Fix rendering IQM models between model frames

For lerped frames (refEntity_t frame not equal oldframe) IQM joint
matrices may have incorrect axis scale. This can cause significant model
distortion. The matrix lerp is linear causing each vector to move in a
straight line between frames instead of arcing like a circle. Each joint
frame can have a different scale so can't just normalize the joint
matrix.

Store joints as quaternions and spherical lerp between them and then
convert to a matrix. For my test model, setting up the skeleton is four
times slower now but it still seems to be fast enough to be usable.
This commit is contained in:
Zack Middleton 2019-04-29 14:39:10 -05:00
parent d13d06424e
commit d404519cce
5 changed files with 294 additions and 164 deletions

View file

@ -368,6 +368,8 @@ typedef vec_t vec3_t[3];
typedef vec_t vec4_t[4]; typedef vec_t vec4_t[4];
typedef vec_t vec5_t[5]; typedef vec_t vec5_t[5];
typedef vec_t quat_t[4];
typedef int fixed4_t; typedef int fixed4_t;
typedef int fixed8_t; typedef int fixed8_t;
typedef int fixed16_t; typedef int fixed16_t;
@ -578,6 +580,8 @@ typedef struct {
#define Byte4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3]) #define Byte4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define QuatCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define SnapVector(v) {v[0]=((int)(v[0]));v[1]=((int)(v[1]));v[2]=((int)(v[2]));} #define SnapVector(v) {v[0]=((int)(v[0]));v[1]=((int)(v[1]));v[2]=((int)(v[2]));}
// just in case you don't want to use the macros // just in case you don't want to use the macros
vec_t _DotProduct( const vec3_t v1, const vec3_t v2 ); vec_t _DotProduct( const vec3_t v1, const vec3_t v2 );

View file

@ -589,6 +589,12 @@ typedef struct {
drawVert_t *verts; drawVert_t *verts;
} srfTriangles_t; } srfTriangles_t;
typedef struct {
vec3_t translate;
quat_t rotate;
vec3_t scale;
} iqmTransform_t;
// inter-quake-model // inter-quake-model
typedef struct { typedef struct {
int num_vertexes; int num_vertexes;
@ -623,8 +629,9 @@ typedef struct {
char *jointNames; char *jointNames;
int *jointParents; int *jointParents;
float *jointMats; float *bindJoints; // [num_joints * 12]
float *poseMats; float *invBindJoints; // [num_joints * 12]
iqmTransform_t *poses; // [num_frames * num_poses]
float *bounds; float *bounds;
} iqmData_t; } iqmData_t;

View file

@ -2,6 +2,7 @@
=========================================================================== ===========================================================================
Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu> Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu>
Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com> Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com>
Copyright (C) 2011-2019 Zack Middleton <zturtleman@gmail.com>
This file is part of Quake III Arena source code. This file is part of Quake III Arena source code.
@ -44,7 +45,7 @@ static qboolean IQM_CheckRange( iqmHeader_t *header, int offset,
} }
// "multiply" 3x4 matrices, these are assumed to be the top 3 rows // "multiply" 3x4 matrices, these are assumed to be the top 3 rows
// of a 4x4 matrix with the last row = (0 0 0 1) // of a 4x4 matrix with the last row = (0 0 0 1)
static void Matrix34Multiply( float *a, float *b, float *out ) { static void Matrix34Multiply( const float *a, const float *b, float *out ) {
out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8]; out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9]; out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10]; out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
@ -58,23 +59,7 @@ static void Matrix34Multiply( float *a, float *b, float *out ) {
out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10]; out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11]; out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
} }
static void InterpolateMatrix( float *a, float *b, float lerp, float *mat ) { static void JointToMatrix( const quat_t rot, const vec3_t scale, const vec3_t trans,
float unLerp = 1.0f - lerp;
mat[ 0] = a[ 0] * unLerp + b[ 0] * lerp;
mat[ 1] = a[ 1] * unLerp + b[ 1] * lerp;
mat[ 2] = a[ 2] * unLerp + b[ 2] * lerp;
mat[ 3] = a[ 3] * unLerp + b[ 3] * lerp;
mat[ 4] = a[ 4] * unLerp + b[ 4] * lerp;
mat[ 5] = a[ 5] * unLerp + b[ 5] * lerp;
mat[ 6] = a[ 6] * unLerp + b[ 6] * lerp;
mat[ 7] = a[ 7] * unLerp + b[ 7] * lerp;
mat[ 8] = a[ 8] * unLerp + b[ 8] * lerp;
mat[ 9] = a[ 9] * unLerp + b[ 9] * lerp;
mat[10] = a[10] * unLerp + b[10] * lerp;
mat[11] = a[11] * unLerp + b[11] * lerp;
}
static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
float *mat ) { float *mat ) {
float xx = 2.0f * rot[0] * rot[0]; float xx = 2.0f * rot[0] * rot[0];
float yy = 2.0f * rot[1] * rot[1]; float yy = 2.0f * rot[1] * rot[1];
@ -99,8 +84,7 @@ static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
mat[10] = scale[2] * (1.0f - (xx + yy)); mat[10] = scale[2] * (1.0f - (xx + yy));
mat[11] = trans[2]; mat[11] = trans[2];
} }
static void Matrix34Invert( float *inMat, float *outMat ) static void Matrix34Invert( const float *inMat, float *outMat ) {
{
vec3_t trans; vec3_t trans;
float invSqrLen, *v; float invSqrLen, *v;
@ -120,6 +104,61 @@ static void Matrix34Invert( float *inMat, float *outMat )
outMat[ 7] = -DotProduct(outMat + 4, trans); outMat[ 7] = -DotProduct(outMat + 4, trans);
outMat[11] = -DotProduct(outMat + 8, trans); outMat[11] = -DotProduct(outMat + 8, trans);
} }
static void QuatSlerp(const quat_t from, const quat_t _to, float fraction, quat_t out) {
float angle, cosAngle, sinAngle, backlerp, lerp;
quat_t to;
// cos() of angle
cosAngle = from[0] * _to[0] + from[1] * _to[1] + from[2] * _to[2] + from[3] * _to[3];
// negative handling is needed for taking shortest path (required for model joints)
if ( cosAngle < 0.0f ) {
cosAngle = -cosAngle;
to[0] = - _to[0];
to[1] = - _to[1];
to[2] = - _to[2];
to[3] = - _to[3];
} else {
QuatCopy( _to, to );
}
if ( cosAngle < 0.999999f ) {
// spherical lerp (slerp)
angle = acosf( cosAngle );
sinAngle = sinf( angle );
backlerp = sinf( ( 1.0f - fraction ) * angle ) / sinAngle;
lerp = sinf( fraction * angle ) / sinAngle;
} else {
// linear lerp
backlerp = 1.0f - fraction;
lerp = fraction;
}
out[0] = from[0] * backlerp + to[0] * lerp;
out[1] = from[1] * backlerp + to[1] * lerp;
out[2] = from[2] * backlerp + to[2] * lerp;
out[3] = from[3] * backlerp + to[3] * lerp;
}
static vec_t QuatNormalize2( const quat_t v, quat_t out) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2] + v[3]*v[3];
if (length) {
/* writing it this way allows gcc to recognize that rsqrt can be used */
ilength = 1/(float)sqrt (length);
/* sqrt(length) = length * (1 / sqrt(length)) */
length *= ilength;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
out[3] = v[3]*ilength;
} else {
out[0] = out[1] = out[2] = out[3] = 0;
}
return length;
}
/* /*
================= =================
@ -139,7 +178,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
unsigned short *framedata; unsigned short *framedata;
char *str; char *str;
int i, j, k; int i, j, k;
float jointInvMats[IQM_MAX_JOINTS * 12] = {0.0f}; iqmTransform_t *transform;
float *mat, *matInv; float *mat, *matInv;
size_t size, joint_names; size_t size, joint_names;
byte *dataPtr; byte *dataPtr;
@ -559,10 +598,11 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( header->num_joints ) { if( header->num_joints ) {
size += joint_names; // joint names size += joint_names; // joint names
size += header->num_joints * sizeof(int); // joint parents size += header->num_joints * sizeof(int); // joint parents
size += header->num_joints * 12 * sizeof( float ); // joint mats size += header->num_joints * 12 * sizeof(float); // bind joint matricies
size += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
} }
if( header->num_poses ) { if( header->num_poses ) {
size += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats size += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
} }
if( header->ofs_bounds ) { if( header->ofs_bounds ) {
size += header->num_frames * 6 * sizeof(float); // model bounds size += header->num_frames * 6 * sizeof(float); // model bounds
@ -633,12 +673,15 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
iqmData->jointParents = (int*)dataPtr; iqmData->jointParents = (int*)dataPtr;
dataPtr += header->num_joints * sizeof(int); // joint parents dataPtr += header->num_joints * sizeof(int); // joint parents
iqmData->jointMats = (float*)dataPtr; iqmData->bindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof( float ); // joint mats dataPtr += header->num_joints * 12 * sizeof(float); // bind joint matricies
iqmData->invBindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
} }
if( header->num_poses ) { if( header->num_poses ) {
iqmData->poseMats = (float*)dataPtr; iqmData->poses = (iqmTransform_t*)dataPtr;
dataPtr += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats dataPtr += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
} }
if( header->ofs_bounds ) { if( header->ofs_bounds ) {
iqmData->bounds = (float*)dataPtr; iqmData->bounds = (float*)dataPtr;
@ -804,22 +847,23 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
iqmData->jointParents[i] = joint->parent; iqmData->jointParents[i] = joint->parent;
} }
// calculate joint matrices and their inverses // calculate bind joint matrices and their inverses
// joint inverses are needed only until the pose matrices are calculated mat = iqmData->bindJoints;
mat = iqmData->jointMats; matInv = iqmData->invBindJoints;
matInv = jointInvMats;
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints); joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) { for( i = 0; i < header->num_joints; i++, joint++ ) {
float baseFrame[12], invBaseFrame[12]; float baseFrame[12], invBaseFrame[12];
QuatNormalize2( joint->rotate, joint->rotate );
JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame ); JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame );
Matrix34Invert( baseFrame, invBaseFrame ); Matrix34Invert( baseFrame, invBaseFrame );
if ( joint->parent >= 0 ) if ( joint->parent >= 0 )
{ {
Matrix34Multiply( iqmData->jointMats + 12 * joint->parent, baseFrame, mat ); Matrix34Multiply( iqmData->bindJoints + 12 * joint->parent, baseFrame, mat );
mat += 12; mat += 12;
Matrix34Multiply( invBaseFrame, jointInvMats + 12 * joint->parent, matInv ); Matrix34Multiply( invBaseFrame, iqmData->invBindJoints + 12 * joint->parent, matInv );
matInv += 12; matInv += 12;
} }
else else
@ -834,16 +878,15 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( header->num_poses ) if( header->num_poses )
{ {
// calculate pose matrices // calculate pose transforms
transform = iqmData->poses;
framedata = (unsigned short *)((byte *)header + header->ofs_frames); framedata = (unsigned short *)((byte *)header + header->ofs_frames);
mat = iqmData->poseMats;
for( i = 0; i < header->num_frames; i++ ) { for( i = 0; i < header->num_frames; i++ ) {
pose = (iqmPose_t *)((byte *)header + header->ofs_poses); pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
for( j = 0; j < header->num_poses; j++, pose++ ) { for( j = 0; j < header->num_poses; j++, pose++, transform++ ) {
vec3_t translate; vec3_t translate;
vec4_t rotate; quat_t rotate;
vec3_t scale; vec3_t scale;
float mat1[12], mat2[12];
translate[0] = pose->channeloffset[0]; translate[0] = pose->channeloffset[0];
if( pose->mask & 0x001) if( pose->mask & 0x001)
@ -878,18 +921,9 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( pose->mask & 0x200) if( pose->mask & 0x200)
scale[2] += *framedata++ * pose->channelscale[9]; scale[2] += *framedata++ * pose->channelscale[9];
// construct transformation matrix VectorCopy( translate, transform->translate );
JointToMatrix( rotate, scale, translate, mat1 ); QuatNormalize2( rotate, transform->rotate );
VectorCopy( scale, transform->scale );
if( pose->parent >= 0 ) {
Matrix34Multiply( iqmData->jointMats + 12 * pose->parent,
mat1, mat2 );
} else {
Com_Memcpy( mat2, mat1, sizeof(mat1) );
}
Matrix34Multiply( mat2, jointInvMats + 12 * j, mat );
mat += 12;
} }
} }
} }
@ -1128,37 +1162,59 @@ void R_AddIQMSurfaces( trRefEntity_t *ent ) {
static void ComputePoseMats( iqmData_t *data, int frame, int oldframe, static void ComputePoseMats( iqmData_t *data, int frame, int oldframe,
float backlerp, float *mat ) { float backlerp, float *poseMats ) {
float *mat1, *mat2; iqmTransform_t relativeJoints[IQM_MAX_JOINTS];
int *joint = data->jointParents; iqmTransform_t *relativeJoint;
int i; const iqmTransform_t *pose;
const iqmTransform_t *oldpose;
const int *jointParent;
const float *invBindMat;
float *poseMat, lerp;
int i;
relativeJoint = relativeJoints;
// copy or lerp animation frame pose
if ( oldframe == frame ) { if ( oldframe == frame ) {
mat1 = data->poseMats + 12 * data->num_poses * frame; pose = &data->poses[frame * data->num_poses];
for( i = 0; i < data->num_poses; i++, joint++ ) { for ( i = 0; i < data->num_poses; i++, pose++, relativeJoint++ ) {
if( *joint >= 0 ) { VectorCopy( pose->translate, relativeJoint->translate );
Matrix34Multiply( mat + 12 * *joint, QuatCopy( pose->rotate, relativeJoint->rotate );
mat1 + 12*i, mat + 12*i ); VectorCopy( pose->scale, relativeJoint->scale );
} else {
Com_Memcpy( mat + 12*i, mat1 + 12*i, 12 * sizeof(float) );
}
} }
} else { } else {
mat1 = data->poseMats + 12 * data->num_poses * frame; lerp = 1.0f - backlerp;
mat2 = data->poseMats + 12 * data->num_poses * oldframe; pose = &data->poses[frame * data->num_poses];
oldpose = &data->poses[oldframe * data->num_poses];
for( i = 0; i < data->num_poses; i++, joint++ ) { for ( i = 0; i < data->num_poses; i++, oldpose++, pose++, relativeJoint++ ) {
if( *joint >= 0 ) { relativeJoint->translate[0] = oldpose->translate[0] * backlerp + pose->translate[0] * lerp;
float tmpMat[12]; relativeJoint->translate[1] = oldpose->translate[1] * backlerp + pose->translate[1] * lerp;
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i, relativeJoint->translate[2] = oldpose->translate[2] * backlerp + pose->translate[2] * lerp;
backlerp, tmpMat );
Matrix34Multiply( mat + 12 * *joint, relativeJoint->scale[0] = oldpose->scale[0] * backlerp + pose->scale[0] * lerp;
tmpMat, mat + 12*i ); relativeJoint->scale[1] = oldpose->scale[1] * backlerp + pose->scale[1] * lerp;
relativeJoint->scale[2] = oldpose->scale[2] * backlerp + pose->scale[2] * lerp;
} else {
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i, QuatSlerp( oldpose->rotate, pose->rotate, lerp, relativeJoint->rotate );
backlerp, mat + 12*i ); }
} }
// multiply by inverse of bind pose and parent 'pose mat' (bind pose transform matrix)
relativeJoint = relativeJoints;
jointParent = data->jointParents;
invBindMat = data->invBindJoints;
poseMat = poseMats;
for ( i = 0; i < data->num_poses; i++, relativeJoint++, jointParent++, invBindMat += 12, poseMat += 12 ) {
float mat1[12], mat2[12];
JointToMatrix( relativeJoint->rotate, relativeJoint->scale, relativeJoint->translate, mat1 );
if ( *jointParent >= 0 ) {
Matrix34Multiply( &data->bindJoints[(*jointParent)*12], mat1, mat2 );
Matrix34Multiply( mat2, invBindMat, mat1 );
Matrix34Multiply( &poseMats[(*jointParent)*12], mat1, poseMat );
} else {
Matrix34Multiply( mat1, invBindMat, poseMat );
} }
} }
} }
@ -1169,7 +1225,7 @@ static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
int i; int i;
if ( data->num_poses == 0 ) { if ( data->num_poses == 0 ) {
Com_Memcpy( mat, data->jointMats, data->num_joints * 12 * sizeof(float) ); Com_Memcpy( mat, data->bindJoints, data->num_joints * 12 * sizeof(float) );
return; return;
} }
@ -1181,7 +1237,7 @@ static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
Com_Memcpy(outmat, mat1, sizeof(outmat)); Com_Memcpy(outmat, mat1, sizeof(outmat));
Matrix34Multiply( outmat, data->jointMats + 12*i, mat1 ); Matrix34Multiply( outmat, data->bindJoints + 12*i, mat1 );
} }
} }

View file

@ -954,6 +954,12 @@ typedef struct srfBspSurface_s
float *heightLodError; float *heightLodError;
} srfBspSurface_t; } srfBspSurface_t;
typedef struct {
vec3_t translate;
quat_t rotate;
vec3_t scale;
} iqmTransform_t;
// inter-quake-model // inter-quake-model
typedef struct { typedef struct {
int num_vertexes; int num_vertexes;
@ -988,8 +994,9 @@ typedef struct {
char *jointNames; char *jointNames;
int *jointParents; int *jointParents;
float *jointMats; float *bindJoints; // [num_joints * 12]
float *poseMats; float *invBindJoints; // [num_joints * 12]
iqmTransform_t *poses; // [num_frames * num_poses]
float *bounds; float *bounds;
int numVaoSurfaces; int numVaoSurfaces;

View file

@ -2,6 +2,7 @@
=========================================================================== ===========================================================================
Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu> Copyright (C) 2011 Thilo Schulz <thilo@tjps.eu>
Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com> Copyright (C) 2011 Matthias Bentrup <matthias.bentrup@googlemail.com>
Copyright (C) 2011-2019 Zack Middleton <zturtleman@gmail.com>
This file is part of Quake III Arena source code. This file is part of Quake III Arena source code.
@ -44,7 +45,7 @@ static qboolean IQM_CheckRange( iqmHeader_t *header, int offset,
} }
// "multiply" 3x4 matrices, these are assumed to be the top 3 rows // "multiply" 3x4 matrices, these are assumed to be the top 3 rows
// of a 4x4 matrix with the last row = (0 0 0 1) // of a 4x4 matrix with the last row = (0 0 0 1)
static void Matrix34Multiply( float *a, float *b, float *out ) { static void Matrix34Multiply( const float *a, const float *b, float *out ) {
out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8]; out[ 0] = a[0] * b[0] + a[1] * b[4] + a[ 2] * b[ 8];
out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9]; out[ 1] = a[0] * b[1] + a[1] * b[5] + a[ 2] * b[ 9];
out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10]; out[ 2] = a[0] * b[2] + a[1] * b[6] + a[ 2] * b[10];
@ -58,23 +59,7 @@ static void Matrix34Multiply( float *a, float *b, float *out ) {
out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10]; out[10] = a[8] * b[2] + a[9] * b[6] + a[10] * b[10];
out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11]; out[11] = a[8] * b[3] + a[9] * b[7] + a[10] * b[11] + a[11];
} }
static void InterpolateMatrix( float *a, float *b, float lerp, float *mat ) { static void JointToMatrix( const quat_t rot, const vec3_t scale, const vec3_t trans,
float unLerp = 1.0f - lerp;
mat[ 0] = a[ 0] * unLerp + b[ 0] * lerp;
mat[ 1] = a[ 1] * unLerp + b[ 1] * lerp;
mat[ 2] = a[ 2] * unLerp + b[ 2] * lerp;
mat[ 3] = a[ 3] * unLerp + b[ 3] * lerp;
mat[ 4] = a[ 4] * unLerp + b[ 4] * lerp;
mat[ 5] = a[ 5] * unLerp + b[ 5] * lerp;
mat[ 6] = a[ 6] * unLerp + b[ 6] * lerp;
mat[ 7] = a[ 7] * unLerp + b[ 7] * lerp;
mat[ 8] = a[ 8] * unLerp + b[ 8] * lerp;
mat[ 9] = a[ 9] * unLerp + b[ 9] * lerp;
mat[10] = a[10] * unLerp + b[10] * lerp;
mat[11] = a[11] * unLerp + b[11] * lerp;
}
static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
float *mat ) { float *mat ) {
float xx = 2.0f * rot[0] * rot[0]; float xx = 2.0f * rot[0] * rot[0];
float yy = 2.0f * rot[1] * rot[1]; float yy = 2.0f * rot[1] * rot[1];
@ -99,8 +84,7 @@ static void JointToMatrix( vec4_t rot, vec3_t scale, vec3_t trans,
mat[10] = scale[2] * (1.0f - (xx + yy)); mat[10] = scale[2] * (1.0f - (xx + yy));
mat[11] = trans[2]; mat[11] = trans[2];
} }
static void Matrix34Invert( float *inMat, float *outMat ) static void Matrix34Invert( const float *inMat, float *outMat ) {
{
vec3_t trans; vec3_t trans;
float invSqrLen, *v; float invSqrLen, *v;
@ -120,6 +104,61 @@ static void Matrix34Invert( float *inMat, float *outMat )
outMat[ 7] = -DotProduct(outMat + 4, trans); outMat[ 7] = -DotProduct(outMat + 4, trans);
outMat[11] = -DotProduct(outMat + 8, trans); outMat[11] = -DotProduct(outMat + 8, trans);
} }
static void QuatSlerp(const quat_t from, const quat_t _to, float fraction, quat_t out) {
float angle, cosAngle, sinAngle, backlerp, lerp;
quat_t to;
// cos() of angle
cosAngle = from[0] * _to[0] + from[1] * _to[1] + from[2] * _to[2] + from[3] * _to[3];
// negative handling is needed for taking shortest path (required for model joints)
if ( cosAngle < 0.0f ) {
cosAngle = -cosAngle;
to[0] = - _to[0];
to[1] = - _to[1];
to[2] = - _to[2];
to[3] = - _to[3];
} else {
QuatCopy( _to, to );
}
if ( cosAngle < 0.999999f ) {
// spherical lerp (slerp)
angle = acosf( cosAngle );
sinAngle = sinf( angle );
backlerp = sinf( ( 1.0f - fraction ) * angle ) / sinAngle;
lerp = sinf( fraction * angle ) / sinAngle;
} else {
// linear lerp
backlerp = 1.0f - fraction;
lerp = fraction;
}
out[0] = from[0] * backlerp + to[0] * lerp;
out[1] = from[1] * backlerp + to[1] * lerp;
out[2] = from[2] * backlerp + to[2] * lerp;
out[3] = from[3] * backlerp + to[3] * lerp;
}
static vec_t QuatNormalize2( const quat_t v, quat_t out) {
float length, ilength;
length = v[0]*v[0] + v[1]*v[1] + v[2]*v[2] + v[3]*v[3];
if (length) {
/* writing it this way allows gcc to recognize that rsqrt can be used */
ilength = 1/(float)sqrt (length);
/* sqrt(length) = length * (1 / sqrt(length)) */
length *= ilength;
out[0] = v[0]*ilength;
out[1] = v[1]*ilength;
out[2] = v[2]*ilength;
out[3] = v[3]*ilength;
} else {
out[0] = out[1] = out[2] = out[3] = 0;
}
return length;
}
/* /*
================= =================
@ -139,7 +178,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
unsigned short *framedata; unsigned short *framedata;
char *str; char *str;
int i, j, k; int i, j, k;
float jointInvMats[IQM_MAX_JOINTS * 12] = {0.0f}; iqmTransform_t *transform;
float *mat, *matInv; float *mat, *matInv;
size_t size, joint_names; size_t size, joint_names;
byte *dataPtr; byte *dataPtr;
@ -562,10 +601,11 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( header->num_joints ) { if( header->num_joints ) {
size += joint_names; // joint names size += joint_names; // joint names
size += header->num_joints * sizeof(int); // joint parents size += header->num_joints * sizeof(int); // joint parents
size += header->num_joints * 12 * sizeof( float ); // joint mats size += header->num_joints * 12 * sizeof(float); // bind joint matricies
size += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
} }
if( header->num_poses ) { if( header->num_poses ) {
size += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats size += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
} }
if( header->ofs_bounds ) { if( header->ofs_bounds ) {
size += header->num_frames * 6 * sizeof(float); // model bounds size += header->num_frames * 6 * sizeof(float); // model bounds
@ -636,12 +676,15 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
iqmData->jointParents = (int*)dataPtr; iqmData->jointParents = (int*)dataPtr;
dataPtr += header->num_joints * sizeof(int); // joint parents dataPtr += header->num_joints * sizeof(int); // joint parents
iqmData->jointMats = (float*)dataPtr; iqmData->bindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof( float ); // joint mats dataPtr += header->num_joints * 12 * sizeof(float); // bind joint matricies
iqmData->invBindJoints = (float*)dataPtr;
dataPtr += header->num_joints * 12 * sizeof(float); // inverse bind joint matricies
} }
if( header->num_poses ) { if( header->num_poses ) {
iqmData->poseMats = (float*)dataPtr; iqmData->poses = (iqmTransform_t*)dataPtr;
dataPtr += header->num_poses * header->num_frames * 12 * sizeof( float ); // pose mats dataPtr += header->num_poses * header->num_frames * sizeof(iqmTransform_t); // pose transforms
} }
if( header->ofs_bounds ) { if( header->ofs_bounds ) {
iqmData->bounds = (float*)dataPtr; iqmData->bounds = (float*)dataPtr;
@ -807,22 +850,23 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
iqmData->jointParents[i] = joint->parent; iqmData->jointParents[i] = joint->parent;
} }
// calculate joint matrices and their inverses // calculate bind joint matrices and their inverses
// joint inverses are needed only until the pose matrices are calculated mat = iqmData->bindJoints;
mat = iqmData->jointMats; matInv = iqmData->invBindJoints;
matInv = jointInvMats;
joint = (iqmJoint_t *)((byte *)header + header->ofs_joints); joint = (iqmJoint_t *)((byte *)header + header->ofs_joints);
for( i = 0; i < header->num_joints; i++, joint++ ) { for( i = 0; i < header->num_joints; i++, joint++ ) {
float baseFrame[12], invBaseFrame[12]; float baseFrame[12], invBaseFrame[12];
QuatNormalize2( joint->rotate, joint->rotate );
JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame ); JointToMatrix( joint->rotate, joint->scale, joint->translate, baseFrame );
Matrix34Invert( baseFrame, invBaseFrame ); Matrix34Invert( baseFrame, invBaseFrame );
if ( joint->parent >= 0 ) if ( joint->parent >= 0 )
{ {
Matrix34Multiply( iqmData->jointMats + 12 * joint->parent, baseFrame, mat ); Matrix34Multiply( iqmData->bindJoints + 12 * joint->parent, baseFrame, mat );
mat += 12; mat += 12;
Matrix34Multiply( invBaseFrame, jointInvMats + 12 * joint->parent, matInv ); Matrix34Multiply( invBaseFrame, iqmData->invBindJoints + 12 * joint->parent, matInv );
matInv += 12; matInv += 12;
} }
else else
@ -837,16 +881,15 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( header->num_poses ) if( header->num_poses )
{ {
// calculate pose matrices // calculate pose transforms
transform = iqmData->poses;
framedata = (unsigned short *)((byte *)header + header->ofs_frames); framedata = (unsigned short *)((byte *)header + header->ofs_frames);
mat = iqmData->poseMats;
for( i = 0; i < header->num_frames; i++ ) { for( i = 0; i < header->num_frames; i++ ) {
pose = (iqmPose_t *)((byte *)header + header->ofs_poses); pose = (iqmPose_t *)((byte *)header + header->ofs_poses);
for( j = 0; j < header->num_poses; j++, pose++ ) { for( j = 0; j < header->num_poses; j++, pose++, transform++ ) {
vec3_t translate; vec3_t translate;
vec4_t rotate; quat_t rotate;
vec3_t scale; vec3_t scale;
float mat1[12], mat2[12];
translate[0] = pose->channeloffset[0]; translate[0] = pose->channeloffset[0];
if( pose->mask & 0x001) if( pose->mask & 0x001)
@ -881,18 +924,9 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
if( pose->mask & 0x200) if( pose->mask & 0x200)
scale[2] += *framedata++ * pose->channelscale[9]; scale[2] += *framedata++ * pose->channelscale[9];
// construct transformation matrix VectorCopy( translate, transform->translate );
JointToMatrix( rotate, scale, translate, mat1 ); QuatNormalize2( rotate, transform->rotate );
VectorCopy( scale, transform->scale );
if( pose->parent >= 0 ) {
Matrix34Multiply( iqmData->jointMats + 12 * pose->parent,
mat1, mat2 );
} else {
Com_Memcpy( mat2, mat1, sizeof(mat1) );
}
Matrix34Multiply( mat2, jointInvMats + 12 * j, mat );
mat += 12;
} }
} }
} }
@ -1306,37 +1340,59 @@ void R_AddIQMSurfaces( trRefEntity_t *ent ) {
static void ComputePoseMats( iqmData_t *data, int frame, int oldframe, static void ComputePoseMats( iqmData_t *data, int frame, int oldframe,
float backlerp, float *mat ) { float backlerp, float *poseMats ) {
float *mat1, *mat2; iqmTransform_t relativeJoints[IQM_MAX_JOINTS];
int *joint = data->jointParents; iqmTransform_t *relativeJoint;
int i; const iqmTransform_t *pose;
const iqmTransform_t *oldpose;
const int *jointParent;
const float *invBindMat;
float *poseMat, lerp;
int i;
relativeJoint = relativeJoints;
// copy or lerp animation frame pose
if ( oldframe == frame ) { if ( oldframe == frame ) {
mat1 = data->poseMats + 12 * data->num_poses * frame; pose = &data->poses[frame * data->num_poses];
for( i = 0; i < data->num_poses; i++, joint++ ) { for ( i = 0; i < data->num_poses; i++, pose++, relativeJoint++ ) {
if( *joint >= 0 ) { VectorCopy( pose->translate, relativeJoint->translate );
Matrix34Multiply( mat + 12 * *joint, QuatCopy( pose->rotate, relativeJoint->rotate );
mat1 + 12*i, mat + 12*i ); VectorCopy( pose->scale, relativeJoint->scale );
} else {
Com_Memcpy( mat + 12*i, mat1 + 12*i, 12 * sizeof(float) );
}
} }
} else { } else {
mat1 = data->poseMats + 12 * data->num_poses * frame; lerp = 1.0f - backlerp;
mat2 = data->poseMats + 12 * data->num_poses * oldframe; pose = &data->poses[frame * data->num_poses];
oldpose = &data->poses[oldframe * data->num_poses];
for( i = 0; i < data->num_poses; i++, joint++ ) { for ( i = 0; i < data->num_poses; i++, oldpose++, pose++, relativeJoint++ ) {
if( *joint >= 0 ) { relativeJoint->translate[0] = oldpose->translate[0] * backlerp + pose->translate[0] * lerp;
float tmpMat[12]; relativeJoint->translate[1] = oldpose->translate[1] * backlerp + pose->translate[1] * lerp;
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i, relativeJoint->translate[2] = oldpose->translate[2] * backlerp + pose->translate[2] * lerp;
backlerp, tmpMat );
Matrix34Multiply( mat + 12 * *joint, relativeJoint->scale[0] = oldpose->scale[0] * backlerp + pose->scale[0] * lerp;
tmpMat, mat + 12*i ); relativeJoint->scale[1] = oldpose->scale[1] * backlerp + pose->scale[1] * lerp;
relativeJoint->scale[2] = oldpose->scale[2] * backlerp + pose->scale[2] * lerp;
} else {
InterpolateMatrix( mat1 + 12*i, mat2 + 12*i, QuatSlerp( oldpose->rotate, pose->rotate, lerp, relativeJoint->rotate );
backlerp, mat + 12*i ); }
} }
// multiply by inverse of bind pose and parent 'pose mat' (bind pose transform matrix)
relativeJoint = relativeJoints;
jointParent = data->jointParents;
invBindMat = data->invBindJoints;
poseMat = poseMats;
for ( i = 0; i < data->num_poses; i++, relativeJoint++, jointParent++, invBindMat += 12, poseMat += 12 ) {
float mat1[12], mat2[12];
JointToMatrix( relativeJoint->rotate, relativeJoint->scale, relativeJoint->translate, mat1 );
if ( *jointParent >= 0 ) {
Matrix34Multiply( &data->bindJoints[(*jointParent)*12], mat1, mat2 );
Matrix34Multiply( mat2, invBindMat, mat1 );
Matrix34Multiply( &poseMats[(*jointParent)*12], mat1, poseMat );
} else {
Matrix34Multiply( mat1, invBindMat, poseMat );
} }
} }
} }
@ -1347,7 +1403,7 @@ static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
int i; int i;
if ( data->num_poses == 0 ) { if ( data->num_poses == 0 ) {
Com_Memcpy( mat, data->jointMats, data->num_joints * 12 * sizeof(float) ); Com_Memcpy( mat, data->bindJoints, data->num_joints * 12 * sizeof(float) );
return; return;
} }
@ -1359,7 +1415,7 @@ static void ComputeJointMats( iqmData_t *data, int frame, int oldframe,
Com_Memcpy(outmat, mat1, sizeof(outmat)); Com_Memcpy(outmat, mat1, sizeof(outmat));
Matrix34Multiply( outmat, data->jointMats + 12*i, mat1 ); Matrix34Multiply( outmat, data->bindJoints + 12*i, mat1 );
} }
} }