->constantColor[1] / 255.0f; baseColor[2] = pStage->constantColor[2] / 255.0f; baseColor[3] = pStage->constantColor[3] / 255.0f; break; case CGEN_VERTEX: case CGEN_VERTEX_LIT: baseColor[0] = baseColor[1] = baseColor[2] = baseColor[3] = 0.0f; vertColor[0] = vertColor[1] = vertColor[2] = vertColor[3] = 1.0f; break; case CGEN_ONE_MINUS_VERTEX: baseColor[0] = baseColor[1] = baseColor[2] = 1.0f; vertColor[0] = vertColor[1] = vertColor[2] = -1.0f; break; case CGEN_FOG: fog = tr.world->fogs + tess.fogNum; baseColor[0] = ((unsigned char *)(&fog->colorInt))[0] / 255.0f; baseColor[1] = ((unsigned char *)(&fog->colorInt))[1] / 255.0f; baseColor[2] = ((unsigned char *)(&fog->colorInt))[2] / 255.0f; baseColor[3] = ((unsigned char *)(&fog->colorInt))[3] / 255.0f; break; case CGEN_WAVEFORM: baseColor[0] = baseColor[1] = baseColor[2] = RB_CalcWaveColorSingle( &pStage->rgbWave ); break; case CGEN_ENTITY: if (backEnd.currentEntity) { baseColor[0] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[0] / 255.0f; baseColor[1] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[1] / 255.0f; baseColor[2] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[2] / 255.0f; baseColor[3] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[3] / 255.0f; } break; case CGEN_ONE_MINUS_ENTITY: if (backEnd.currentEntity) { baseColor[0] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[0] / 255.0f; baseColor[1] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[1] / 255.0f; baseColor[2] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[2] / 255.0f; baseColor[3] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[3] / 255.0f; } break; case CGEN_IDENTITY: case CGEN_LIGHTING_DIFFUSE: baseColor[0] = baseColor[1] = baseColor[2] = overbright; break; case CGEN_IDENTITY_LIGHTING: case CGEN_BAD: break; } // // alphaGen // switch ( pStage->alphaGen ) { case AGEN_SKIP: break; case AGEN_CONST: baseColor[3] = pStage->constantColor[3] / 255.0f; vertColor[3] = 0.0f; break; case AGEN_WAVEFORM: baseColor[3] = RB_CalcWaveAlphaSingle( &pStage->alphaWave ); vertColor[3] = 0.0f; break; case AGEN_ENTITY: if (backEnd.currentEntity) { baseColor[3] = ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[3] / 255.0f; } vertColor[3] = 0.0f; break; case AGEN_ONE_MINUS_ENTITY: if (backEnd.currentEntity) { baseColor[3] = 1.0f - ((unsigned char *)backEnd.currentEntity->e.shaderRGBA)[3] / 255.0f; } vertColor[3] = 0.0f; break; case AGEN_VERTEX: baseColor[3] = 0.0f; vertColor[3] = 1.0f; break; case AGEN_ONE_MINUS_VERTEX: baseColor[3] = 1.0f; vertColor[3] = -1.0f; break; case AGEN_IDENTITY: case AGEN_LIGHTING_SPECULAR: case AGEN_PORTAL: // Done entirely in vertex program baseColor[3] = 1.0f; vertColor[3] = 0.0f; break; } // FIXME: find some way to implement this. #if 0 // if in greyscale rendering mode turn all color values into greyscale. if(r_greyscale->integer) { int scale; for(i = 0; i < tess.numVertexes; i++) { scale = (tess.svars.colors[i][0] + tess.svars.colors[i][1] + tess.svars.colors[i][2]) / 3; tess.svars.colors[i][0] = tess.svars.colors[i][1] = tess.svars.colors[i][2] = scale; } } #endif } static void ComputeFogValues(vec4_t fogDistanceVector, vec4_t fogDepthVector, float *eyeT) { // from RB_CalcFogTexCoords() fog_t *fog; vec3_t local; if (!tess.fogNum) return; fog = tr.world->fogs + tess.fogNum; VectorSubtract( backEnd.or.origin, backEnd.viewParms.or.origin, local ); fogDistanceVector[0] = -backEnd.or.modelMatrix[2]; fogDistanceVector[1] = -backEnd.or.modelMatrix[6]; fogDistanceVector[2] = -backEnd.or.modelMatrix[10]; fogDistanceVector[3] = DotProduct( local, backEnd.viewParms.or.axis[0] ); // scale the fog vectors based on the fog's thickness VectorScale4(fogDistanceVector, fog->tcScale, fogDistanceVector); // rotate the gradient vector for this orientation if ( fog->hasSurface ) { fogDepthVector[0] = fog->surface[0] * backEnd.or.axis[0][0] + fog->surface[1] * backEnd.or.axis[0][1] + fog->surface[2] * backEnd.or.axis[0][2]; fogDepthVector[1] = fog->surface[0] * backEnd.or.axis[1][0] + fog->surface[1] * backEnd.or.axis[1][1] + fog->surface[2] * backEnd.or.axis[1][2]; fogDepthVector[2] = fog->surface[0] * backEnd.or.axis[2][0] + fog->surface[1] * backEnd.or.axis[2][1] + fog->surface[2] * backEnd.or.axis[2][2]; fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.or.origin, fog->surface ); *eyeT = DotProduct( backEnd.or.viewOrigin, fogDepthVector ) + fogDepthVector[3]; } else { *eyeT = 1; // non-surface fog always has eye inside } } static void ComputeFogColorMask( shaderStage_t *pStage, vec4_t fogColorMask ) { switch(pStage->adjustColorsForFog) { case ACFF_MODULATE_RGB: fogColorMask[0] = fogColorMask[1] = fogColorMask[2] = 1.0f; fogColorMask[3] = 0.0f; break; case ACFF_MODULATE_ALPHA: fogColorMask[0] = fogColorMask[1] = fogColorMask[2] = 0.0f; fogColorMask[3] = 1.0f; break; case ACFF_MODULATE_RGBA: fogColorMask[0] = fogColorMask[1] = fogColorMask[2] = fogColorMask[3] = 1.0f; break; default: fogColorMask[0] = fogColorMask[1] = fogColorMask[2] = fogColorMask[3] = 0.0f; break; } } static void ForwardDlight( void ) { int l; //vec3_t origin; //float scale; float radius; int deformGen; vec5_t deformParams; vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0}; float eyeT = 0; shaderCommands_t *input = &tess; shaderStage_t *pStage = tess.xstages[0]; if ( !backEnd.refdef.num_dlights ) { return; } ComputeDeformValues(&deformGen, deformParams); ComputeFogValues(fogDistanceVector, fogDepthVector, &eyeT); for ( l = 0 ; l < backEnd.refdef.num_dlights ; l++ ) { dlight_t *dl; shaderProgram_t *sp; vec4_t vector; vec4_t texMatrix; vec4_t texOffTurb; if ( !( tess.dlightBits & ( 1 << l ) ) ) { continue; // this surface definately doesn't have any of this light } dl = &backEnd.refdef.dlights[l]; //VectorCopy( dl->transformed, origin ); radius = dl->radius; //scale = 1.0f / radius; //if (pStage->glslShaderGroup == tr.lightallShader) { int index = pStage->glslShaderIndex; index &= ~LIGHTDEF_LIGHTTYPE_MASK; index |= LIGHTDEF_USE_LIGHT_VECTOR; sp = &tr.lightallShader[index]; } backEnd.pc.c_lightallDraws++; GLSL_BindProgram(sp); GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection); GLSL_SetUniformVec3(sp, UNIFORM_VIEWORIGIN, backEnd.viewParms.or.origin); GLSL_SetUniformVec3(sp, UNIFORM_LOCALVIEWORIGIN, backEnd.or.viewOrigin); GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation); GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen); if (deformGen != DGEN_NONE) { GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams); GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime); } if ( input->fogNum ) { vec4_t fogColorMask; GLSL_SetUniformVec4(sp, UNIFORM_FOGDISTANCE, fogDistanceVector); GLSL_SetUniformVec4(sp, UNIFORM_FOGDEPTH, fogDepthVector); GLSL_SetUniformFloat(sp, UNIFORM_FOGEYET, eyeT); ComputeFogColorMask(pStage, fogColorMask); GLSL_SetUniformVec4(sp, UNIFORM_FOGCOLORMASK, fogColorMask); } { vec4_t baseColor; vec4_t vertColor; ComputeShaderColors(pStage, baseColor, vertColor, GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE); GLSL_SetUniformVec4(sp, UNIFORM_BASECOLOR, baseColor); GLSL_SetUniformVec4(sp, UNIFORM_VERTCOLOR, vertColor); } if (pStage->alphaGen == AGEN_PORTAL) { GLSL_SetUniformFloat(sp, UNIFORM_PORTALRANGE, tess.shader->portalRange); } GLSL_SetUniformInt(sp, UNIFORM_COLORGEN, pStage->rgbGen); GLSL_SetUniformInt(sp, UNIFORM_ALPHAGEN, pStage->alphaGen); GLSL_SetUniformVec3(sp, UNIFORM_DIRECTEDLIGHT, dl->color); VectorSet(vector, 0, 0, 0); GLSL_SetUniformVec3(sp, UNIFORM_AMBIENTLIGHT, vector); VectorCopy(dl->origin, vector); vector[3] = 1.0f; GLSL_SetUniformVec4(sp, UNIFORM_LIGHTORIGIN, vector); GLSL_SetUniformFloat(sp, UNIFORM_LIGHTRADIUS, radius); GLSL_SetUniformVec4(sp, UNIFORM_NORMALSCALE, pStage->normalScale); GLSL_SetUniformVec4(sp, UNIFORM_SPECULARSCALE, pStage->specularScale); // include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light // where they aren't rendered GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE | GLS_DEPTHFUNC_EQUAL ); GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0); GLSL_SetUniformMat4(sp, UNIFORM_MODELMATRIX, backEnd.or.transformMatrix); if (pStage->bundle[TB_DIFFUSEMAP].image[0]) R_BindAnimatedImageToTMU( &pStage->bundle[TB_DIFFUSEMAP], TB_DIFFUSEMAP); // bind textures that are sampled and used in the glsl shader, and // bind whiteImage to textures that are sampled but zeroed in the glsl shader // // alternatives: // - use the last bound texture // -> costs more to sample a higher res texture then throw out the result // - disable texture sampling in glsl shader with #ifdefs, as before // -> increases the number of shaders that must be compiled // if (pStage->bundle[TB_NORMALMAP].image[0]) { R_BindAnimatedImageToTMU( &pStage->bundle[TB_NORMALMAP], TB_NORMALMAP); } else if (r_normalMapping->integer) GL_BindToTMU( tr.whiteImage, TB_NORMALMAP ); if (pStage->bundle[TB_SPECULARMAP].image[0]) { R_BindAnimatedImageToTMU( &pStage->bundle[TB_SPECULARMAP], TB_SPECULARMAP); } else if (r_specularMapping->integer) GL_BindToTMU( tr.whiteImage, TB_SPECULARMAP ); { vec4_t enableTextures; VectorSet4(enableTextures, 0.0f, 0.0f, 0.0f, 0.0f); GLSL_SetUniformVec4(sp, UNIFORM_ENABLETEXTURES, enableTextures); } if (r_dlightMode->integer >= 2) GL_BindToTMU(tr.shadowCubemaps[l], TB_SHADOWMAP); ComputeTexMods( pStage, TB_DIFFUSEMAP, texMatrix, texOffTurb ); GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, texMatrix); GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, texOffTurb); GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, pStage->bundle[0].tcGen); // // draw // R_DrawElements(input->numIndexes, input->firstIndex); backEnd.pc.c_totalIndexes += tess.numIndexes; backEnd.pc.c_dlightIndexes += tess.numIndexes; backEnd.pc.c_dlightVertexes += tess.numVertexes; } } static void ProjectPshadowVBOGLSL( void ) { int l; vec3_t origin; float radius; int deformGen; vec5_t deformParams; shaderCommands_t *input = &tess; if ( !backEnd.refdef.num_pshadows ) { return; } ComputeDeformValues(&deformGen, deformParams); for ( l = 0 ; l < backEnd.refdef.num_pshadows ; l++ ) { pshadow_t *ps; shaderProgram_t *sp; vec4_t vector; if ( !( tess.pshadowBits & ( 1 << l ) ) ) { continue; // this surface definately doesn't have any of this shadow } ps = &backEnd.refdef.pshadows[l]; VectorCopy( ps->lightOrigin, origin ); radius = ps->lightRadius; sp = &tr.pshadowShader; GLSL_BindProgram(sp); GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection); VectorCopy(origin, vector); vector[3] = 1.0f; GLSL_SetUniformVec4(sp, UNIFORM_LIGHTORIGIN, vector); VectorScale(ps->lightViewAxis[0], 1.0f / ps->viewRadius, vector); GLSL_SetUniformVec3(sp, UNIFORM_LIGHTFORWARD, vector); VectorScale(ps->lightViewAxis[1], 1.0f / ps->viewRadius, vector); GLSL_SetUniformVec3(sp, UNIFORM_LIGHTRIGHT, vector); VectorScale(ps->lightViewAxis[2], 1.0f / ps->viewRadius, vector); GLSL_SetUniformVec3(sp, UNIFORM_LIGHTUP, vector); GLSL_SetUniformFloat(sp, UNIFORM_LIGHTRADIUS, radius); // include GLS_DEPTHFUNC_EQUAL so alpha tested surfaces don't add light // where they aren't rendered GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL ); GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0); GL_BindToTMU( tr.pshadowMaps[l], TB_DIFFUSEMAP ); // // draw // R_DrawElements(input->numIndexes, input->firstIndex); backEnd.pc.c_totalIndexes += tess.numIndexes; //backEnd.pc.c_dlightIndexes += tess.numIndexes; } } /* =================== RB_FogPass Blends a fog texture on top of everything else =================== */ static void RB_FogPass( void ) { fog_t *fog; vec4_t color; vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0}; float eyeT = 0; shaderProgram_t *sp; int deformGen; vec5_t deformParams; ComputeDeformValues(&deformGen, deformParams); { int index = 0; if (deformGen != DGEN_NONE) index |= FOGDEF_USE_DEFORM_VERTEXES; if (glState.vertexAnimation) index |= FOGDEF_USE_VERTEX_ANIMATION; sp = &tr.fogShader[index]; } backEnd.pc.c_fogDraws++; GLSL_BindProgram(sp); fog = tr.world->fogs + tess.fogNum; GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection); GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation); GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen); if (deformGen != DGEN_NONE) { GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams); GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime); } color[0] = ((unsigned char *)(&fog->colorInt))[0] / 255.0f; color[1] = ((unsigned char *)(&fog->colorInt))[1] / 255.0f; color[2] = ((unsigned char *)(&fog->colorInt))[2] / 255.0f; color[3] = ((unsigned char *)(&fog->colorInt))[3] / 255.0f; GLSL_SetUniformVec4(sp, UNIFORM_COLOR, color); ComputeFogValues(fogDistanceVector, fogDepthVector, &eyeT); GLSL_SetUniformVec4(sp, UNIFORM_FOGDISTANCE, fogDistanceVector); GLSL_SetUniformVec4(sp, UNIFORM_FOGDEPTH, fogDepthVector); GLSL_SetUniformFloat(sp, UNIFORM_FOGEYET, eyeT); if ( tess.shader->fogPass == FP_EQUAL ) { GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA | GLS_DEPTHFUNC_EQUAL ); } else { GL_State( GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA ); } GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0); R_DrawElements(tess.numIndexes, tess.firstIndex); } static unsigned int RB_CalcShaderVertexAttribs( shaderCommands_t *input ) { unsigned int vertexAttribs = input->shader->vertexAttribs; if(glState.vertexAnimation) { vertexAttribs |= ATTR_POSITION2; if (vertexAttribs & ATTR_NORMAL) { vertexAttribs |= ATTR_NORMAL2; vertexAttribs |= ATTR_TANGENT2; } } return vertexAttribs; } static void RB_IterateStagesGeneric( shaderCommands_t *input ) { int stage; #ifdef ELITEFORCE qboolean overridealpha = qfalse; int oldAlphaGen = AGEN_IDENTITY; int oldStateBits = 0; #endif vec4_t fogDistanceVector, fogDepthVector = {0, 0, 0, 0}; float eyeT = 0; int deformGen; vec5_t deformParams; qboolean renderToCubemap = tr.renderCubeFbo && glState.currentFBO == tr.renderCubeFbo; ComputeDeformValues(&deformGen, deformParams); ComputeFogValues(fogDistanceVector, fogDepthVector, &eyeT); for ( stage = 0; stage < MAX_SHADER_STAGES; stage++ ) { shaderStage_t *pStage = input->xstages[stage]; shaderProgram_t *sp; vec4_t texMatrix; vec4_t texOffTurb; if ( !pStage ) { break; } #ifdef ELITEFORCE // Override the shader alpha channel if requested. if(backEnd.currentEntity->e.renderfx & RF_FORCE_ENT_ALPHA) { overridealpha = qtrue; oldAlphaGen = pStage->alphaGen; oldStateBits = pStage->stateBits; pStage->alphaGen = AGEN_ENTITY; if(backEnd.currentEntity->e.shaderRGBA[3] < 0xFF && !(pStage->stateBits & GLS_ATEST_BITS)) { // set bits for blendfunc blend pStage->stateBits = GLS_SRCBLEND_SRC_ALPHA | GLS_DSTBLEND_ONE_MINUS_SRC_ALPHA; } } else { overridealpha = qfalse; } #endif if (backEnd.depthFill) { if (pStage->glslShaderGroup == tr.lightallShader) { int index = 0; if (backEnd.currentEntity && backEnd.currentEntity != &tr.worldEntity) { index |= LIGHTDEF_ENTITY; } if (pStage->stateBits & GLS_ATEST_BITS) { index |= LIGHTDEF_USE_TCGEN_AND_TCMOD; } sp = &pStage->glslShaderGroup[index]; } else { int shaderAttribs = 0; if (tess.shader->numDeforms && !ShaderRequiresCPUDeforms(tess.shader)) { shaderAttribs |= GENERICDEF_USE_DEFORM_VERTEXES; } if (glState.vertexAnimation) { shaderAttribs |= GENERICDEF_USE_VERTEX_ANIMATION; } if (pStage->stateBits & GLS_ATEST_BITS) { shaderAttribs |= GENERICDEF_USE_TCGEN_AND_TCMOD; } sp = &tr.genericShader[shaderAttribs]; } } else if (pStage->glslShaderGroup == tr.lightallShader) { int index = pStage->glslShaderIndex; if (backEnd.currentEntity && backEnd.currentEntity != &tr.worldEntity) { index |= LIGHTDEF_ENTITY; } if (r_sunlightMode->integer && (backEnd.viewParms.flags & VPF_USESUNLIGHT) && (index & LIGHTDEF_LIGHTTYPE_MASK)) { index |= LIGHTDEF_USE_SHADOWMAP; } if (r_lightmap->integer && ((index & LIGHTDEF_LIGHTTYPE_MASK) == LIGHTDEF_USE_LIGHTMAP)) { index = LIGHTDEF_USE_TCGEN_AND_TCMOD; } sp = &pStage->glslShaderGroup[index]; backEnd.pc.c_lightallDraws++; } else { sp = GLSL_GetGenericShaderProgram(stage); backEnd.pc.c_genericDraws++; } GLSL_BindProgram(sp); GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection); GLSL_SetUniformVec3(sp, UNIFORM_VIEWORIGIN, backEnd.viewParms.or.origin); GLSL_SetUniformVec3(sp, UNIFORM_LOCALVIEWORIGIN, backEnd.or.viewOrigin); GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation); GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen); if (deformGen != DGEN_NONE) { GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams); GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime); } if ( input->fogNum ) { GLSL_SetUniformVec4(sp, UNIFORM_FOGDISTANCE, fogDistanceVector); GLSL_SetUniformVec4(sp, UNIFORM_FOGDEPTH, fogDepthVector); GLSL_SetUniformFloat(sp, UNIFORM_FOGEYET, eyeT); } GL_State( pStage->stateBits ); if ((pStage->stateBits & GLS_ATEST_BITS) == GLS_ATEST_GT_0) { GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 1); } else if ((pStage->stateBits & GLS_ATEST_BITS) == GLS_ATEST_LT_80) { GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 2); } else if ((pStage->stateBits & GLS_ATEST_BITS) == GLS_ATEST_GE_80) { GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 3); } else { GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0); } { vec4_t baseColor; vec4_t vertColor; ComputeShaderColors(pStage, baseColor, vertColor, pStage->stateBits); GLSL_SetUniformVec4(sp, UNIFORM_BASECOLOR, baseColor); GLSL_SetUniformVec4(sp, UNIFORM_VERTCOLOR, vertColor); } if (pStage->rgbGen == CGEN_LIGHTING_DIFFUSE) { vec4_t vec; VectorScale(backEnd.currentEntity->ambientLight, 1.0f / 255.0f, vec); GLSL_SetUniformVec3(sp, UNIFORM_AMBIENTLIGHT, vec); VectorScale(backEnd.currentEntity->directedLight, 1.0f / 255.0f, vec); GLSL_SetUniformVec3(sp, UNIFORM_DIRECTEDLIGHT, vec); VectorCopy(backEnd.currentEntity->lightDir, vec); vec[3] = 0.0f; GLSL_SetUniformVec4(sp, UNIFORM_LIGHTORIGIN, vec); GLSL_SetUniformVec3(sp, UNIFORM_MODELLIGHTDIR, backEnd.currentEntity->modelLightDir); GLSL_SetUniformFloat(sp, UNIFORM_LIGHTRADIUS, 0.0f); } if (pStage->alphaGen == AGEN_PORTAL) { GLSL_SetUniformFloat(sp, UNIFORM_PORTALRANGE, tess.shader->portalRange); } GLSL_SetUniformInt(sp, UNIFORM_COLORGEN, pStage->rgbGen); GLSL_SetUniformInt(sp, UNIFORM_ALPHAGEN, pStage->alphaGen); if ( input->fogNum ) { vec4_t fogColorMask; ComputeFogColorMask(pStage, fogColorMask); GLSL_SetUniformVec4(sp, UNIFORM_FOGCOLORMASK, fogColorMask); } if (r_lightmap->integer) { vec4_t v; VectorSet4(v, 1.0f, 0.0f, 0.0f, 1.0f); GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, v); VectorSet4(v, 0.0f, 0.0f, 0.0f, 0.0f); GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, v); GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, TCGEN_LIGHTMAP); } else { ComputeTexMods(pStage, TB_DIFFUSEMAP, texMatrix, texOffTurb); GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXMATRIX, texMatrix); GLSL_SetUniformVec4(sp, UNIFORM_DIFFUSETEXOFFTURB, texOffTurb); GLSL_SetUniformInt(sp, UNIFORM_TCGEN0, pStage->bundle[0].tcGen); if (pStage->bundle[0].tcGen == TCGEN_VECTOR) { vec3_t vec; VectorCopy(pStage->bundle[0].tcGenVectors[0], vec); GLSL_SetUniformVec3(sp, UNIFORM_TCGEN0VECTOR0, vec); VectorCopy(pStage->bundle[0].tcGenVectors[1], vec); GLSL_SetUniformVec3(sp, UNIFORM_TCGEN0VECTOR1, vec); } } GLSL_SetUniformMat4(sp, UNIFORM_MODELMATRIX, backEnd.or.transformMatrix); GLSL_SetUniformVec4(sp, UNIFORM_NORMALSCALE, pStage->normalScale); { vec4_t specularScale; Vector4Copy(pStage->specularScale, specularScale); if (renderToCubemap) { // force specular to nonmetal if rendering cubemaps if (r_pbr->integer) specularScale[1] = 0.0f; } GLSL_SetUniformVec4(sp, UNIFORM_SPECULARSCALE, specularScale); } //GLSL_SetUniformFloat(sp, UNIFORM_MAPLIGHTSCALE, backEnd.refdef.mapLightScale); // // do multitexture // if ( backEnd.depthFill ) { if (!(pStage->stateBits & GLS_ATEST_BITS)) GL_BindToTMU( tr.whiteImage, TB_COLORMAP ); else if ( pStage->bundle[TB_COLORMAP].image[0] != 0 ) R_BindAnimatedImageToTMU( &pStage->bundle[TB_COLORMAP], TB_COLORMAP ); } else if ( pStage->glslShaderGroup == tr.lightallShader ) { int i; vec4_t enableTextures; if (r_sunlightMode->integer && (backEnd.viewParms.flags & VPF_USESUNLIGHT) && (pStage->glslShaderIndex & LIGHTDEF_LIGHTTYPE_MASK)) { // FIXME: screenShadowImage is NULL if no framebuffers if (tr.screenShadowImage) GL_BindToTMU(tr.screenShadowImage, TB_SHADOWMAP); GLSL_SetUniformVec3(sp, UNIFORM_PRIMARYLIGHTAMBIENT, backEnd.refdef.sunAmbCol); if (r_pbr->integer) { vec3_t color; color[0] = backEnd.refdef.sunCol[0] * backEnd.refdef.sunCol[0]; color[1] = backEnd.refdef.sunCol[1] * backEnd.refdef.sunCol[1]; color[2] = backEnd.refdef.sunCol[2] * backEnd.refdef.sunCol[2]; GLSL_SetUniformVec3(sp, UNIFORM_PRIMARYLIGHTCOLOR, color); } else { GLSL_SetUniformVec3(sp, UNIFORM_PRIMARYLIGHTCOLOR, backEnd.refdef.sunCol); } GLSL_SetUniformVec4(sp, UNIFORM_PRIMARYLIGHTORIGIN, backEnd.refdef.sunDir); } VectorSet4(enableTextures, 0, 0, 0, 0); if ((r_lightmap->integer == 1 || r_lightmap->integer == 2) && pStage->bundle[TB_LIGHTMAP].image[0]) { for (i = 0; i < NUM_TEXTURE_BUNDLES; i++) { if (i == TB_COLORMAP) R_BindAnimatedImageToTMU( &pStage->bundle[TB_LIGHTMAP], i); else GL_BindToTMU( tr.whiteImage, i ); } } else if (r_lightmap->integer == 3 && pStage->bundle[TB_DELUXEMAP].image[0]) { for (i = 0; i < NUM_TEXTURE_BUNDLES; i++) { if (i == TB_COLORMAP) R_BindAnimatedImageToTMU( &pStage->bundle[TB_DELUXEMAP], i); else GL_BindToTMU( tr.whiteImage, i ); } } else { qboolean light = (pStage->glslShaderIndex & LIGHTDEF_LIGHTTYPE_MASK) != 0; qboolean fastLight = !(r_normalMapping->integer || r_specularMapping->integer); if (pStage->bundle[TB_DIFFUSEMAP].image[0]) R_BindAnimatedImageToTMU( &pStage->bundle[TB_DIFFUSEMAP], TB_DIFFUSEMAP); if (pStage->bundle[TB_LIGHTMAP].image[0]) R_BindAnimatedImageToTMU( &pStage->bundle[TB_LIGHTMAP], TB_LIGHTMAP); // bind textures that are sampled and used in the glsl shader, and // bind whiteImage to textures that are sampled but zeroed in the glsl shader // // alternatives: // - use the last bound texture // -> costs more to sample a higher res texture then throw out the result // - disable texture sampling in glsl shader with #ifdefs, as before // -> increases the number of shaders that must be compiled // if (light && !fastLight) { if (pStage->bundle[TB_NORMALMAP].image[0]) { R_BindAnimatedImageToTMU( &pStage->bundle[TB_NORMALMAP], TB_NORMALMAP); enableTextures[0] = 1.0f; } else if (r_normalMapping->integer) GL_BindToTMU( tr.whiteImage, TB_NORMALMAP ); if (pStage->bundle[TB_DELUXEMAP].image[0]) { R_BindAnimatedImageToTMU( &pStage->bundle[TB_DELUXEMAP], TB_DELUXEMAP); enableTextures[1] = 1.0f; } else if (r_deluxeMapping->integer) GL_BindToTMU( tr.whiteImage, TB_DELUXEMAP ); if (pStage->bundle[TB_SPECULARMAP].image[0]) { R_BindAnimatedImageToTMU( &pStage->bundle[TB_SPECULARMAP], TB_SPECULARMAP); enableTextures[2] = 1.0f; } else if (r_specularMapping->integer) GL_BindToTMU( tr.whiteImage, TB_SPECULARMAP ); } enableTextures[3] = (r_cubeMapping->integer && !(tr.viewParms.flags & VPF_NOCUBEMAPS) && input->cubemapIndex) ? 1.0f : 0.0f; } GLSL_SetUniformVec4(sp, UNIFORM_ENABLETEXTURES, enableTextures); } else if ( pStage->bundle[1].image[0] != 0 ) { R_BindAnimatedImageToTMU( &pStage->bundle[0], 0 ); R_BindAnimatedImageToTMU( &pStage->bundle[1], 1 ); } else { // // set state // R_BindAnimatedImageToTMU( &pStage->bundle[0], 0 ); } // // testing cube map // if (!(tr.viewParms.flags & VPF_NOCUBEMAPS) && input->cubemapIndex && r_cubeMapping->integer) { vec4_t vec; cubemap_t *cubemap = &tr.cubemaps[input->cubemapIndex - 1]; // FIXME: cubemap image could be NULL if cubemap isn't renderer or loaded if (cubemap->image) GL_BindToTMU( cubemap->image, TB_CUBEMAP); VectorSubtract(cubemap->origin, backEnd.viewParms.or.origin, vec); vec[3] = 1.0f; VectorScale4(vec, 1.0f / cubemap->parallaxRadius, vec); GLSL_SetUniformVec4(sp, UNIFORM_CUBEMAPINFO, vec); } // // draw // R_DrawElements(input->numIndexes, input->firstIndex); #ifdef ELITEFORCE if ( overridealpha ) { pStage->alphaGen = oldAlphaGen; pStage->stateBits = oldStateBits; } #endif // allow skipping out to show just lightmaps during development if ( r_lightmap->integer && ( pStage->bundle[0].isLightmap || pStage->bundle[1].isLightmap ) ) { break; } if (backEnd.depthFill) break; } } static void RB_RenderShadowmap( shaderCommands_t *input ) { int deformGen; vec5_t deformParams; ComputeDeformValues(&deformGen, deformParams); { shaderProgram_t *sp = &tr.shadowmapShader; vec4_t vector; GLSL_BindProgram(sp); GLSL_SetUniformMat4(sp, UNIFORM_MODELVIEWPROJECTIONMATRIX, glState.modelviewProjection); GLSL_SetUniformMat4(sp, UNIFORM_MODELMATRIX, backEnd.or.transformMatrix); GLSL_SetUniformFloat(sp, UNIFORM_VERTEXLERP, glState.vertexAttribsInterpolation); GLSL_SetUniformInt(sp, UNIFORM_DEFORMGEN, deformGen); if (deformGen != DGEN_NONE) { GLSL_SetUniformFloat5(sp, UNIFORM_DEFORMPARAMS, deformParams); GLSL_SetUniformFloat(sp, UNIFORM_TIME, tess.shaderTime); } VectorCopy(backEnd.viewParms.or.origin, vector); vector[3] = 1.0f; GLSL_SetUniformVec4(sp, UNIFORM_LIGHTORIGIN, vector); GLSL_SetUniformFloat(sp, UNIFORM_LIGHTRADIUS, backEnd.viewParms.zFar); GL_State( 0 ); GLSL_SetUniformInt(sp, UNIFORM_ALPHATEST, 0); // // do multitexture // //if ( pStage->glslShaderGroup ) { // // draw // R_DrawElements(input->numIndexes, input->firstIndex); } } } /* ** RB_StageIteratorGeneric */ void RB_StageIteratorGeneric( void ) { shaderCommands_t *input; unsigned int vertexAttribs = 0; input = &tess; if (!input->numVertexes || !input->numIndexes) { return; } if (tess.useInternalVao) { RB_DeformTessGeometry(); } vertexAttribs = RB_CalcShaderVertexAttribs( input ); if (tess.useInternalVao) { RB_UpdateTessVao(vertexAttribs); } else { backEnd.pc.c_staticVaoDraws++; } // // log this call // if ( r_logFile->integer ) { // don't just call LogComment, or we will get // a call to va() every frame! GLimp_LogComment( va("--- RB_StageIteratorGeneric( %s ) ---\n", tess.shader->name) ); } // // set face culling appropriately // if (input->shader->cullType == CT_TWO_SIDED) { GL_Cull( CT_TWO_SIDED ); } else { qboolean cullFront = (input->shader->cullType == CT_FRONT_SIDED); if ( backEnd.viewParms.flags & VPF_DEPTHSHADOW ) cullFront = !cullFront; if ( backEnd.viewParms.isMirror ) cullFront = !cullFront; if ( backEnd.currentEntity && backEnd.currentEntity->mirrored ) cullFront = !cullFront; if (cullFront) GL_Cull( CT_FRONT_SIDED ); else GL_Cull( CT_BACK_SIDED ); } // set polygon offset if necessary if ( input->shader->polygonOffset ) { qglEnable( GL_POLYGON_OFFSET_FILL ); } // // render depth if in depthfill mode // if (backEnd.depthFill) { RB_IterateStagesGeneric( input ); // // reset polygon offset // if ( input->shader->polygonOffset ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } return; } // // render shadowmap if in shadowmap mode // if (backEnd.viewParms.flags & VPF_SHADOWMAP) { if ( input->shader->sort == SS_OPAQUE ) { RB_RenderShadowmap( input ); } // // reset polygon offset // if ( input->shader->polygonOffset ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } return; } // // // call shader function // RB_IterateStagesGeneric( input ); // // pshadows! // if (glRefConfig.framebufferObject && r_shadows->integer == 4 && tess.pshadowBits && tess.shader->sort <= SS_OPAQUE && !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) ) { ProjectPshadowVBOGLSL(); } // // now do any dynamic lighting needed // if ( tess.dlightBits && tess.shader->sort <= SS_OPAQUE && r_lightmap->integer == 0 && !(tess.shader->surfaceFlags & (SURF_NODLIGHT | SURF_SKY) ) ) { if (tess.shader->numUnfoggedPasses == 1 && tess.xstages[0]->glslShaderGroup == tr.lightallShader && (tess.xstages[0]->glslShaderIndex & LIGHTDEF_LIGHTTYPE_MASK) && r_dlightMode->integer) { ForwardDlight(); } else { ProjectDlightTexture(); } } // // now do fog // if ( tess.fogNum && tess.shader->fogPass ) { RB_FogPass(); } // // reset polygon offset // if ( input->shader->polygonOffset ) { qglDisable( GL_POLYGON_OFFSET_FILL ); } } /* ** RB_EndSurface */ void RB_EndSurface( void ) { shaderCommands_t *input; input = &tess; if (input->numIndexes == 0 || input->numVertexes == 0) { return; } if (input->indexes[SHADER_MAX_INDEXES-1] != 0) { ri.Error (ERR_DROP, "RB_EndSurface() - SHADER_MAX_INDEXES hit"); } if (input->xyz[SHADER_MAX_VERTEXES-1][0] != 0) { ri.Error (ERR_DROP, "RB_EndSurface() - SHADER_MAX_VERTEXES hit"); } if ( tess.shader == tr.shadowShader ) { RB_ShadowTessEnd(); return; } // for debugging of sort order issues, stop rendering after a given sort value if ( r_debugSort->integer && r_debugSort->integer < tess.shader->sort ) { return; } if (tess.useCacheVao) { // upload indexes now VaoCache_Commit(); } // // update performance counters // backEnd.pc.c_shaders++; backEnd.pc.c_vertexes += tess.numVertexes; backEnd.pc.c_indexes += tess.numIndexes; backEnd.pc.c_totalIndexes += tess.numIndexes * tess.numPasses; // // call off to shader specific tess end function // tess.currentStageIteratorFunc(); // // draw debugging stuff // if ( r_showtris->integer ) { DrawTris (input); } if ( r_shownormals->integer ) { DrawNormals (input); } // clear shader so we can tell we don't have any unclosed surfaces tess.numIndexes = 0; tess.numVertexes = 0; tess.firstIndex = 0; GLimp_LogComment( "----------\n" ); }