lilium-voyager/code/renderergl2/glsl/lightall_fp.glsl

462 lines
12 KiB
Text
Raw Normal View History

uniform sampler2D u_DiffuseMap;
#if defined(USE_LIGHTMAP)
uniform sampler2D u_LightMap;
#endif
#if defined(USE_NORMALMAP)
uniform sampler2D u_NormalMap;
#endif
#if defined(USE_DELUXEMAP)
uniform sampler2D u_DeluxeMap;
#endif
#if defined(USE_SPECULARMAP)
uniform sampler2D u_SpecularMap;
#endif
#if defined(USE_SHADOWMAP)
uniform sampler2D u_ShadowMap;
#endif
2013-09-16 07:54:26 +00:00
#if defined(USE_CUBEMAP)
uniform samplerCube u_CubeMap;
#endif
#if defined(USE_NORMALMAP) || defined(USE_DELUXEMAP) || defined(USE_SPECULARMAP) || defined(USE_CUBEMAP)
// y = deluxe, w = cube
uniform vec4 u_EnableTextures;
#endif
#if defined(USE_LIGHT_VECTOR) && !defined(USE_FAST_LIGHT)
uniform vec3 u_DirectedLight;
uniform vec3 u_AmbientLight;
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
uniform vec3 u_PrimaryLightColor;
uniform vec3 u_PrimaryLightAmbient;
#endif
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
uniform vec4 u_NormalScale;
uniform vec4 u_SpecularScale;
#endif
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
#if defined(USE_CUBEMAP)
uniform vec4 u_CubeMapInfo;
#endif
#endif
varying vec4 var_TexCoords;
varying vec4 var_Color;
#if (defined(USE_LIGHT) && !defined(USE_FAST_LIGHT))
#if defined(USE_VERT_TANGENT_SPACE)
varying vec4 var_Normal;
varying vec4 var_Tangent;
varying vec4 var_Bitangent;
#else
varying vec3 var_Normal;
varying vec3 var_ViewDir;
#endif
#endif
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
2013-09-16 07:54:26 +00:00
varying vec4 var_LightDir;
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(USE_SHADOWMAP)
varying vec4 var_PrimaryLightDir;
#endif
#define EPSILON 0.00000001
#if defined(USE_PARALLAXMAP)
2013-09-16 07:54:26 +00:00
float SampleDepth(sampler2D normalMap, vec2 t)
{
#if defined(SWIZZLE_NORMALMAP)
2013-09-16 07:54:26 +00:00
return 1.0 - texture2D(normalMap, t).r;
#else
2013-09-16 07:54:26 +00:00
return 1.0 - texture2D(normalMap, t).a;
#endif
}
float RayIntersectDisplaceMap(vec2 dp, vec2 ds, sampler2D normalMap)
{
const int linearSearchSteps = 16;
const int binarySearchSteps = 6;
// current size of search window
2013-09-16 07:54:26 +00:00
float size = 1.0 / float(linearSearchSteps);
// current depth position
float depth = 0.0;
// best match found (starts with last position 1.0)
float bestDepth = 1.0;
// texture depth at best depth
float texDepth = 0.0;
float prevT = SampleDepth(normalMap, dp);
float prevTexDepth = prevT;
// search front to back for first point inside object
for(int i = 0; i < linearSearchSteps - 1; ++i)
{
depth += size;
2013-09-16 07:54:26 +00:00
float t = SampleDepth(normalMap, dp + ds * depth);
if(bestDepth > 0.996) // if no depth found yet
if(depth >= t)
{
bestDepth = depth; // store best depth
texDepth = t;
prevTexDepth = prevT;
}
prevT = t;
}
depth = bestDepth;
#if !defined (USE_RELIEFMAP)
float div = 1.0 / (1.0 + (prevTexDepth - texDepth) * float(linearSearchSteps));
bestDepth -= (depth - size - prevTexDepth) * div;
#else
// recurse around first point (depth) for closest match
for(int i = 0; i < binarySearchSteps; ++i)
{
size *= 0.5;
2013-09-16 07:54:26 +00:00
float t = SampleDepth(normalMap, dp + ds * depth);
if(depth >= t)
{
bestDepth = depth;
depth -= 2.0 * size;
}
depth += size;
}
#endif
return bestDepth;
}
#endif
2015-12-09 05:23:50 +00:00
vec3 CalcDiffuse(vec3 diffuseAlbedo, float EH, float NH, float roughness)
{
#if defined(USE_BURLEY)
// modified from https://disney-animation.s3.amazonaws.com/library/s2012_pbs_disney_brdf_notes_v2.pdf
2015-12-09 05:23:50 +00:00
float fd90 = -0.5 + EH * EH * roughness;
float burley = 1.0 + fd90 * 0.04 / NH;
burley *= burley;
return diffuseAlbedo * burley;
2013-09-16 07:54:26 +00:00
#else
return diffuseAlbedo;
2013-09-16 07:54:26 +00:00
#endif
}
2015-12-09 05:23:50 +00:00
vec3 EnvironmentBRDF(float roughness, float NE, vec3 specular)
2013-09-16 07:54:26 +00:00
{
// from http://community.arm.com/servlet/JiveServlet/download/96891546-19496/siggraph2015-mmg-renaldas-slides.pdf
2015-12-09 05:23:50 +00:00
float v = 1.0 - max(roughness, NE);
v *= v * v;
return vec3(v) + specular;
2013-09-16 07:54:26 +00:00
}
2015-12-09 05:23:50 +00:00
vec3 CalcSpecular(vec3 specular, float NH, float NL, float NE, float EH, float roughness)
2013-09-16 07:54:26 +00:00
{
// from http://community.arm.com/servlet/JiveServlet/download/96891546-19496/siggraph2015-mmg-renaldas-slides.pdf
2015-12-09 05:23:50 +00:00
float rr = roughness*roughness;
float rrrr = rr*rr;
float d = (NH * NH) * (rrrr - 1.0) + 1.0;
2015-12-09 05:23:50 +00:00
float v = (EH * EH) * (roughness + 0.5);
return specular * (rrrr / (4.0 * d * d * v));
}
2013-09-17 06:41:04 +00:00
float CalcLightAttenuation(float point, float normDist)
2013-09-17 06:41:04 +00:00
{
// zero light at 1.0, approximating q3 style
2013-09-17 06:41:04 +00:00
// also don't attenuate directional light
float attenuation = (0.5 * normDist - 1.5) * point + 1.0;
2013-09-17 06:41:04 +00:00
// clamp attenuation
#if defined(NO_LIGHT_CLAMP)
attenuation = max(attenuation, 0.0);
2013-09-17 06:41:04 +00:00
#else
attenuation = clamp(attenuation, 0.0, 1.0);
#endif
2013-09-17 06:41:04 +00:00
return attenuation;
}
// from http://www.thetenthplanet.de/archives/1180
mat3 cotangent_frame( vec3 N, vec3 p, vec2 uv )
{
// get edge vectors of the pixel triangle
vec3 dp1 = dFdx( p );
vec3 dp2 = dFdy( p );
vec2 duv1 = dFdx( uv );
vec2 duv2 = dFdy( uv );
// solve the linear system
vec3 dp2perp = cross( dp2, N );
vec3 dp1perp = cross( N, dp1 );
vec3 T = dp2perp * duv1.x + dp1perp * duv2.x;
vec3 B = dp2perp * duv1.y + dp1perp * duv2.y;
// construct a scale-invariant frame
float invmax = inversesqrt( max( dot(T,T), dot(B,B) ) );
return mat3( T * invmax, B * invmax, N );
}
2013-09-17 06:41:04 +00:00
void main()
{
vec3 viewDir, lightColor, ambientColor;
2013-09-16 07:54:26 +00:00
vec3 L, N, E, H;
float NL, NH, NE, EH, attenuation;
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
#if defined(USE_VERT_TANGENT_SPACE)
mat3 tangentToWorld = mat3(var_Tangent.xyz, var_Bitangent.xyz, var_Normal.xyz);
viewDir = vec3(var_Normal.w, var_Tangent.w, var_Bitangent.w);
#else
mat3 tangentToWorld = cotangent_frame(var_Normal, -var_ViewDir, var_TexCoords.xy);
viewDir = var_ViewDir;
#endif
E = normalize(viewDir);
2013-09-16 07:54:26 +00:00
L = var_LightDir.xyz;
#if defined(USE_DELUXEMAP)
L += (texture2D(u_DeluxeMap, var_TexCoords.zw).xyz - vec3(0.5)) * u_EnableTextures.y;
#endif
float sqrLightDist = dot(L, L);
#endif
#if defined(USE_LIGHTMAP)
vec4 lightmapColor = texture2D(u_LightMap, var_TexCoords.zw);
#if defined(RGBM_LIGHTMAP)
lightmapColor.rgb *= lightmapColor.a;
#endif
#endif
2013-09-17 06:41:04 +00:00
vec2 texCoords = var_TexCoords.xy;
2013-09-16 07:54:26 +00:00
#if defined(USE_PARALLAXMAP)
vec3 offsetDir = viewDir * tangentToWorld;
offsetDir.xy *= -u_NormalScale.a / offsetDir.z;
texCoords += offsetDir.xy * RayIntersectDisplaceMap(texCoords, offsetDir.xy, u_NormalMap);
#endif
2013-09-16 07:54:26 +00:00
vec4 diffuse = texture2D(u_DiffuseMap, texCoords);
#if defined(USE_LIGHT) && !defined(USE_FAST_LIGHT)
#if defined(USE_LIGHTMAP)
lightColor = lightmapColor.rgb * var_Color.rgb;
ambientColor = vec3(0.0);
attenuation = 1.0;
#elif defined(USE_LIGHT_VECTOR)
lightColor = u_DirectedLight * var_Color.rgb;
ambientColor = u_AmbientLight * var_Color.rgb;
attenuation = CalcLightAttenuation(float(var_LightDir.w > 0.0), var_LightDir.w / sqrLightDist);
#elif defined(USE_LIGHT_VERTEX)
lightColor = var_Color.rgb;
ambientColor = vec3(0.0);
attenuation = 1.0;
#endif
2015-12-09 05:23:50 +00:00
#if defined(r_lightGamma)
lightColor = pow(lightColor, vec3(r_lightGamma));
ambientColor = pow(ambientColor, vec3(r_lightGamma));
#endif
2013-09-16 07:54:26 +00:00
#if defined(USE_NORMALMAP)
#if defined(SWIZZLE_NORMALMAP)
N.xy = texture2D(u_NormalMap, texCoords).ag - vec2(0.5);
2013-09-16 07:54:26 +00:00
#else
N.xy = texture2D(u_NormalMap, texCoords).rg - vec2(0.5);
2013-09-16 07:54:26 +00:00
#endif
N.xy *= u_NormalScale.xy;
N.z = sqrt(clamp((0.25 - N.x * N.x) - N.y * N.y, 0.0, 1.0));
N = tangentToWorld * N;
2013-09-16 07:54:26 +00:00
#else
N = var_Normal.xyz;
#endif
N = normalize(N);
L /= sqrt(sqrLightDist);
#if defined(USE_SHADOWMAP)
vec2 shadowTex = gl_FragCoord.xy * r_FBufScale;
float shadowValue = texture2D(u_ShadowMap, shadowTex).r;
// surfaces not facing the light are always shadowed
shadowValue *= float(dot(var_Normal.xyz, var_PrimaryLightDir.xyz) > 0.0);
#if defined(SHADOWMAP_MODULATE)
lightColor *= shadowValue * (1.0 - u_PrimaryLightAmbient.r) + u_PrimaryLightAmbient.r;
#endif
#endif
#if defined(USE_LIGHTMAP) || defined(USE_LIGHT_VERTEX)
ambientColor = lightColor;
float surfNL = clamp(dot(var_Normal.xyz, L), 0.0, 1.0);
2013-09-16 07:54:26 +00:00
// Scale the incoming light to compensate for the baked-in light angle
// attenuation.
lightColor /= max(surfNL, 0.25);
// Recover any unused light as ambient, in case attenuation is over 4x or
// light is below the surface
ambientColor = clamp(ambientColor - lightColor * surfNL, 0.0, 1.0);
#endif
2013-09-16 07:54:26 +00:00
vec3 reflectance;
2013-09-16 07:54:26 +00:00
NL = clamp(dot(N, L), 0.0, 1.0);
NE = clamp(dot(N, E), 0.0, 1.0);
#if defined(USE_SPECULARMAP)
vec4 specular = texture2D(u_SpecularMap, texCoords);
#else
vec4 specular = vec4(1.0);
2013-09-16 07:54:26 +00:00
#endif
specular *= u_SpecularScale;
#if defined(r_materialGamma)
diffuse.rgb = pow(diffuse.rgb, vec3(r_materialGamma));
#if !defined(SPECULAR_IS_METALLIC)
specular.rgb = pow(specular.rgb, vec3(r_materialGamma));
#endif
#endif
2013-09-16 07:54:26 +00:00
float gloss = specular.a;
2015-12-09 05:23:50 +00:00
#if defined(GLOSS_IS_ROUGHNESS)
float roughness = gloss;
#else
float roughness = exp2(-3.0 * gloss);
#endif
2013-09-16 07:54:26 +00:00
#if defined(SPECULAR_IS_METALLIC)
// diffuse is actually base color, and green of specular is metallicness
float metallic = specular.g;
specular.rgb = metallic * diffuse.rgb + vec3(0.04 - 0.04 * metallic);
2013-09-16 07:54:26 +00:00
diffuse.rgb *= 1.0 - metallic;
#else
// adjust diffuse by specular reflectance, to maintain energy conservation
2013-09-16 07:54:26 +00:00
diffuse.rgb *= vec3(1.0) - specular.rgb;
#endif
2015-12-09 05:23:50 +00:00
reflectance = CalcDiffuse(diffuse.rgb, EH, NH, roughness);
gl_FragColor.rgb = lightColor * reflectance * (attenuation * NL);
2016-01-15 10:46:30 +00:00
gl_FragColor.rgb += ambientColor * diffuse.rgb;
2013-09-16 07:54:26 +00:00
#if defined(USE_CUBEMAP)
2015-12-09 05:23:50 +00:00
reflectance = EnvironmentBRDF(roughness, NE, specular.rgb);
2013-09-16 07:54:26 +00:00
vec3 R = reflect(E, N);
// parallax corrected cubemap (cheaper trick)
// from http://seblagarde.wordpress.com/2012/09/29/image-based-lighting-approaches-and-parallax-corrected-cubemap/
vec3 parallax = u_CubeMapInfo.xyz + u_CubeMapInfo.w * viewDir;
2015-12-09 05:23:50 +00:00
#if defined(GLOSS_IS_ROUGHNESS)
2015-12-09 11:42:12 +00:00
vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 * roughness).rgb * u_EnableTextures.w;
2015-12-09 05:23:50 +00:00
#else
vec3 cubeLightColor = textureCubeLod(u_CubeMap, R + parallax, 7.0 - gloss * 7.0).rgb * u_EnableTextures.w;
2015-12-09 05:23:50 +00:00
#endif
2013-09-16 07:54:26 +00:00
// normalize cubemap based on lowest mip (~diffuse)
// multiplying cubemap values by lighting below depends on either this or the cubemap being normalized at generation
//vec3 cubeLightDiffuse = max(textureCubeLod(u_CubeMap, N, 6.0).rgb, 0.5 / 255.0);
//cubeLightColor /= dot(cubeLightDiffuse, vec3(0.2125, 0.7154, 0.0721));
#if defined(r_framebufferGamma)
cubeLightColor = pow(cubeLightColor, vec3(r_framebufferGamma));
#endif
// multiply cubemap values by lighting
// not technically correct, but helps make reflections look less unnatural
//cubeLightColor *= lightColor * (attenuation * NL) + ambientColor;
gl_FragColor.rgb += cubeLightColor * reflectance;
2013-09-16 07:54:26 +00:00
#endif
#if defined(USE_PRIMARY_LIGHT) || defined(SHADOWMAP_MODULATE)
vec3 L2, H2;
float NL2, EH2, NH2;
L2 = var_PrimaryLightDir.xyz;
2013-09-16 07:54:26 +00:00
// enable when point lights are supported as primary lights
//sqrLightDist = dot(L2, L2);
//L2 /= sqrt(sqrLightDist);
NL2 = clamp(dot(N, L2), 0.0, 1.0);
H2 = normalize(L2 + E);
EH2 = clamp(dot(E, H2), 0.0, 1.0);
NH2 = clamp(dot(N, H2), 0.0, 1.0);
reflectance = CalcSpecular(specular.rgb, NH2, NL2, NE, EH2, roughness);
// bit of a hack, with modulated shadowmaps, ignore diffuse
#if !defined(SHADOWMAP_MODULATE)
reflectance += CalcDiffuse(diffuse.rgb, EH2, NH2, roughness);
#endif
lightColor = u_PrimaryLightColor;
#if defined(r_lightGamma)
lightColor = pow(lightColor, vec3(r_lightGamma));
#endif
2013-09-16 07:54:26 +00:00
#if defined(USE_SHADOWMAP)
2013-09-17 06:41:04 +00:00
lightColor *= shadowValue;
#endif
2013-09-16 07:54:26 +00:00
// enable when point lights are supported as primary lights
//lightColor *= CalcLightAttenuation(float(u_PrimaryLightDir.w > 0.0), u_PrimaryLightDir.w / sqrLightDist);
gl_FragColor.rgb += lightColor * reflectance * NL2;
2013-09-16 07:54:26 +00:00
#endif
#else
lightColor = var_Color.rgb;
2013-09-16 07:54:26 +00:00
#if defined(USE_LIGHTMAP)
lightColor *= lightmapColor.rgb;
2013-09-16 07:54:26 +00:00
#endif
#if defined(r_lightGamma)
lightColor = pow(lightColor, vec3(r_lightGamma));
#endif
#if defined(r_materialGamma)
diffuse.rgb = pow(diffuse.rgb, vec3(r_materialGamma));
#endif
gl_FragColor.rgb = diffuse.rgb * lightColor;
#endif
#if defined(r_framebufferGamma)
gl_FragColor.rgb = pow(gl_FragColor.rgb, vec3(1.0 / r_framebufferGamma));
#endif
gl_FragColor.a = diffuse.a * var_Color.a;
}