mirror of
https://github.com/UberGames/lilium-voyager.git
synced 2025-01-18 21:51:37 +00:00
Improve IQM CPU vertex skinning performance
Only calculate vertex blend matrix for each unique bone indexes/weights combination once per-surface instead of recalculating for each vertex. For best performance the model surfaces needs to use few vertex bone indexes and weights combinations. Unroll loops so GCC better optimizes them. In my tests drawing animated IQM may take 50% as long in opengl1 and 70% as long in opengl2. It will vary by model though and might not help much at all. Made unanimated IQM models skip matrix math altogether.
This commit is contained in:
parent
fdc08e860e
commit
cccd283be8
4 changed files with 601 additions and 254 deletions
|
@ -600,21 +600,26 @@ typedef struct {
|
|||
struct srfIQModel_s *surfaces;
|
||||
|
||||
int *triangles;
|
||||
|
||||
// vertex arrays
|
||||
float *positions;
|
||||
float *texcoords;
|
||||
float *normals;
|
||||
float *tangents;
|
||||
byte *blendIndexes;
|
||||
byte *colors;
|
||||
int *influences; // [num_vertexes] indexes into influenceBlendVertexes
|
||||
|
||||
// unique list of vertex blend indexes/weights for faster CPU vertex skinning
|
||||
byte *influenceBlendIndexes; // [num_influences]
|
||||
union {
|
||||
float *f;
|
||||
byte *b;
|
||||
} blendWeights;
|
||||
byte *colors;
|
||||
} influenceBlendWeights; // [num_influences]
|
||||
|
||||
// depending upon the exporter, blend indices and weights might be int/float
|
||||
// as opposed to the recommended byte/byte, for example Noesis exports
|
||||
// int/float whereas the official IQM tool exports byte/byte
|
||||
byte blendWeightsType; // IQM_UBYTE or IQM_FLOAT
|
||||
int blendWeightsType; // IQM_UBYTE or IQM_FLOAT
|
||||
|
||||
char *jointNames;
|
||||
int *jointParents;
|
||||
|
@ -631,6 +636,7 @@ typedef struct srfIQModel_s {
|
|||
iqmData_t *data;
|
||||
int first_vertex, num_vertexes;
|
||||
int first_triangle, num_triangles;
|
||||
int first_influence, num_influences;
|
||||
} srfIQModel_t;
|
||||
|
||||
|
||||
|
|
|
@ -143,7 +143,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
iqmBounds_t *bounds;
|
||||
unsigned short *framedata;
|
||||
char *str;
|
||||
int i, j;
|
||||
int i, j, k;
|
||||
float jointInvMats[IQM_MAX_JOINTS * 12] = {0.0f};
|
||||
float *mat, *matInv;
|
||||
size_t size, joint_names;
|
||||
|
@ -152,6 +152,12 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
srfIQModel_t *surface;
|
||||
char meshName[MAX_QPATH];
|
||||
int vertexArrayFormat[IQM_COLOR+1];
|
||||
int allocateInfluences;
|
||||
byte *blendIndexes;
|
||||
union {
|
||||
byte *b;
|
||||
float *f;
|
||||
} blendWeights;
|
||||
|
||||
if( filesize < sizeof(iqmHeader_t) ) {
|
||||
return qfalse;
|
||||
|
@ -211,6 +217,11 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
vertexArrayFormat[i] = -1;
|
||||
}
|
||||
|
||||
blendIndexes = NULL;
|
||||
blendWeights.b = NULL;
|
||||
|
||||
allocateInfluences = 0;
|
||||
|
||||
if ( header->num_meshes )
|
||||
{
|
||||
// check and swap vertex arrays
|
||||
|
@ -288,6 +299,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
vertexarray->size != 4 ) {
|
||||
return qfalse;
|
||||
}
|
||||
blendIndexes = (byte*)header + vertexarray->offset;
|
||||
break;
|
||||
case IQM_BLENDWEIGHTS:
|
||||
if( (vertexarray->format != IQM_FLOAT &&
|
||||
|
@ -295,6 +307,11 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
vertexarray->size != 4 ) {
|
||||
return qfalse;
|
||||
}
|
||||
if( vertexarray->format == IQM_FLOAT ) {
|
||||
blendWeights.f = (float*)( (byte*)header + vertexarray->offset );
|
||||
} else {
|
||||
blendWeights.b = (byte*)header + vertexarray->offset;
|
||||
}
|
||||
break;
|
||||
case IQM_COLOR:
|
||||
if( vertexarray->format != IQM_UBYTE ||
|
||||
|
@ -325,9 +342,6 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
// opengl1 renderer doesn't use tangents
|
||||
vertexArrayFormat[IQM_TANGENT] = -1;
|
||||
|
||||
// FIXME: don't require colors array when drawing
|
||||
vertexArrayFormat[IQM_COLOR] = IQM_UBYTE;
|
||||
|
||||
// check and swap triangles
|
||||
if( IQM_CheckRange( header, header->ofs_triangles,
|
||||
header->num_triangles, sizeof(iqmTriangle_t) ) ) {
|
||||
|
@ -388,6 +402,38 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
mesh->material >= header->num_text ) {
|
||||
return qfalse;
|
||||
}
|
||||
|
||||
// find number of unique blend influences per mesh
|
||||
if( header->num_joints ) {
|
||||
for( j = 0; j < mesh->num_vertexes; j++ ) {
|
||||
int vtx = mesh->first_vertex + j;
|
||||
|
||||
for( k = 0; k < j; k++ ) {
|
||||
int influence = mesh->first_vertex + k;
|
||||
|
||||
if( *(int*)&blendIndexes[4*influence] != *(int*)&blendIndexes[4*vtx] ) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
if ( blendWeights.f[4*influence+0] == blendWeights.f[4*vtx+0] &&
|
||||
blendWeights.f[4*influence+1] == blendWeights.f[4*vtx+1] &&
|
||||
blendWeights.f[4*influence+2] == blendWeights.f[4*vtx+2] &&
|
||||
blendWeights.f[4*influence+3] == blendWeights.f[4*vtx+3] ) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if ( *(int*)&blendWeights.b[4*influence] == *(int*)&blendWeights.b[4*vtx] ) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ( k == j ) {
|
||||
allocateInfluences++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -500,19 +546,20 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
size += header->num_vertexes * 4 * sizeof(float); // tangents
|
||||
}
|
||||
|
||||
if ( vertexArrayFormat[IQM_BLENDINDEXES] != -1 ) {
|
||||
size += header->num_vertexes * 4 * sizeof(byte); // blendIndexes
|
||||
}
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
||||
size += header->num_vertexes * 4 * sizeof(byte); // blendWeights
|
||||
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
size += header->num_vertexes * 4 * sizeof(float); // blendWeights
|
||||
}
|
||||
|
||||
if ( vertexArrayFormat[IQM_COLOR] != -1 ) {
|
||||
size += header->num_vertexes * 4 * sizeof(byte); // colors
|
||||
}
|
||||
|
||||
if ( allocateInfluences ) {
|
||||
size += header->num_vertexes * sizeof(int); // influences
|
||||
size += allocateInfluences * 4 * sizeof(byte); // influenceBlendIndexes
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
||||
size += allocateInfluences * 4 * sizeof(byte); // influenceBlendWeights
|
||||
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
size += allocateInfluences * 4 * sizeof(float); // influenceBlendWeights
|
||||
}
|
||||
}
|
||||
}
|
||||
if( header->num_joints ) {
|
||||
size += joint_names; // joint names
|
||||
|
@ -561,23 +608,26 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
dataPtr += header->num_vertexes * 4 * sizeof(float); // tangents
|
||||
}
|
||||
|
||||
if ( vertexArrayFormat[IQM_BLENDINDEXES] != -1 ) {
|
||||
iqmData->blendIndexes = (byte*)dataPtr;
|
||||
dataPtr += header->num_vertexes * 4 * sizeof(byte); // blendIndexes
|
||||
}
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
||||
iqmData->blendWeights.b = (byte*)dataPtr;
|
||||
dataPtr += header->num_vertexes * 4 * sizeof(byte); // blendWeights
|
||||
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
iqmData->blendWeights.f = (float*)dataPtr;
|
||||
dataPtr += header->num_vertexes * 4 * sizeof(float); // blendWeights
|
||||
}
|
||||
|
||||
if ( vertexArrayFormat[IQM_COLOR] != -1 ) {
|
||||
iqmData->colors = (byte*)dataPtr;
|
||||
dataPtr += header->num_vertexes * 4 * sizeof(byte); // colors
|
||||
}
|
||||
|
||||
if ( allocateInfluences ) {
|
||||
iqmData->influences = (int*)dataPtr;
|
||||
dataPtr += header->num_vertexes * sizeof(int); // influences
|
||||
|
||||
iqmData->influenceBlendIndexes = (byte*)dataPtr;
|
||||
dataPtr += allocateInfluences * 4 * sizeof(byte); // influenceBlendIndexes
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
||||
iqmData->influenceBlendWeights.b = (byte*)dataPtr;
|
||||
dataPtr += allocateInfluences * 4 * sizeof(byte); // influenceBlendWeights
|
||||
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
iqmData->influenceBlendWeights.f = (float*)dataPtr;
|
||||
dataPtr += allocateInfluences * 4 * sizeof(float); // influenceBlendWeights
|
||||
}
|
||||
}
|
||||
}
|
||||
if( header->num_joints ) {
|
||||
iqmData->jointNames = (char*)dataPtr;
|
||||
|
@ -662,27 +712,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
n * sizeof(float) );
|
||||
break;
|
||||
case IQM_BLENDINDEXES:
|
||||
if( vertexarray->format == IQM_INT ) {
|
||||
int *data = (int*)((byte*)header + vertexarray->offset);
|
||||
for ( j = 0; j < n; j++ ) {
|
||||
iqmData->blendIndexes[j] = (byte)data[j];
|
||||
}
|
||||
} else {
|
||||
Com_Memcpy( iqmData->blendIndexes,
|
||||
(byte *)header + vertexarray->offset,
|
||||
n * sizeof(byte) );
|
||||
}
|
||||
break;
|
||||
case IQM_BLENDWEIGHTS:
|
||||
if( vertexarray->format == IQM_FLOAT ) {
|
||||
Com_Memcpy( iqmData->blendWeights.f,
|
||||
(byte *)header + vertexarray->offset,
|
||||
n * sizeof(float) );
|
||||
} else {
|
||||
Com_Memcpy( iqmData->blendWeights.b,
|
||||
(byte *)header + vertexarray->offset,
|
||||
n * sizeof(byte) );
|
||||
}
|
||||
break;
|
||||
case IQM_COLOR:
|
||||
Com_Memcpy( iqmData->colors,
|
||||
|
@ -691,6 +721,68 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// find unique blend influences per mesh
|
||||
if( allocateInfluences ) {
|
||||
int vtx, influence, totalInfluences = 0;
|
||||
|
||||
surface = iqmData->surfaces;
|
||||
for( i = 0; i < header->num_meshes; i++, surface++ ) {
|
||||
surface->first_influence = totalInfluences;
|
||||
surface->num_influences = 0;
|
||||
|
||||
for( j = 0; j < surface->num_vertexes; j++ ) {
|
||||
vtx = surface->first_vertex + j;
|
||||
|
||||
for( k = 0; k < surface->num_influences; k++ ) {
|
||||
influence = surface->first_influence + k;
|
||||
|
||||
if( *(int*)&iqmData->influenceBlendIndexes[4*influence] != *(int*)&blendIndexes[4*vtx] ) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
if ( iqmData->influenceBlendWeights.f[4*influence+0] == blendWeights.f[4*vtx+0] &&
|
||||
iqmData->influenceBlendWeights.f[4*influence+1] == blendWeights.f[4*vtx+1] &&
|
||||
iqmData->influenceBlendWeights.f[4*influence+2] == blendWeights.f[4*vtx+2] &&
|
||||
iqmData->influenceBlendWeights.f[4*influence+3] == blendWeights.f[4*vtx+3] ) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if ( *(int*)&iqmData->influenceBlendWeights.b[4*influence] == *(int*)&blendWeights.b[4*vtx] ) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
iqmData->influences[vtx] = surface->first_influence + k;
|
||||
|
||||
if( k == surface->num_influences ) {
|
||||
influence = surface->first_influence + k;
|
||||
|
||||
iqmData->influenceBlendIndexes[4*influence+0] = blendIndexes[4*vtx+0];
|
||||
iqmData->influenceBlendIndexes[4*influence+1] = blendIndexes[4*vtx+1];
|
||||
iqmData->influenceBlendIndexes[4*influence+2] = blendIndexes[4*vtx+2];
|
||||
iqmData->influenceBlendIndexes[4*influence+3] = blendIndexes[4*vtx+3];
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
iqmData->influenceBlendWeights.f[4*influence+0] = blendWeights.f[4*vtx+0];
|
||||
iqmData->influenceBlendWeights.f[4*influence+1] = blendWeights.f[4*vtx+1];
|
||||
iqmData->influenceBlendWeights.f[4*influence+2] = blendWeights.f[4*vtx+2];
|
||||
iqmData->influenceBlendWeights.f[4*influence+3] = blendWeights.f[4*vtx+3];
|
||||
} else {
|
||||
iqmData->influenceBlendWeights.b[4*influence+0] = blendWeights.b[4*vtx+0];
|
||||
iqmData->influenceBlendWeights.b[4*influence+1] = blendWeights.b[4*vtx+1];
|
||||
iqmData->influenceBlendWeights.b[4*influence+2] = blendWeights.b[4*vtx+2];
|
||||
iqmData->influenceBlendWeights.b[4*influence+3] = blendWeights.b[4*vtx+3];
|
||||
}
|
||||
|
||||
totalInfluences++;
|
||||
surface->num_influences++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( header->num_joints )
|
||||
|
@ -1103,8 +1195,14 @@ void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
|
|||
srfIQModel_t *surf = (srfIQModel_t *)surface;
|
||||
iqmData_t *data = surf->data;
|
||||
float jointMats[IQM_MAX_JOINTS * 12];
|
||||
float influenceVtxMat[SHADER_MAX_VERTEXES * 12];
|
||||
float influenceNrmMat[SHADER_MAX_VERTEXES * 9];
|
||||
int i;
|
||||
|
||||
float *xyz;
|
||||
float *normal;
|
||||
float *texCoords;
|
||||
byte *color;
|
||||
vec4_t *outXYZ;
|
||||
vec4_t *outNormal;
|
||||
vec2_t (*outTexCoord)[2];
|
||||
|
@ -1120,102 +1218,165 @@ void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
|
|||
|
||||
RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 );
|
||||
|
||||
xyz = &data->positions[surf->first_vertex * 3];
|
||||
normal = &data->normals[surf->first_vertex * 3];
|
||||
texCoords = &data->texcoords[surf->first_vertex * 2];
|
||||
|
||||
if ( data->colors ) {
|
||||
color = &data->colors[surf->first_vertex * 4];
|
||||
} else {
|
||||
color = NULL;
|
||||
}
|
||||
|
||||
outXYZ = &tess.xyz[tess.numVertexes];
|
||||
outNormal = &tess.normal[tess.numVertexes];
|
||||
outTexCoord = &tess.texCoords[tess.numVertexes];
|
||||
outColor = &tess.vertexColors[tess.numVertexes];
|
||||
|
||||
// compute interpolated joint matrices
|
||||
if ( data->num_poses > 0 ) {
|
||||
// compute interpolated joint matrices
|
||||
ComputePoseMats( data, frame, oldframe, backlerp, jointMats );
|
||||
}
|
||||
|
||||
// transform vertexes and fill other data
|
||||
for( i = 0; i < surf->num_vertexes;
|
||||
i++, outXYZ++, outNormal++, outTexCoord++, outColor++ ) {
|
||||
int j, k;
|
||||
float vtxMat[12];
|
||||
float nrmMat[9];
|
||||
int vtx = i + surf->first_vertex;
|
||||
float blendWeights[4];
|
||||
int numWeights;
|
||||
// compute vertex blend influence matricies
|
||||
for( i = 0; i < surf->num_influences; i++ ) {
|
||||
int influence = surf->first_influence + i;
|
||||
float *vtxMat = &influenceVtxMat[12*i];
|
||||
float *nrmMat = &influenceNrmMat[9*i];
|
||||
int j;
|
||||
float blendWeights[4];
|
||||
int numWeights;
|
||||
|
||||
for ( numWeights = 0; numWeights < 4; numWeights++ ) {
|
||||
if ( data->blendWeightsType == IQM_FLOAT )
|
||||
blendWeights[numWeights] = data->blendWeights.f[4*vtx + numWeights];
|
||||
else
|
||||
blendWeights[numWeights] = (float)data->blendWeights.b[4*vtx + numWeights] / 255.0f;
|
||||
for ( numWeights = 0; numWeights < 4; numWeights++ ) {
|
||||
if ( data->blendWeightsType == IQM_FLOAT )
|
||||
blendWeights[numWeights] = data->influenceBlendWeights.f[4*influence + numWeights];
|
||||
else
|
||||
blendWeights[numWeights] = (float)data->influenceBlendWeights.b[4*influence + numWeights] / 255.0f;
|
||||
|
||||
if ( blendWeights[numWeights] <= 0 )
|
||||
break;
|
||||
}
|
||||
if ( blendWeights[numWeights] <= 0.0f )
|
||||
break;
|
||||
}
|
||||
|
||||
if ( data->num_poses == 0 || numWeights == 0 ) {
|
||||
// no blend joint, use identity matrix.
|
||||
Com_Memcpy( vtxMat, identityMatrix, 12 * sizeof (float) );
|
||||
} else {
|
||||
// compute the vertex matrix by blending the up to
|
||||
// four blend weights
|
||||
Com_Memset( vtxMat, 0, 12 * sizeof (float) );
|
||||
for( j = 0; j < numWeights; j++ ) {
|
||||
for( k = 0; k < 12; k++ ) {
|
||||
vtxMat[k] += blendWeights[j] * jointMats[12*data->blendIndexes[4*vtx + j] + k];
|
||||
if ( numWeights == 0 ) {
|
||||
// no blend joint, use identity matrix.
|
||||
vtxMat[0] = identityMatrix[0];
|
||||
vtxMat[1] = identityMatrix[1];
|
||||
vtxMat[2] = identityMatrix[2];
|
||||
vtxMat[3] = identityMatrix[3];
|
||||
vtxMat[4] = identityMatrix[4];
|
||||
vtxMat[5] = identityMatrix[5];
|
||||
vtxMat[6] = identityMatrix[6];
|
||||
vtxMat[7] = identityMatrix[7];
|
||||
vtxMat[8] = identityMatrix[8];
|
||||
vtxMat[9] = identityMatrix[9];
|
||||
vtxMat[10] = identityMatrix[10];
|
||||
vtxMat[11] = identityMatrix[11];
|
||||
} else {
|
||||
// compute the vertex matrix by blending the up to
|
||||
// four blend weights
|
||||
vtxMat[0] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 0];
|
||||
vtxMat[1] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 1];
|
||||
vtxMat[2] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 2];
|
||||
vtxMat[3] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 3];
|
||||
vtxMat[4] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 4];
|
||||
vtxMat[5] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 5];
|
||||
vtxMat[6] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 6];
|
||||
vtxMat[7] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 7];
|
||||
vtxMat[8] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 8];
|
||||
vtxMat[9] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 9];
|
||||
vtxMat[10] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 10];
|
||||
vtxMat[11] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 11];
|
||||
|
||||
for( j = 1; j < numWeights; j++ ) {
|
||||
vtxMat[0] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 0];
|
||||
vtxMat[1] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 1];
|
||||
vtxMat[2] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 2];
|
||||
vtxMat[3] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 3];
|
||||
vtxMat[4] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 4];
|
||||
vtxMat[5] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 5];
|
||||
vtxMat[6] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 6];
|
||||
vtxMat[7] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 7];
|
||||
vtxMat[8] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 8];
|
||||
vtxMat[9] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 9];
|
||||
vtxMat[10] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 10];
|
||||
vtxMat[11] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 11];
|
||||
}
|
||||
}
|
||||
|
||||
// compute the normal matrix as transpose of the adjoint
|
||||
// of the vertex matrix
|
||||
nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
|
||||
nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
|
||||
nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
|
||||
nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
|
||||
nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
|
||||
nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
|
||||
nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
|
||||
nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
|
||||
nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];
|
||||
}
|
||||
|
||||
// compute the normal matrix as transpose of the adjoint
|
||||
// of the vertex matrix
|
||||
nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
|
||||
nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
|
||||
nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
|
||||
nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
|
||||
nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
|
||||
nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
|
||||
nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
|
||||
nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
|
||||
nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];
|
||||
// transform vertexes and fill other data
|
||||
for( i = 0; i < surf->num_vertexes;
|
||||
i++, xyz+=3, normal+=3, texCoords+=2,
|
||||
outXYZ++, outNormal++, outTexCoord++ ) {
|
||||
int influence = data->influences[surf->first_vertex + i] - surf->first_influence;
|
||||
float *vtxMat = &influenceVtxMat[12*influence];
|
||||
float *nrmMat = &influenceNrmMat[9*influence];
|
||||
|
||||
(*outTexCoord)[0][0] = data->texcoords[2*vtx + 0];
|
||||
(*outTexCoord)[0][1] = data->texcoords[2*vtx + 1];
|
||||
(*outTexCoord)[1][0] = (*outTexCoord)[0][0];
|
||||
(*outTexCoord)[1][1] = (*outTexCoord)[0][1];
|
||||
(*outTexCoord)[0][0] = texCoords[0];
|
||||
(*outTexCoord)[0][1] = texCoords[1];
|
||||
|
||||
(*outXYZ)[0] =
|
||||
vtxMat[ 0] * data->positions[3*vtx+0] +
|
||||
vtxMat[ 1] * data->positions[3*vtx+1] +
|
||||
vtxMat[ 2] * data->positions[3*vtx+2] +
|
||||
vtxMat[ 3];
|
||||
(*outXYZ)[1] =
|
||||
vtxMat[ 4] * data->positions[3*vtx+0] +
|
||||
vtxMat[ 5] * data->positions[3*vtx+1] +
|
||||
vtxMat[ 6] * data->positions[3*vtx+2] +
|
||||
vtxMat[ 7];
|
||||
(*outXYZ)[2] =
|
||||
vtxMat[ 8] * data->positions[3*vtx+0] +
|
||||
vtxMat[ 9] * data->positions[3*vtx+1] +
|
||||
vtxMat[10] * data->positions[3*vtx+2] +
|
||||
vtxMat[11];
|
||||
(*outXYZ)[3] = 1.0f;
|
||||
(*outXYZ)[0] =
|
||||
vtxMat[ 0] * xyz[0] +
|
||||
vtxMat[ 1] * xyz[1] +
|
||||
vtxMat[ 2] * xyz[2] +
|
||||
vtxMat[ 3];
|
||||
(*outXYZ)[1] =
|
||||
vtxMat[ 4] * xyz[0] +
|
||||
vtxMat[ 5] * xyz[1] +
|
||||
vtxMat[ 6] * xyz[2] +
|
||||
vtxMat[ 7];
|
||||
(*outXYZ)[2] =
|
||||
vtxMat[ 8] * xyz[0] +
|
||||
vtxMat[ 9] * xyz[1] +
|
||||
vtxMat[10] * xyz[2] +
|
||||
vtxMat[11];
|
||||
|
||||
(*outNormal)[0] =
|
||||
nrmMat[ 0] * data->normals[3*vtx+0] +
|
||||
nrmMat[ 1] * data->normals[3*vtx+1] +
|
||||
nrmMat[ 2] * data->normals[3*vtx+2];
|
||||
(*outNormal)[1] =
|
||||
nrmMat[ 3] * data->normals[3*vtx+0] +
|
||||
nrmMat[ 4] * data->normals[3*vtx+1] +
|
||||
nrmMat[ 5] * data->normals[3*vtx+2];
|
||||
(*outNormal)[2] =
|
||||
nrmMat[ 6] * data->normals[3*vtx+0] +
|
||||
nrmMat[ 7] * data->normals[3*vtx+1] +
|
||||
nrmMat[ 8] * data->normals[3*vtx+2];
|
||||
(*outNormal)[3] = 0.0f;
|
||||
(*outNormal)[0] =
|
||||
nrmMat[ 0] * normal[0] +
|
||||
nrmMat[ 1] * normal[1] +
|
||||
nrmMat[ 2] * normal[2];
|
||||
(*outNormal)[1] =
|
||||
nrmMat[ 3] * normal[0] +
|
||||
nrmMat[ 4] * normal[1] +
|
||||
nrmMat[ 5] * normal[2];
|
||||
(*outNormal)[2] =
|
||||
nrmMat[ 6] * normal[0] +
|
||||
nrmMat[ 7] * normal[1] +
|
||||
nrmMat[ 8] * normal[2];
|
||||
}
|
||||
} else {
|
||||
// copy vertexes and fill other data
|
||||
for( i = 0; i < surf->num_vertexes;
|
||||
i++, xyz+=3, normal+=3, texCoords+=2,
|
||||
outXYZ++, outNormal++, outTexCoord++ ) {
|
||||
(*outTexCoord)[0][0] = texCoords[0];
|
||||
(*outTexCoord)[0][1] = texCoords[1];
|
||||
|
||||
(*outColor)[0] = data->colors[4*vtx+0];
|
||||
(*outColor)[1] = data->colors[4*vtx+1];
|
||||
(*outColor)[2] = data->colors[4*vtx+2];
|
||||
(*outColor)[3] = data->colors[4*vtx+3];
|
||||
(*outXYZ)[0] = xyz[0];
|
||||
(*outXYZ)[1] = xyz[1];
|
||||
(*outXYZ)[2] = xyz[2];
|
||||
|
||||
(*outNormal)[0] = normal[0];
|
||||
(*outNormal)[1] = normal[1];
|
||||
(*outNormal)[2] = normal[2];
|
||||
}
|
||||
}
|
||||
|
||||
if ( color ) {
|
||||
Com_Memcpy( outColor, color, surf->num_vertexes * sizeof( outColor[0] ) );
|
||||
} else {
|
||||
Com_Memset( outColor, 0, surf->num_vertexes * sizeof( outColor[0] ) );
|
||||
}
|
||||
|
||||
tri = data->triangles + 3 * surf->first_triangle;
|
||||
|
|
|
@ -950,21 +950,26 @@ typedef struct {
|
|||
struct srfIQModel_s *surfaces;
|
||||
|
||||
int *triangles;
|
||||
|
||||
// vertex arrays
|
||||
float *positions;
|
||||
float *texcoords;
|
||||
float *normals;
|
||||
float *tangents;
|
||||
byte *blendIndexes;
|
||||
byte *colors;
|
||||
int *influences; // [num_vertexes] indexes into influenceBlendVertexes
|
||||
|
||||
// unique list of vertex blend indexes/weights for faster CPU vertex skinning
|
||||
byte *influenceBlendIndexes; // [num_influences]
|
||||
union {
|
||||
float *f;
|
||||
byte *b;
|
||||
} blendWeights;
|
||||
byte *colors;
|
||||
} influenceBlendWeights; // [num_influences]
|
||||
|
||||
// depending upon the exporter, blend indices and weights might be int/float
|
||||
// as opposed to the recommended byte/byte, for example Noesis exports
|
||||
// int/float whereas the official IQM tool exports byte/byte
|
||||
byte blendWeightsType; // IQM_UBYTE or IQM_FLOAT
|
||||
int blendWeightsType; // IQM_UBYTE or IQM_FLOAT
|
||||
|
||||
char *jointNames;
|
||||
int *jointParents;
|
||||
|
@ -981,6 +986,7 @@ typedef struct srfIQModel_s {
|
|||
iqmData_t *data;
|
||||
int first_vertex, num_vertexes;
|
||||
int first_triangle, num_triangles;
|
||||
int first_influence, num_influences;
|
||||
} srfIQModel_t;
|
||||
|
||||
typedef struct srfVaoMdvMesh_s
|
||||
|
|
|
@ -143,7 +143,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
iqmBounds_t *bounds;
|
||||
unsigned short *framedata;
|
||||
char *str;
|
||||
int i, j;
|
||||
int i, j, k;
|
||||
float jointInvMats[IQM_MAX_JOINTS * 12] = {0.0f};
|
||||
float *mat, *matInv;
|
||||
size_t size, joint_names;
|
||||
|
@ -152,6 +152,12 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
srfIQModel_t *surface;
|
||||
char meshName[MAX_QPATH];
|
||||
int vertexArrayFormat[IQM_COLOR+1];
|
||||
int allocateInfluences;
|
||||
byte *blendIndexes;
|
||||
union {
|
||||
byte *b;
|
||||
float *f;
|
||||
} blendWeights;
|
||||
|
||||
if( filesize < sizeof(iqmHeader_t) ) {
|
||||
return qfalse;
|
||||
|
@ -211,6 +217,11 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
vertexArrayFormat[i] = -1;
|
||||
}
|
||||
|
||||
blendIndexes = NULL;
|
||||
blendWeights.b = NULL;
|
||||
|
||||
allocateInfluences = 0;
|
||||
|
||||
if ( header->num_meshes )
|
||||
{
|
||||
// check and swap vertex arrays
|
||||
|
@ -288,6 +299,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
vertexarray->size != 4 ) {
|
||||
return qfalse;
|
||||
}
|
||||
blendIndexes = (byte*)header + vertexarray->offset;
|
||||
break;
|
||||
case IQM_BLENDWEIGHTS:
|
||||
if( (vertexarray->format != IQM_FLOAT &&
|
||||
|
@ -295,6 +307,11 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
vertexarray->size != 4 ) {
|
||||
return qfalse;
|
||||
}
|
||||
if( vertexarray->format == IQM_FLOAT ) {
|
||||
blendWeights.f = (float*)( (byte*)header + vertexarray->offset );
|
||||
} else {
|
||||
blendWeights.b = (byte*)header + vertexarray->offset;
|
||||
}
|
||||
break;
|
||||
case IQM_COLOR:
|
||||
if( vertexarray->format != IQM_UBYTE ||
|
||||
|
@ -328,9 +345,6 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
return qfalse;
|
||||
}
|
||||
|
||||
// FIXME: don't require colors array when drawing
|
||||
vertexArrayFormat[IQM_COLOR] = IQM_UBYTE;
|
||||
|
||||
// check and swap triangles
|
||||
if( IQM_CheckRange( header, header->ofs_triangles,
|
||||
header->num_triangles, sizeof(iqmTriangle_t) ) ) {
|
||||
|
@ -391,6 +405,38 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
mesh->material >= header->num_text ) {
|
||||
return qfalse;
|
||||
}
|
||||
|
||||
// find number of unique blend influences per mesh
|
||||
if( header->num_joints ) {
|
||||
for( j = 0; j < mesh->num_vertexes; j++ ) {
|
||||
int vtx = mesh->first_vertex + j;
|
||||
|
||||
for( k = 0; k < j; k++ ) {
|
||||
int influence = mesh->first_vertex + k;
|
||||
|
||||
if( *(int*)&blendIndexes[4*influence] != *(int*)&blendIndexes[4*vtx] ) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
if ( blendWeights.f[4*influence+0] == blendWeights.f[4*vtx+0] &&
|
||||
blendWeights.f[4*influence+1] == blendWeights.f[4*vtx+1] &&
|
||||
blendWeights.f[4*influence+2] == blendWeights.f[4*vtx+2] &&
|
||||
blendWeights.f[4*influence+3] == blendWeights.f[4*vtx+3] ) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if ( *(int*)&blendWeights.b[4*influence] == *(int*)&blendWeights.b[4*vtx] ) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if ( k == j ) {
|
||||
allocateInfluences++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -503,19 +549,20 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
size += header->num_vertexes * 4 * sizeof(float); // tangents
|
||||
}
|
||||
|
||||
if ( vertexArrayFormat[IQM_BLENDINDEXES] != -1 ) {
|
||||
size += header->num_vertexes * 4 * sizeof(byte); // blendIndexes
|
||||
}
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
||||
size += header->num_vertexes * 4 * sizeof(byte); // blendWeights
|
||||
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
size += header->num_vertexes * 4 * sizeof(float); // blendWeights
|
||||
}
|
||||
|
||||
if ( vertexArrayFormat[IQM_COLOR] != -1 ) {
|
||||
size += header->num_vertexes * 4 * sizeof(byte); // colors
|
||||
}
|
||||
|
||||
if ( allocateInfluences ) {
|
||||
size += header->num_vertexes * sizeof(int); // influences
|
||||
size += allocateInfluences * 4 * sizeof(byte); // influenceBlendIndexes
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
||||
size += allocateInfluences * 4 * sizeof(byte); // influenceBlendWeights
|
||||
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
size += allocateInfluences * 4 * sizeof(float); // influenceBlendWeights
|
||||
}
|
||||
}
|
||||
}
|
||||
if( header->num_joints ) {
|
||||
size += joint_names; // joint names
|
||||
|
@ -564,23 +611,26 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
dataPtr += header->num_vertexes * 4 * sizeof(float); // tangents
|
||||
}
|
||||
|
||||
if ( vertexArrayFormat[IQM_BLENDINDEXES] != -1 ) {
|
||||
iqmData->blendIndexes = (byte*)dataPtr;
|
||||
dataPtr += header->num_vertexes * 4 * sizeof(byte); // blendIndexes
|
||||
}
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
||||
iqmData->blendWeights.b = (byte*)dataPtr;
|
||||
dataPtr += header->num_vertexes * 4 * sizeof(byte); // blendWeights
|
||||
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
iqmData->blendWeights.f = (float*)dataPtr;
|
||||
dataPtr += header->num_vertexes * 4 * sizeof(float); // blendWeights
|
||||
}
|
||||
|
||||
if ( vertexArrayFormat[IQM_COLOR] != -1 ) {
|
||||
iqmData->colors = (byte*)dataPtr;
|
||||
dataPtr += header->num_vertexes * 4 * sizeof(byte); // colors
|
||||
}
|
||||
|
||||
if ( allocateInfluences ) {
|
||||
iqmData->influences = (int*)dataPtr;
|
||||
dataPtr += header->num_vertexes * sizeof(int); // influences
|
||||
|
||||
iqmData->influenceBlendIndexes = (byte*)dataPtr;
|
||||
dataPtr += allocateInfluences * 4 * sizeof(byte); // influenceBlendIndexes
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_UBYTE ) {
|
||||
iqmData->influenceBlendWeights.b = (byte*)dataPtr;
|
||||
dataPtr += allocateInfluences * 4 * sizeof(byte); // influenceBlendWeights
|
||||
} else if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
iqmData->influenceBlendWeights.f = (float*)dataPtr;
|
||||
dataPtr += allocateInfluences * 4 * sizeof(float); // influenceBlendWeights
|
||||
}
|
||||
}
|
||||
}
|
||||
if( header->num_joints ) {
|
||||
iqmData->jointNames = (char*)dataPtr;
|
||||
|
@ -665,27 +715,7 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
n * sizeof(float) );
|
||||
break;
|
||||
case IQM_BLENDINDEXES:
|
||||
if( vertexarray->format == IQM_INT ) {
|
||||
int *data = (int*)((byte*)header + vertexarray->offset);
|
||||
for ( j = 0; j < n; j++ ) {
|
||||
iqmData->blendIndexes[j] = (byte)data[j];
|
||||
}
|
||||
} else {
|
||||
Com_Memcpy( iqmData->blendIndexes,
|
||||
(byte *)header + vertexarray->offset,
|
||||
n * sizeof(byte) );
|
||||
}
|
||||
break;
|
||||
case IQM_BLENDWEIGHTS:
|
||||
if( vertexarray->format == IQM_FLOAT ) {
|
||||
Com_Memcpy( iqmData->blendWeights.f,
|
||||
(byte *)header + vertexarray->offset,
|
||||
n * sizeof(float) );
|
||||
} else {
|
||||
Com_Memcpy( iqmData->blendWeights.b,
|
||||
(byte *)header + vertexarray->offset,
|
||||
n * sizeof(byte) );
|
||||
}
|
||||
break;
|
||||
case IQM_COLOR:
|
||||
Com_Memcpy( iqmData->colors,
|
||||
|
@ -694,6 +724,68 @@ qboolean R_LoadIQM( model_t *mod, void *buffer, int filesize, const char *mod_na
|
|||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// find unique blend influences per mesh
|
||||
if( allocateInfluences ) {
|
||||
int vtx, influence, totalInfluences = 0;
|
||||
|
||||
surface = iqmData->surfaces;
|
||||
for( i = 0; i < header->num_meshes; i++, surface++ ) {
|
||||
surface->first_influence = totalInfluences;
|
||||
surface->num_influences = 0;
|
||||
|
||||
for( j = 0; j < surface->num_vertexes; j++ ) {
|
||||
vtx = surface->first_vertex + j;
|
||||
|
||||
for( k = 0; k < surface->num_influences; k++ ) {
|
||||
influence = surface->first_influence + k;
|
||||
|
||||
if( *(int*)&iqmData->influenceBlendIndexes[4*influence] != *(int*)&blendIndexes[4*vtx] ) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
if ( iqmData->influenceBlendWeights.f[4*influence+0] == blendWeights.f[4*vtx+0] &&
|
||||
iqmData->influenceBlendWeights.f[4*influence+1] == blendWeights.f[4*vtx+1] &&
|
||||
iqmData->influenceBlendWeights.f[4*influence+2] == blendWeights.f[4*vtx+2] &&
|
||||
iqmData->influenceBlendWeights.f[4*influence+3] == blendWeights.f[4*vtx+3] ) {
|
||||
break;
|
||||
}
|
||||
} else {
|
||||
if ( *(int*)&iqmData->influenceBlendWeights.b[4*influence] == *(int*)&blendWeights.b[4*vtx] ) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
iqmData->influences[vtx] = surface->first_influence + k;
|
||||
|
||||
if( k == surface->num_influences ) {
|
||||
influence = surface->first_influence + k;
|
||||
|
||||
iqmData->influenceBlendIndexes[4*influence+0] = blendIndexes[4*vtx+0];
|
||||
iqmData->influenceBlendIndexes[4*influence+1] = blendIndexes[4*vtx+1];
|
||||
iqmData->influenceBlendIndexes[4*influence+2] = blendIndexes[4*vtx+2];
|
||||
iqmData->influenceBlendIndexes[4*influence+3] = blendIndexes[4*vtx+3];
|
||||
|
||||
if( vertexArrayFormat[IQM_BLENDWEIGHTS] == IQM_FLOAT ) {
|
||||
iqmData->influenceBlendWeights.f[4*influence+0] = blendWeights.f[4*vtx+0];
|
||||
iqmData->influenceBlendWeights.f[4*influence+1] = blendWeights.f[4*vtx+1];
|
||||
iqmData->influenceBlendWeights.f[4*influence+2] = blendWeights.f[4*vtx+2];
|
||||
iqmData->influenceBlendWeights.f[4*influence+3] = blendWeights.f[4*vtx+3];
|
||||
} else {
|
||||
iqmData->influenceBlendWeights.b[4*influence+0] = blendWeights.b[4*vtx+0];
|
||||
iqmData->influenceBlendWeights.b[4*influence+1] = blendWeights.b[4*vtx+1];
|
||||
iqmData->influenceBlendWeights.b[4*influence+2] = blendWeights.b[4*vtx+2];
|
||||
iqmData->influenceBlendWeights.b[4*influence+3] = blendWeights.b[4*vtx+3];
|
||||
}
|
||||
|
||||
totalInfluences++;
|
||||
surface->num_influences++;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if( header->num_joints )
|
||||
|
@ -1110,8 +1202,15 @@ void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
|
|||
srfIQModel_t *surf = (srfIQModel_t *)surface;
|
||||
iqmData_t *data = surf->data;
|
||||
float jointMats[IQM_MAX_JOINTS * 12];
|
||||
float influenceVtxMat[SHADER_MAX_VERTEXES * 12];
|
||||
float influenceNrmMat[SHADER_MAX_VERTEXES * 9];
|
||||
int i;
|
||||
|
||||
float *xyz;
|
||||
float *normal;
|
||||
float *tangent;
|
||||
float *texCoords;
|
||||
byte *color;
|
||||
vec4_t *outXYZ;
|
||||
int16_t *outNormal;
|
||||
int16_t *outTangent;
|
||||
|
@ -1128,106 +1227,181 @@ void RB_IQMSurfaceAnim( surfaceType_t *surface ) {
|
|||
|
||||
RB_CHECKOVERFLOW( surf->num_vertexes, surf->num_triangles * 3 );
|
||||
|
||||
xyz = &data->positions[surf->first_vertex * 3];
|
||||
normal = &data->normals[surf->first_vertex * 3];
|
||||
tangent = &data->tangents[surf->first_vertex * 4];
|
||||
texCoords = &data->texcoords[surf->first_vertex * 2];
|
||||
|
||||
if ( data->colors ) {
|
||||
color = &data->colors[surf->first_vertex * 4];
|
||||
} else {
|
||||
color = NULL;
|
||||
}
|
||||
|
||||
outXYZ = &tess.xyz[tess.numVertexes];
|
||||
outNormal = tess.normal[tess.numVertexes];
|
||||
outTangent = tess.tangent[tess.numVertexes];
|
||||
outTexCoord = &tess.texCoords[tess.numVertexes];
|
||||
outColor = tess.color[tess.numVertexes];
|
||||
|
||||
// compute interpolated joint matrices
|
||||
if ( data->num_poses > 0 ) {
|
||||
// compute interpolated joint matrices
|
||||
ComputePoseMats( data, frame, oldframe, backlerp, jointMats );
|
||||
}
|
||||
|
||||
// transform vertexes and fill other data
|
||||
for( i = 0; i < surf->num_vertexes;
|
||||
i++, outXYZ++, outNormal+=4, outTexCoord++, outColor+=4 ) {
|
||||
int j, k;
|
||||
float vtxMat[12];
|
||||
float nrmMat[9];
|
||||
int vtx = i + surf->first_vertex;
|
||||
float blendWeights[4];
|
||||
int numWeights;
|
||||
// compute vertex blend influence matricies
|
||||
for( i = 0; i < surf->num_influences; i++ ) {
|
||||
int influence = surf->first_influence + i;
|
||||
float *vtxMat = &influenceVtxMat[12*i];
|
||||
float *nrmMat = &influenceNrmMat[9*i];
|
||||
int j;
|
||||
float blendWeights[4];
|
||||
int numWeights;
|
||||
|
||||
for ( numWeights = 0; numWeights < 4; numWeights++ ) {
|
||||
if ( data->blendWeightsType == IQM_FLOAT )
|
||||
blendWeights[numWeights] = data->blendWeights.f[4*vtx + numWeights];
|
||||
else
|
||||
blendWeights[numWeights] = (float)data->blendWeights.b[4*vtx + numWeights] / 255.0f;
|
||||
for ( numWeights = 0; numWeights < 4; numWeights++ ) {
|
||||
if ( data->blendWeightsType == IQM_FLOAT )
|
||||
blendWeights[numWeights] = data->influenceBlendWeights.f[4*influence + numWeights];
|
||||
else
|
||||
blendWeights[numWeights] = (float)data->influenceBlendWeights.b[4*influence + numWeights] / 255.0f;
|
||||
|
||||
if ( blendWeights[numWeights] <= 0 )
|
||||
break;
|
||||
}
|
||||
if ( blendWeights[numWeights] <= 0.0f )
|
||||
break;
|
||||
}
|
||||
|
||||
if ( data->num_poses == 0 || numWeights == 0 ) {
|
||||
// no blend joint, use identity matrix.
|
||||
Com_Memcpy( vtxMat, identityMatrix, 12 * sizeof (float) );
|
||||
} else {
|
||||
// compute the vertex matrix by blending the up to
|
||||
// four blend weights
|
||||
Com_Memset( vtxMat, 0, 12 * sizeof (float) );
|
||||
for( j = 0; j < numWeights; j++ ) {
|
||||
for( k = 0; k < 12; k++ ) {
|
||||
vtxMat[k] += blendWeights[j] * jointMats[12*data->blendIndexes[4*vtx + j] + k];
|
||||
if ( numWeights == 0 ) {
|
||||
// no blend joint, use identity matrix.
|
||||
vtxMat[0] = identityMatrix[0];
|
||||
vtxMat[1] = identityMatrix[1];
|
||||
vtxMat[2] = identityMatrix[2];
|
||||
vtxMat[3] = identityMatrix[3];
|
||||
vtxMat[4] = identityMatrix[4];
|
||||
vtxMat[5] = identityMatrix[5];
|
||||
vtxMat[6] = identityMatrix[6];
|
||||
vtxMat[7] = identityMatrix[7];
|
||||
vtxMat[8] = identityMatrix[8];
|
||||
vtxMat[9] = identityMatrix[9];
|
||||
vtxMat[10] = identityMatrix[10];
|
||||
vtxMat[11] = identityMatrix[11];
|
||||
} else {
|
||||
// compute the vertex matrix by blending the up to
|
||||
// four blend weights
|
||||
vtxMat[0] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 0];
|
||||
vtxMat[1] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 1];
|
||||
vtxMat[2] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 2];
|
||||
vtxMat[3] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 3];
|
||||
vtxMat[4] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 4];
|
||||
vtxMat[5] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 5];
|
||||
vtxMat[6] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 6];
|
||||
vtxMat[7] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 7];
|
||||
vtxMat[8] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 8];
|
||||
vtxMat[9] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 9];
|
||||
vtxMat[10] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 10];
|
||||
vtxMat[11] = blendWeights[0] * jointMats[12 * data->influenceBlendIndexes[4*influence + 0] + 11];
|
||||
|
||||
for( j = 1; j < numWeights; j++ ) {
|
||||
vtxMat[0] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 0];
|
||||
vtxMat[1] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 1];
|
||||
vtxMat[2] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 2];
|
||||
vtxMat[3] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 3];
|
||||
vtxMat[4] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 4];
|
||||
vtxMat[5] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 5];
|
||||
vtxMat[6] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 6];
|
||||
vtxMat[7] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 7];
|
||||
vtxMat[8] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 8];
|
||||
vtxMat[9] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 9];
|
||||
vtxMat[10] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 10];
|
||||
vtxMat[11] += blendWeights[j] * jointMats[12 * data->influenceBlendIndexes[4*influence + j] + 11];
|
||||
}
|
||||
}
|
||||
|
||||
// compute the normal matrix as transpose of the adjoint
|
||||
// of the vertex matrix
|
||||
nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
|
||||
nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
|
||||
nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
|
||||
nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
|
||||
nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
|
||||
nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
|
||||
nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
|
||||
nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
|
||||
nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];
|
||||
}
|
||||
|
||||
// compute the normal matrix as transpose of the adjoint
|
||||
// of the vertex matrix
|
||||
nrmMat[ 0] = vtxMat[ 5]*vtxMat[10] - vtxMat[ 6]*vtxMat[ 9];
|
||||
nrmMat[ 1] = vtxMat[ 6]*vtxMat[ 8] - vtxMat[ 4]*vtxMat[10];
|
||||
nrmMat[ 2] = vtxMat[ 4]*vtxMat[ 9] - vtxMat[ 5]*vtxMat[ 8];
|
||||
nrmMat[ 3] = vtxMat[ 2]*vtxMat[ 9] - vtxMat[ 1]*vtxMat[10];
|
||||
nrmMat[ 4] = vtxMat[ 0]*vtxMat[10] - vtxMat[ 2]*vtxMat[ 8];
|
||||
nrmMat[ 5] = vtxMat[ 1]*vtxMat[ 8] - vtxMat[ 0]*vtxMat[ 9];
|
||||
nrmMat[ 6] = vtxMat[ 1]*vtxMat[ 6] - vtxMat[ 2]*vtxMat[ 5];
|
||||
nrmMat[ 7] = vtxMat[ 2]*vtxMat[ 4] - vtxMat[ 0]*vtxMat[ 6];
|
||||
nrmMat[ 8] = vtxMat[ 0]*vtxMat[ 5] - vtxMat[ 1]*vtxMat[ 4];
|
||||
// transform vertexes and fill other data
|
||||
for( i = 0; i < surf->num_vertexes;
|
||||
i++, xyz+=3, normal+=3, tangent+=4, texCoords+=2,
|
||||
outXYZ++, outNormal+=4, outTangent+=4, outTexCoord++ ) {
|
||||
int influence = data->influences[surf->first_vertex + i] - surf->first_influence;
|
||||
float *vtxMat = &influenceVtxMat[12*influence];
|
||||
float *nrmMat = &influenceNrmMat[9*influence];
|
||||
|
||||
(*outTexCoord)[0] = data->texcoords[2*vtx + 0];
|
||||
(*outTexCoord)[1] = data->texcoords[2*vtx + 1];
|
||||
(*outTexCoord)[0] = texCoords[0];
|
||||
(*outTexCoord)[1] = texCoords[1];
|
||||
|
||||
(*outXYZ)[0] =
|
||||
vtxMat[ 0] * data->positions[3*vtx+0] +
|
||||
vtxMat[ 1] * data->positions[3*vtx+1] +
|
||||
vtxMat[ 2] * data->positions[3*vtx+2] +
|
||||
vtxMat[ 3];
|
||||
(*outXYZ)[1] =
|
||||
vtxMat[ 4] * data->positions[3*vtx+0] +
|
||||
vtxMat[ 5] * data->positions[3*vtx+1] +
|
||||
vtxMat[ 6] * data->positions[3*vtx+2] +
|
||||
vtxMat[ 7];
|
||||
(*outXYZ)[2] =
|
||||
vtxMat[ 8] * data->positions[3*vtx+0] +
|
||||
vtxMat[ 9] * data->positions[3*vtx+1] +
|
||||
vtxMat[10] * data->positions[3*vtx+2] +
|
||||
vtxMat[11];
|
||||
(*outXYZ)[3] = 1.0f;
|
||||
(*outXYZ)[0] =
|
||||
vtxMat[ 0] * xyz[0] +
|
||||
vtxMat[ 1] * xyz[1] +
|
||||
vtxMat[ 2] * xyz[2] +
|
||||
vtxMat[ 3];
|
||||
(*outXYZ)[1] =
|
||||
vtxMat[ 4] * xyz[0] +
|
||||
vtxMat[ 5] * xyz[1] +
|
||||
vtxMat[ 6] * xyz[2] +
|
||||
vtxMat[ 7];
|
||||
(*outXYZ)[2] =
|
||||
vtxMat[ 8] * xyz[0] +
|
||||
vtxMat[ 9] * xyz[1] +
|
||||
vtxMat[10] * xyz[2] +
|
||||
vtxMat[11];
|
||||
|
||||
{
|
||||
vec3_t normal;
|
||||
vec4_t tangent;
|
||||
{
|
||||
vec3_t unpackedNormal;
|
||||
vec4_t unpackedTangent;
|
||||
|
||||
normal[0] = DotProduct(&nrmMat[0], &data->normals[3*vtx]);
|
||||
normal[1] = DotProduct(&nrmMat[3], &data->normals[3*vtx]);
|
||||
normal[2] = DotProduct(&nrmMat[6], &data->normals[3*vtx]);
|
||||
unpackedNormal[0] = DotProduct(&nrmMat[0], normal);
|
||||
unpackedNormal[1] = DotProduct(&nrmMat[3], normal);
|
||||
unpackedNormal[2] = DotProduct(&nrmMat[6], normal);
|
||||
|
||||
R_VaoPackNormal(outNormal, unpackedNormal);
|
||||
|
||||
unpackedTangent[0] = DotProduct(&nrmMat[0], tangent);
|
||||
unpackedTangent[1] = DotProduct(&nrmMat[3], tangent);
|
||||
unpackedTangent[2] = DotProduct(&nrmMat[6], tangent);
|
||||
unpackedTangent[3] = tangent[3];
|
||||
|
||||
R_VaoPackTangent(outTangent, unpackedTangent);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// copy vertexes and fill other data
|
||||
for( i = 0; i < surf->num_vertexes;
|
||||
i++, xyz+=3, normal+=3, tangent+=4, texCoords+=2,
|
||||
outXYZ++, outNormal+=4, outTangent+=4, outTexCoord++ ) {
|
||||
(*outTexCoord)[0] = texCoords[0];
|
||||
(*outTexCoord)[1] = texCoords[1];
|
||||
|
||||
(*outXYZ)[0] = xyz[0];
|
||||
(*outXYZ)[1] = xyz[1];
|
||||
(*outXYZ)[2] = xyz[2];
|
||||
|
||||
R_VaoPackNormal(outNormal, normal);
|
||||
|
||||
tangent[0] = DotProduct(&nrmMat[0], &data->tangents[4*vtx]);
|
||||
tangent[1] = DotProduct(&nrmMat[3], &data->tangents[4*vtx]);
|
||||
tangent[2] = DotProduct(&nrmMat[6], &data->tangents[4*vtx]);
|
||||
tangent[3] = data->tangents[4*vtx+3];
|
||||
|
||||
R_VaoPackTangent(outTangent, tangent);
|
||||
outTangent+=4;
|
||||
}
|
||||
}
|
||||
|
||||
outColor[0] = data->colors[4*vtx+0] * 257;
|
||||
outColor[1] = data->colors[4*vtx+1] * 257;
|
||||
outColor[2] = data->colors[4*vtx+2] * 257;
|
||||
outColor[3] = data->colors[4*vtx+3] * 257;
|
||||
if ( color ) {
|
||||
for( i = 0; i < surf->num_vertexes; i++, color+=4, outColor+=4 ) {
|
||||
outColor[0] = color[0] * 257;
|
||||
outColor[1] = color[1] * 257;
|
||||
outColor[2] = color[2] * 257;
|
||||
outColor[3] = color[3] * 257;
|
||||
}
|
||||
} else {
|
||||
for( i = 0; i < surf->num_vertexes; i++, outColor+=4 ) {
|
||||
outColor[0] = 0;
|
||||
outColor[1] = 0;
|
||||
outColor[2] = 0;
|
||||
outColor[3] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
tri = data->triangles + 3 * surf->first_triangle;
|
||||
|
|
Loading…
Reference in a new issue