/* =========================================================================== Copyright (C) 1999-2005 Id Software, Inc. This file is part of Quake III Arena source code. Quake III Arena source code is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. Quake III Arena source code is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Quake III Arena source code; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA =========================================================================== */ // tr_main.c -- main control flow for each frame #include "tr_local.h" #include // memcpy trGlobals_t tr; static float s_flipMatrix[16] = { // convert from our coordinate system (looking down X) // to OpenGL's coordinate system (looking down -Z) 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 }; refimport_t ri; // entities that will have procedurally generated surfaces will just // point at this for their sorting surface surfaceType_t entitySurface = SF_ENTITY; /* ================ R_CompareVert ================ */ qboolean R_CompareVert(srfVert_t * v1, srfVert_t * v2, qboolean checkST) { int i; for(i = 0; i < 3; i++) { if(floor(v1->xyz[i] + 0.1) != floor(v2->xyz[i] + 0.1)) { return qfalse; } if(checkST && ((v1->st[0] != v2->st[0]) || (v1->st[1] != v2->st[1]))) { return qfalse; } } return qtrue; } /* ============= R_CalcNormalForTriangle ============= */ void R_CalcNormalForTriangle(vec3_t normal, const vec3_t v0, const vec3_t v1, const vec3_t v2) { vec3_t udir, vdir; // compute the face normal based on vertex points VectorSubtract(v2, v0, udir); VectorSubtract(v1, v0, vdir); CrossProduct(udir, vdir, normal); VectorNormalize(normal); } /* ============= R_CalcTangentsForTriangle http://members.rogers.com/deseric/tangentspace.htm ============= */ void R_CalcTangentsForTriangle(vec3_t tangent, vec3_t bitangent, const vec3_t v0, const vec3_t v1, const vec3_t v2, const vec2_t t0, const vec2_t t1, const vec2_t t2) { int i; vec3_t planes[3]; vec3_t u, v; for(i = 0; i < 3; i++) { VectorSet(u, v1[i] - v0[i], t1[0] - t0[0], t1[1] - t0[1]); VectorSet(v, v2[i] - v0[i], t2[0] - t0[0], t2[1] - t0[1]); VectorNormalize(u); VectorNormalize(v); CrossProduct(u, v, planes[i]); } //So your tangent space will be defined by this : //Normal = Normal of the triangle or Tangent X Bitangent (careful with the cross product, // you have to make sure the normal points in the right direction) //Tangent = ( dp(Fx(s,t)) / ds, dp(Fy(s,t)) / ds, dp(Fz(s,t)) / ds ) or ( -Bx/Ax, -By/Ay, - Bz/Az ) //Bitangent = ( dp(Fx(s,t)) / dt, dp(Fy(s,t)) / dt, dp(Fz(s,t)) / dt ) or ( -Cx/Ax, -Cy/Ay, -Cz/Az ) // tangent... tangent[0] = -planes[0][1] / planes[0][0]; tangent[1] = -planes[1][1] / planes[1][0]; tangent[2] = -planes[2][1] / planes[2][0]; VectorNormalize(tangent); // bitangent... bitangent[0] = -planes[0][2] / planes[0][0]; bitangent[1] = -planes[1][2] / planes[1][0]; bitangent[2] = -planes[2][2] / planes[2][0]; VectorNormalize(bitangent); } /* ============= R_CalcTangentSpace ============= */ void R_CalcTangentSpace(vec3_t tangent, vec3_t bitangent, vec3_t normal, const vec3_t v0, const vec3_t v1, const vec3_t v2, const vec2_t t0, const vec2_t t1, const vec2_t t2) { vec3_t cp, u, v; vec3_t faceNormal; VectorSet(u, v1[0] - v0[0], t1[0] - t0[0], t1[1] - t0[1]); VectorSet(v, v2[0] - v0[0], t2[0] - t0[0], t2[1] - t0[1]); CrossProduct(u, v, cp); if(fabs(cp[0]) > 10e-6) { tangent[0] = -cp[1] / cp[0]; bitangent[0] = -cp[2] / cp[0]; } u[0] = v1[1] - v0[1]; v[0] = v2[1] - v0[1]; CrossProduct(u, v, cp); if(fabs(cp[0]) > 10e-6) { tangent[1] = -cp[1] / cp[0]; bitangent[1] = -cp[2] / cp[0]; } u[0] = v1[2] - v0[2]; v[0] = v2[2] - v0[2]; CrossProduct(u, v, cp); if(fabs(cp[0]) > 10e-6) { tangent[2] = -cp[1] / cp[0]; bitangent[2] = -cp[2] / cp[0]; } VectorNormalize(tangent); VectorNormalize(bitangent); // compute the face normal based on vertex points if ( normal[0] == 0.0f && normal[1] == 0.0f && normal[2] == 0.0f ) { VectorSubtract(v2, v0, u); VectorSubtract(v1, v0, v); CrossProduct(u, v, faceNormal); } else { VectorCopy(normal, faceNormal); } VectorNormalize(faceNormal); #if 1 // Gram-Schmidt orthogonalize //tangent[a] = (t - n * Dot(n, t)).Normalize(); VectorMA(tangent, -DotProduct(faceNormal, tangent), faceNormal, tangent); VectorNormalize(tangent); // compute the cross product B=NxT //CrossProduct(normal, tangent, bitangent); #else // normal, compute the cross product N=TxB CrossProduct(tangent, bitangent, normal); VectorNormalize(normal); if(DotProduct(normal, faceNormal) < 0) { //VectorInverse(normal); //VectorInverse(tangent); //VectorInverse(bitangent); // compute the cross product T=BxN CrossProduct(bitangent, faceNormal, tangent); // compute the cross product B=NxT //CrossProduct(normal, tangent, bitangent); } #endif VectorCopy(faceNormal, normal); } void R_CalcTangentSpaceFast(vec3_t tangent, vec3_t bitangent, vec3_t normal, const vec3_t v0, const vec3_t v1, const vec3_t v2, const vec2_t t0, const vec2_t t1, const vec2_t t2) { vec3_t cp, u, v; vec3_t faceNormal; VectorSet(u, v1[0] - v0[0], t1[0] - t0[0], t1[1] - t0[1]); VectorSet(v, v2[0] - v0[0], t2[0] - t0[0], t2[1] - t0[1]); CrossProduct(u, v, cp); if(fabs(cp[0]) > 10e-6) { tangent[0] = -cp[1] / cp[0]; bitangent[0] = -cp[2] / cp[0]; } u[0] = v1[1] - v0[1]; v[0] = v2[1] - v0[1]; CrossProduct(u, v, cp); if(fabs(cp[0]) > 10e-6) { tangent[1] = -cp[1] / cp[0]; bitangent[1] = -cp[2] / cp[0]; } u[0] = v1[2] - v0[2]; v[0] = v2[2] - v0[2]; CrossProduct(u, v, cp); if(fabs(cp[0]) > 10e-6) { tangent[2] = -cp[1] / cp[0]; bitangent[2] = -cp[2] / cp[0]; } VectorNormalizeFast(tangent); VectorNormalizeFast(bitangent); // compute the face normal based on vertex points VectorSubtract(v2, v0, u); VectorSubtract(v1, v0, v); CrossProduct(u, v, faceNormal); VectorNormalizeFast(faceNormal); #if 0 // normal, compute the cross product N=TxB CrossProduct(tangent, bitangent, normal); VectorNormalizeFast(normal); if(DotProduct(normal, faceNormal) < 0) { VectorInverse(normal); //VectorInverse(tangent); //VectorInverse(bitangent); CrossProduct(normal, tangent, bitangent); } VectorCopy(faceNormal, normal); #else // Gram-Schmidt orthogonalize //tangent[a] = (t - n * Dot(n, t)).Normalize(); VectorMA(tangent, -DotProduct(faceNormal, tangent), faceNormal, tangent); VectorNormalizeFast(tangent); #endif VectorCopy(faceNormal, normal); } /* http://www.terathon.com/code/tangent.html */ void R_CalcTexDirs(vec3_t sdir, vec3_t tdir, const vec3_t v1, const vec3_t v2, const vec3_t v3, const vec2_t w1, const vec2_t w2, const vec2_t w3) { float x1, x2, y1, y2, z1, z2; float s1, s2, t1, t2, r; x1 = v2[0] - v1[0]; x2 = v3[0] - v1[0]; y1 = v2[1] - v1[1]; y2 = v3[1] - v1[1]; z1 = v2[2] - v1[2]; z2 = v3[2] - v1[2]; s1 = w2[0] - w1[0]; s2 = w3[0] - w1[0]; t1 = w2[1] - w1[1]; t2 = w3[1] - w1[1]; r = 1.0f / (s1 * t2 - s2 * t1); VectorSet(sdir, (t2 * x1 - t1 * x2) * r, (t2 * y1 - t1 * y2) * r, (t2 * z1 - t1 * z2) * r); VectorSet(tdir, (s1 * x2 - s2 * x1) * r, (s1 * y2 - s2 * y1) * r, (s1 * z2 - s2 * z1) * r); } void R_CalcTbnFromNormalAndTexDirs(vec3_t tangent, vec3_t bitangent, vec3_t normal, vec3_t sdir, vec3_t tdir) { vec3_t n_cross_t; vec_t n_dot_t, handedness; // Gram-Schmidt orthogonalize n_dot_t = DotProduct(normal, sdir); VectorMA(sdir, -n_dot_t, normal, tangent); VectorNormalize(tangent); // Calculate handedness CrossProduct(normal, sdir, n_cross_t); handedness = (DotProduct(n_cross_t, tdir) < 0.0f) ? -1.0f : 1.0f; // Calculate bitangent CrossProduct(normal, tangent, bitangent); VectorScale(bitangent, handedness, bitangent); } void R_CalcTBN2(vec3_t tangent, vec3_t bitangent, vec3_t normal, const vec3_t v1, const vec3_t v2, const vec3_t v3, const vec2_t t1, const vec2_t t2, const vec2_t t3) { vec3_t v2v1; vec3_t v3v1; float c2c1_T; float c2c1_B; float c3c1_T; float c3c1_B; float denominator; float scale1, scale2; vec3_t T, B, N, C; // Calculate the tangent basis for each vertex of the triangle // UPDATE: In the 3rd edition of the accompanying article, the for-loop located here has // been removed as it was redundant (the entire TBN matrix was calculated three times // instead of just one). // // Please note, that this function relies on the fact that the input geometry are triangles // and the tangent basis for each vertex thus is identical! // // Calculate the vectors from the current vertex to the two other vertices in the triangle VectorSubtract(v2, v1, v2v1); VectorSubtract(v3, v1, v3v1); // The equation presented in the article states that: // c2c1_T = V2.texcoord.x - V1.texcoord.x // c2c1_B = V2.texcoord.y - V1.texcoord.y // c3c1_T = V3.texcoord.x - V1.texcoord.x // c3c1_B = V3.texcoord.y - V1.texcoord.y // Calculate c2c1_T and c2c1_B c2c1_T = t2[0] - t1[0]; c2c1_B = t2[1] - t2[1]; // Calculate c3c1_T and c3c1_B c3c1_T = t3[0] - t1[0]; c3c1_B = t3[1] - t1[1]; denominator = c2c1_T * c3c1_B - c3c1_T * c2c1_B; //if(ROUNDOFF(fDenominator) == 0.0f) if(denominator == 0.0f) { // We won't risk a divide by zero, so set the tangent matrix to the identity matrix VectorSet(tangent, 1, 0, 0); VectorSet(bitangent, 0, 1, 0); VectorSet(normal, 0, 0, 1); } else { // Calculate the reciprocal value once and for all (to achieve speed) scale1 = 1.0f / denominator; // T and B are calculated just as the equation in the article states VectorSet(T, (c3c1_B * v2v1[0] - c2c1_B * v3v1[0]) * scale1, (c3c1_B * v2v1[1] - c2c1_B * v3v1[1]) * scale1, (c3c1_B * v2v1[2] - c2c1_B * v3v1[2]) * scale1); VectorSet(B, (-c3c1_T * v2v1[0] + c2c1_T * v3v1[0]) * scale1, (-c3c1_T * v2v1[1] + c2c1_T * v3v1[1]) * scale1, (-c3c1_T * v2v1[2] + c2c1_T * v3v1[2]) * scale1); // The normal N is calculated as the cross product between T and B CrossProduct(T, B, N); #if 0 VectorCopy(T, tangent); VectorCopy(B, bitangent); VectorCopy(N, normal); #else // Calculate the reciprocal value once and for all (to achieve speed) scale2 = 1.0f / ((T[0] * B[1] * N[2] - T[2] * B[1] * N[0]) + (B[0] * N[1] * T[2] - B[2] * N[1] * T[0]) + (N[0] * T[1] * B[2] - N[2] * T[1] * B[0])); // Calculate the inverse if the TBN matrix using the formula described in the article. // We store the basis vectors directly in the provided TBN matrix: pvTBNMatrix CrossProduct(B, N, C); tangent[0] = C[0] * scale2; CrossProduct(N, T, C); tangent[1] = -C[0] * scale2; CrossProduct(T, B, C); tangent[2] = C[0] * scale2; VectorNormalize(tangent); CrossProduct(B, N, C); bitangent[0] = -C[1] * scale2; CrossProduct(N, T, C); bitangent[1] = C[1] * scale2; CrossProduct(T, B, C); bitangent[2] = -C[1] * scale2; VectorNormalize(bitangent); CrossProduct(B, N, C); normal[0] = C[2] * scale2; CrossProduct(N, T, C); normal[1] = -C[2] * scale2; CrossProduct(T, B, C); normal[2] = C[2] * scale2; VectorNormalize(normal); #endif } } #ifdef USE_VERT_TANGENT_SPACE qboolean R_CalcTangentVectors(srfVert_t * dv[3]) { int i; float bb, s, t; vec3_t bary; /* calculate barycentric basis for the triangle */ bb = (dv[1]->st[0] - dv[0]->st[0]) * (dv[2]->st[1] - dv[0]->st[1]) - (dv[2]->st[0] - dv[0]->st[0]) * (dv[1]->st[1] - dv[0]->st[1]); if(fabs(bb) < 0.00000001f) return qfalse; /* do each vertex */ for(i = 0; i < 3; i++) { vec3_t bitangent, nxt; // calculate s tangent vector s = dv[i]->st[0] + 10.0f; t = dv[i]->st[1]; bary[0] = ((dv[1]->st[0] - s) * (dv[2]->st[1] - t) - (dv[2]->st[0] - s) * (dv[1]->st[1] - t)) / bb; bary[1] = ((dv[2]->st[0] - s) * (dv[0]->st[1] - t) - (dv[0]->st[0] - s) * (dv[2]->st[1] - t)) / bb; bary[2] = ((dv[0]->st[0] - s) * (dv[1]->st[1] - t) - (dv[1]->st[0] - s) * (dv[0]->st[1] - t)) / bb; dv[i]->tangent[0] = bary[0] * dv[0]->xyz[0] + bary[1] * dv[1]->xyz[0] + bary[2] * dv[2]->xyz[0]; dv[i]->tangent[1] = bary[0] * dv[0]->xyz[1] + bary[1] * dv[1]->xyz[1] + bary[2] * dv[2]->xyz[1]; dv[i]->tangent[2] = bary[0] * dv[0]->xyz[2] + bary[1] * dv[1]->xyz[2] + bary[2] * dv[2]->xyz[2]; VectorSubtract(dv[i]->tangent, dv[i]->xyz, dv[i]->tangent); VectorNormalize(dv[i]->tangent); // calculate t tangent vector s = dv[i]->st[0]; t = dv[i]->st[1] + 10.0f; bary[0] = ((dv[1]->st[0] - s) * (dv[2]->st[1] - t) - (dv[2]->st[0] - s) * (dv[1]->st[1] - t)) / bb; bary[1] = ((dv[2]->st[0] - s) * (dv[0]->st[1] - t) - (dv[0]->st[0] - s) * (dv[2]->st[1] - t)) / bb; bary[2] = ((dv[0]->st[0] - s) * (dv[1]->st[1] - t) - (dv[1]->st[0] - s) * (dv[0]->st[1] - t)) / bb; bitangent[0] = bary[0] * dv[0]->xyz[0] + bary[1] * dv[1]->xyz[0] + bary[2] * dv[2]->xyz[0]; bitangent[1] = bary[0] * dv[0]->xyz[1] + bary[1] * dv[1]->xyz[1] + bary[2] * dv[2]->xyz[1]; bitangent[2] = bary[0] * dv[0]->xyz[2] + bary[1] * dv[1]->xyz[2] + bary[2] * dv[2]->xyz[2]; VectorSubtract(bitangent, dv[i]->xyz, bitangent); VectorNormalize(bitangent); // store bitangent handedness CrossProduct(dv[i]->normal, dv[i]->tangent, nxt); dv[i]->tangent[3] = (DotProduct(nxt, bitangent) < 0.0f) ? -1.0f : 1.0f; // debug code //% Sys_FPrintf( SYS_VRB, "%d S: (%f %f %f) T: (%f %f %f)\n", i, //% stv[ i ][ 0 ], stv[ i ][ 1 ], stv[ i ][ 2 ], ttv[ i ][ 0 ], ttv[ i ][ 1 ], ttv[ i ][ 2 ] ); } return qtrue; } #endif /* ================= R_CullLocalBox Returns CULL_IN, CULL_CLIP, or CULL_OUT ================= */ int R_CullLocalBox(vec3_t localBounds[2]) { #if 0 int i, j; vec3_t transformed[8]; float dists[8]; vec3_t v; cplane_t *frust; int anyBack; int front, back; if ( r_nocull->integer ) { return CULL_CLIP; } // transform into world space for (i = 0 ; i < 8 ; i++) { v[0] = bounds[i&1][0]; v[1] = bounds[(i>>1)&1][1]; v[2] = bounds[(i>>2)&1][2]; VectorCopy( tr.or.origin, transformed[i] ); VectorMA( transformed[i], v[0], tr.or.axis[0], transformed[i] ); VectorMA( transformed[i], v[1], tr.or.axis[1], transformed[i] ); VectorMA( transformed[i], v[2], tr.or.axis[2], transformed[i] ); } // check against frustum planes anyBack = 0; for (i = 0 ; i < 4 ; i++) { frust = &tr.viewParms.frustum[i]; front = back = 0; for (j = 0 ; j < 8 ; j++) { dists[j] = DotProduct(transformed[j], frust->normal); if ( dists[j] > frust->dist ) { front = 1; if ( back ) { break; // a point is in front } } else { back = 1; } } if ( !front ) { // all points were behind one of the planes return CULL_OUT; } anyBack |= back; } if ( !anyBack ) { return CULL_IN; // completely inside frustum } return CULL_CLIP; // partially clipped #else int j; vec3_t transformed; vec3_t v; vec3_t worldBounds[2]; if(r_nocull->integer) { return CULL_CLIP; } // transform into world space ClearBounds(worldBounds[0], worldBounds[1]); for(j = 0; j < 8; j++) { v[0] = localBounds[j & 1][0]; v[1] = localBounds[(j >> 1) & 1][1]; v[2] = localBounds[(j >> 2) & 1][2]; R_LocalPointToWorld(v, transformed); AddPointToBounds(transformed, worldBounds[0], worldBounds[1]); } return R_CullBox(worldBounds); #endif } /* ================= R_CullBox Returns CULL_IN, CULL_CLIP, or CULL_OUT ================= */ int R_CullBox(vec3_t worldBounds[2]) { int i; cplane_t *frust; qboolean anyClip; int r, numPlanes; numPlanes = (tr.viewParms.flags & VPF_FARPLANEFRUSTUM) ? 5 : 4; // check against frustum planes anyClip = qfalse; for(i = 0; i < numPlanes; i++) { frust = &tr.viewParms.frustum[i]; r = BoxOnPlaneSide(worldBounds[0], worldBounds[1], frust); if(r == 2) { // completely outside frustum return CULL_OUT; } if(r == 3) { anyClip = qtrue; } } if(!anyClip) { // completely inside frustum return CULL_IN; } // partially clipped return CULL_CLIP; } /* ** R_CullLocalPointAndRadius */ int R_CullLocalPointAndRadius( const vec3_t pt, float radius ) { vec3_t transformed; R_LocalPointToWorld( pt, transformed ); return R_CullPointAndRadius( transformed, radius ); } /* ** R_CullPointAndRadius */ int R_CullPointAndRadiusEx( const vec3_t pt, float radius, const cplane_t* frustum, int numPlanes ) { int i; float dist; const cplane_t *frust; qboolean mightBeClipped = qfalse; if ( r_nocull->integer ) { return CULL_CLIP; } // check against frustum planes for (i = 0 ; i < numPlanes ; i++) { frust = &frustum[i]; dist = DotProduct( pt, frust->normal) - frust->dist; if ( dist < -radius ) { return CULL_OUT; } else if ( dist <= radius ) { mightBeClipped = qtrue; } } if ( mightBeClipped ) { return CULL_CLIP; } return CULL_IN; // completely inside frustum } /* ** R_CullPointAndRadius */ int R_CullPointAndRadius( const vec3_t pt, float radius ) { return R_CullPointAndRadiusEx(pt, radius, tr.viewParms.frustum, (tr.viewParms.flags & VPF_FARPLANEFRUSTUM) ? 5 : 4); } /* ================= R_LocalNormalToWorld ================= */ void R_LocalNormalToWorld (const vec3_t local, vec3_t world) { world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0]; world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1]; world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2]; } /* ================= R_LocalPointToWorld ================= */ void R_LocalPointToWorld (const vec3_t local, vec3_t world) { world[0] = local[0] * tr.or.axis[0][0] + local[1] * tr.or.axis[1][0] + local[2] * tr.or.axis[2][0] + tr.or.origin[0]; world[1] = local[0] * tr.or.axis[0][1] + local[1] * tr.or.axis[1][1] + local[2] * tr.or.axis[2][1] + tr.or.origin[1]; world[2] = local[0] * tr.or.axis[0][2] + local[1] * tr.or.axis[1][2] + local[2] * tr.or.axis[2][2] + tr.or.origin[2]; } /* ================= R_WorldToLocal ================= */ void R_WorldToLocal (const vec3_t world, vec3_t local) { local[0] = DotProduct(world, tr.or.axis[0]); local[1] = DotProduct(world, tr.or.axis[1]); local[2] = DotProduct(world, tr.or.axis[2]); } /* ========================== R_TransformModelToClip ========================== */ void R_TransformModelToClip( const vec3_t src, const float *modelMatrix, const float *projectionMatrix, vec4_t eye, vec4_t dst ) { int i; for ( i = 0 ; i < 4 ; i++ ) { eye[i] = src[0] * modelMatrix[ i + 0 * 4 ] + src[1] * modelMatrix[ i + 1 * 4 ] + src[2] * modelMatrix[ i + 2 * 4 ] + 1 * modelMatrix[ i + 3 * 4 ]; } for ( i = 0 ; i < 4 ; i++ ) { dst[i] = eye[0] * projectionMatrix[ i + 0 * 4 ] + eye[1] * projectionMatrix[ i + 1 * 4 ] + eye[2] * projectionMatrix[ i + 2 * 4 ] + eye[3] * projectionMatrix[ i + 3 * 4 ]; } } /* ========================== R_TransformClipToWindow ========================== */ void R_TransformClipToWindow( const vec4_t clip, const viewParms_t *view, vec4_t normalized, vec4_t window ) { normalized[0] = clip[0] / clip[3]; normalized[1] = clip[1] / clip[3]; normalized[2] = ( clip[2] + clip[3] ) / ( 2 * clip[3] ); window[0] = 0.5f * ( 1.0f + normalized[0] ) * view->viewportWidth; window[1] = 0.5f * ( 1.0f + normalized[1] ) * view->viewportHeight; window[2] = normalized[2]; window[0] = (int) ( window[0] + 0.5 ); window[1] = (int) ( window[1] + 0.5 ); } /* ========================== myGlMultMatrix ========================== */ void myGlMultMatrix( const float *a, const float *b, float *out ) { int i, j; for ( i = 0 ; i < 4 ; i++ ) { for ( j = 0 ; j < 4 ; j++ ) { out[ i * 4 + j ] = a [ i * 4 + 0 ] * b [ 0 * 4 + j ] + a [ i * 4 + 1 ] * b [ 1 * 4 + j ] + a [ i * 4 + 2 ] * b [ 2 * 4 + j ] + a [ i * 4 + 3 ] * b [ 3 * 4 + j ]; } } } /* ================= R_RotateForEntity Generates an orientation for an entity and viewParms Does NOT produce any GL calls Called by both the front end and the back end ================= */ void R_RotateForEntity( const trRefEntity_t *ent, const viewParms_t *viewParms, orientationr_t *or ) { float glMatrix[16]; vec3_t delta; float axisLength; if ( ent->e.reType != RT_MODEL ) { *or = viewParms->world; return; } VectorCopy( ent->e.origin, or->origin ); VectorCopy( ent->e.axis[0], or->axis[0] ); VectorCopy( ent->e.axis[1], or->axis[1] ); VectorCopy( ent->e.axis[2], or->axis[2] ); glMatrix[0] = or->axis[0][0]; glMatrix[4] = or->axis[1][0]; glMatrix[8] = or->axis[2][0]; glMatrix[12] = or->origin[0]; glMatrix[1] = or->axis[0][1]; glMatrix[5] = or->axis[1][1]; glMatrix[9] = or->axis[2][1]; glMatrix[13] = or->origin[1]; glMatrix[2] = or->axis[0][2]; glMatrix[6] = or->axis[1][2]; glMatrix[10] = or->axis[2][2]; glMatrix[14] = or->origin[2]; glMatrix[3] = 0; glMatrix[7] = 0; glMatrix[11] = 0; glMatrix[15] = 1; Mat4Copy(glMatrix, or->transformMatrix); myGlMultMatrix( glMatrix, viewParms->world.modelMatrix, or->modelMatrix ); // calculate the viewer origin in the model's space // needed for fog, specular, and environment mapping VectorSubtract( viewParms->or.origin, or->origin, delta ); // compensate for scale in the axes if necessary if ( ent->e.nonNormalizedAxes ) { axisLength = VectorLength( ent->e.axis[0] ); if ( !axisLength ) { axisLength = 0; } else { axisLength = 1.0f / axisLength; } } else { axisLength = 1.0f; } or->viewOrigin[0] = DotProduct( delta, or->axis[0] ) * axisLength; or->viewOrigin[1] = DotProduct( delta, or->axis[1] ) * axisLength; or->viewOrigin[2] = DotProduct( delta, or->axis[2] ) * axisLength; } /* ================= R_RotateForViewer Sets up the modelview matrix for a given viewParm ================= */ void R_RotateForViewer (void) { float viewerMatrix[16]; vec3_t origin; Com_Memset (&tr.or, 0, sizeof(tr.or)); tr.or.axis[0][0] = 1; tr.or.axis[1][1] = 1; tr.or.axis[2][2] = 1; VectorCopy (tr.viewParms.or.origin, tr.or.viewOrigin); // transform by the camera placement VectorCopy( tr.viewParms.or.origin, origin ); viewerMatrix[0] = tr.viewParms.or.axis[0][0]; viewerMatrix[4] = tr.viewParms.or.axis[0][1]; viewerMatrix[8] = tr.viewParms.or.axis[0][2]; viewerMatrix[12] = -origin[0] * viewerMatrix[0] + -origin[1] * viewerMatrix[4] + -origin[2] * viewerMatrix[8]; viewerMatrix[1] = tr.viewParms.or.axis[1][0]; viewerMatrix[5] = tr.viewParms.or.axis[1][1]; viewerMatrix[9] = tr.viewParms.or.axis[1][2]; viewerMatrix[13] = -origin[0] * viewerMatrix[1] + -origin[1] * viewerMatrix[5] + -origin[2] * viewerMatrix[9]; viewerMatrix[2] = tr.viewParms.or.axis[2][0]; viewerMatrix[6] = tr.viewParms.or.axis[2][1]; viewerMatrix[10] = tr.viewParms.or.axis[2][2]; viewerMatrix[14] = -origin[0] * viewerMatrix[2] + -origin[1] * viewerMatrix[6] + -origin[2] * viewerMatrix[10]; viewerMatrix[3] = 0; viewerMatrix[7] = 0; viewerMatrix[11] = 0; viewerMatrix[15] = 1; // convert from our coordinate system (looking down X) // to OpenGL's coordinate system (looking down -Z) myGlMultMatrix( viewerMatrix, s_flipMatrix, tr.or.modelMatrix ); tr.viewParms.world = tr.or; } /* ** SetFarClip */ static void R_SetFarClip( void ) { float farthestCornerDistance = 0; int i; // if not rendering the world (icons, menus, etc) // set a 2k far clip plane if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { tr.viewParms.zFar = 2048; return; } // // set far clipping planes dynamically // farthestCornerDistance = 0; for ( i = 0; i < 8; i++ ) { vec3_t v; vec3_t vecTo; float distance; if ( i & 1 ) { v[0] = tr.viewParms.visBounds[0][0]; } else { v[0] = tr.viewParms.visBounds[1][0]; } if ( i & 2 ) { v[1] = tr.viewParms.visBounds[0][1]; } else { v[1] = tr.viewParms.visBounds[1][1]; } if ( i & 4 ) { v[2] = tr.viewParms.visBounds[0][2]; } else { v[2] = tr.viewParms.visBounds[1][2]; } VectorSubtract( v, tr.viewParms.or.origin, vecTo ); distance = vecTo[0] * vecTo[0] + vecTo[1] * vecTo[1] + vecTo[2] * vecTo[2]; if ( distance > farthestCornerDistance ) { farthestCornerDistance = distance; } } tr.viewParms.zFar = sqrt( farthestCornerDistance ); } /* ================= R_SetupFrustum Set up the culling frustum planes for the current view using the results we got from computing the first two rows of the projection matrix. ================= */ void R_SetupFrustum (viewParms_t *dest, float xmin, float xmax, float ymax, float zProj, float zFar, float stereoSep) { vec3_t ofsorigin; float oppleg, adjleg, length; int i; if(stereoSep == 0 && xmin == -xmax) { // symmetric case can be simplified VectorCopy(dest->or.origin, ofsorigin); length = sqrt(xmax * xmax + zProj * zProj); oppleg = xmax / length; adjleg = zProj / length; VectorScale(dest->or.axis[0], oppleg, dest->frustum[0].normal); VectorMA(dest->frustum[0].normal, adjleg, dest->or.axis[1], dest->frustum[0].normal); VectorScale(dest->or.axis[0], oppleg, dest->frustum[1].normal); VectorMA(dest->frustum[1].normal, -adjleg, dest->or.axis[1], dest->frustum[1].normal); } else { // In stereo rendering, due to the modification of the projection matrix, dest->or.origin is not the // actual origin that we're rendering so offset the tip of the view pyramid. VectorMA(dest->or.origin, stereoSep, dest->or.axis[1], ofsorigin); oppleg = xmax + stereoSep; length = sqrt(oppleg * oppleg + zProj * zProj); VectorScale(dest->or.axis[0], oppleg / length, dest->frustum[0].normal); VectorMA(dest->frustum[0].normal, zProj / length, dest->or.axis[1], dest->frustum[0].normal); oppleg = xmin + stereoSep; length = sqrt(oppleg * oppleg + zProj * zProj); VectorScale(dest->or.axis[0], -oppleg / length, dest->frustum[1].normal); VectorMA(dest->frustum[1].normal, -zProj / length, dest->or.axis[1], dest->frustum[1].normal); } length = sqrt(ymax * ymax + zProj * zProj); oppleg = ymax / length; adjleg = zProj / length; VectorScale(dest->or.axis[0], oppleg, dest->frustum[2].normal); VectorMA(dest->frustum[2].normal, adjleg, dest->or.axis[2], dest->frustum[2].normal); VectorScale(dest->or.axis[0], oppleg, dest->frustum[3].normal); VectorMA(dest->frustum[3].normal, -adjleg, dest->or.axis[2], dest->frustum[3].normal); for (i=0 ; i<4 ; i++) { dest->frustum[i].type = PLANE_NON_AXIAL; dest->frustum[i].dist = DotProduct (ofsorigin, dest->frustum[i].normal); SetPlaneSignbits( &dest->frustum[i] ); } if (zFar != 0.0f) { vec3_t farpoint; VectorMA(ofsorigin, zFar, dest->or.axis[0], farpoint); VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal); dest->frustum[4].type = PLANE_NON_AXIAL; dest->frustum[4].dist = DotProduct (farpoint, dest->frustum[4].normal); SetPlaneSignbits( &dest->frustum[4] ); dest->flags |= VPF_FARPLANEFRUSTUM; } } /* =============== R_SetupProjection =============== */ void R_SetupProjection(viewParms_t *dest, float zProj, float zFar, qboolean computeFrustum) { float xmin, xmax, ymin, ymax; float width, height, stereoSep = r_stereoSeparation->value; /* * offset the view origin of the viewer for stereo rendering * by setting the projection matrix appropriately. */ if(stereoSep != 0) { if(dest->stereoFrame == STEREO_LEFT) stereoSep = zProj / stereoSep; else if(dest->stereoFrame == STEREO_RIGHT) stereoSep = zProj / -stereoSep; else stereoSep = 0; } ymax = zProj * tan(dest->fovY * M_PI / 360.0f); ymin = -ymax; xmax = zProj * tan(dest->fovX * M_PI / 360.0f); xmin = -xmax; width = xmax - xmin; height = ymax - ymin; dest->projectionMatrix[0] = 2 * zProj / width; dest->projectionMatrix[4] = 0; dest->projectionMatrix[8] = (xmax + xmin + 2 * stereoSep) / width; dest->projectionMatrix[12] = 2 * zProj * stereoSep / width; dest->projectionMatrix[1] = 0; dest->projectionMatrix[5] = 2 * zProj / height; dest->projectionMatrix[9] = ( ymax + ymin ) / height; // normally 0 dest->projectionMatrix[13] = 0; dest->projectionMatrix[3] = 0; dest->projectionMatrix[7] = 0; dest->projectionMatrix[11] = -1; dest->projectionMatrix[15] = 0; // Now that we have all the data for the projection matrix we can also setup the view frustum. if(computeFrustum) R_SetupFrustum(dest, xmin, xmax, ymax, zProj, zFar, stereoSep); } /* =============== R_SetupProjectionZ Sets the z-component transformation part in the projection matrix =============== */ void R_SetupProjectionZ(viewParms_t *dest) { float zNear, zFar, depth; zNear = r_znear->value; zFar = dest->zFar; depth = zFar - zNear; dest->projectionMatrix[2] = 0; dest->projectionMatrix[6] = 0; dest->projectionMatrix[10] = -( zFar + zNear ) / depth; dest->projectionMatrix[14] = -2 * zFar * zNear / depth; if (dest->isPortal) { float plane[4]; float plane2[4]; vec4_t q, c; // transform portal plane into camera space plane[0] = dest->portalPlane.normal[0]; plane[1] = dest->portalPlane.normal[1]; plane[2] = dest->portalPlane.normal[2]; plane[3] = dest->portalPlane.dist; plane2[0] = -DotProduct (dest->or.axis[1], plane); plane2[1] = DotProduct (dest->or.axis[2], plane); plane2[2] = -DotProduct (dest->or.axis[0], plane); plane2[3] = DotProduct (plane, dest->or.origin) - plane[3]; // Lengyel, Eric. "Modifying the Projection Matrix to Perform Oblique Near-plane Clipping". // Terathon Software 3D Graphics Library, 2004. http://www.terathon.com/code/oblique.html q[0] = (SGN(plane2[0]) + dest->projectionMatrix[8]) / dest->projectionMatrix[0]; q[1] = (SGN(plane2[1]) + dest->projectionMatrix[9]) / dest->projectionMatrix[5]; q[2] = -1.0f; q[3] = (1.0f + dest->projectionMatrix[10]) / dest->projectionMatrix[14]; VectorScale4(plane2, 2.0f / DotProduct4(plane2, q), c); dest->projectionMatrix[2] = c[0]; dest->projectionMatrix[6] = c[1]; dest->projectionMatrix[10] = c[2] + 1.0f; dest->projectionMatrix[14] = c[3]; } } /* =============== R_SetupProjectionOrtho =============== */ void R_SetupProjectionOrtho(viewParms_t *dest, vec3_t viewBounds[2]) { float xmin, xmax, ymin, ymax, znear, zfar; //viewParms_t *dest = &tr.viewParms; int i; vec3_t pop; // Quake3: Projection: // // Z X Y Z // | / | / // |/ |/ // Y--+ +--X xmin = viewBounds[0][1]; xmax = viewBounds[1][1]; ymin = -viewBounds[1][2]; ymax = -viewBounds[0][2]; znear = viewBounds[0][0]; zfar = viewBounds[1][0]; dest->projectionMatrix[0] = 2 / (xmax - xmin); dest->projectionMatrix[4] = 0; dest->projectionMatrix[8] = 0; dest->projectionMatrix[12] = (xmax + xmin) / (xmax - xmin); dest->projectionMatrix[1] = 0; dest->projectionMatrix[5] = 2 / (ymax - ymin); dest->projectionMatrix[9] = 0; dest->projectionMatrix[13] = (ymax + ymin) / (ymax - ymin); dest->projectionMatrix[2] = 0; dest->projectionMatrix[6] = 0; dest->projectionMatrix[10] = -2 / (zfar - znear); dest->projectionMatrix[14] = -(zfar + znear) / (zfar - znear); dest->projectionMatrix[3] = 0; dest->projectionMatrix[7] = 0; dest->projectionMatrix[11] = 0; dest->projectionMatrix[15] = 1; VectorScale(dest->or.axis[1], 1.0f, dest->frustum[0].normal); VectorMA(dest->or.origin, viewBounds[0][1], dest->frustum[0].normal, pop); dest->frustum[0].dist = DotProduct(pop, dest->frustum[0].normal); VectorScale(dest->or.axis[1], -1.0f, dest->frustum[1].normal); VectorMA(dest->or.origin, -viewBounds[1][1], dest->frustum[1].normal, pop); dest->frustum[1].dist = DotProduct(pop, dest->frustum[1].normal); VectorScale(dest->or.axis[2], 1.0f, dest->frustum[2].normal); VectorMA(dest->or.origin, viewBounds[0][2], dest->frustum[2].normal, pop); dest->frustum[2].dist = DotProduct(pop, dest->frustum[2].normal); VectorScale(dest->or.axis[2], -1.0f, dest->frustum[3].normal); VectorMA(dest->or.origin, -viewBounds[1][2], dest->frustum[3].normal, pop); dest->frustum[3].dist = DotProduct(pop, dest->frustum[3].normal); VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal); VectorMA(dest->or.origin, -viewBounds[1][0], dest->frustum[4].normal, pop); dest->frustum[4].dist = DotProduct(pop, dest->frustum[4].normal); for (i = 0; i < 5; i++) { dest->frustum[i].type = PLANE_NON_AXIAL; SetPlaneSignbits (&dest->frustum[i]); } dest->flags |= VPF_FARPLANEFRUSTUM; } /* ================= R_MirrorPoint ================= */ void R_MirrorPoint (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) { int i; vec3_t local; vec3_t transformed; float d; VectorSubtract( in, surface->origin, local ); VectorClear( transformed ); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct(local, surface->axis[i]); VectorMA( transformed, d, camera->axis[i], transformed ); } VectorAdd( transformed, camera->origin, out ); } void R_MirrorVector (vec3_t in, orientation_t *surface, orientation_t *camera, vec3_t out) { int i; float d; VectorClear( out ); for ( i = 0 ; i < 3 ; i++ ) { d = DotProduct(in, surface->axis[i]); VectorMA( out, d, camera->axis[i], out ); } } /* ============= R_PlaneForSurface ============= */ void R_PlaneForSurface (surfaceType_t *surfType, cplane_t *plane) { srfBspSurface_t *tri; srfPoly_t *poly; srfVert_t *v1, *v2, *v3; vec4_t plane4; if (!surfType) { Com_Memset (plane, 0, sizeof(*plane)); plane->normal[0] = 1; return; } switch (*surfType) { case SF_FACE: *plane = ((srfBspSurface_t *)surfType)->cullPlane; return; case SF_TRIANGLES: tri = (srfBspSurface_t *)surfType; v1 = tri->verts + tri->indexes[0]; v2 = tri->verts + tri->indexes[1]; v3 = tri->verts + tri->indexes[2]; PlaneFromPoints( plane4, v1->xyz, v2->xyz, v3->xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; return; case SF_POLY: poly = (srfPoly_t *)surfType; PlaneFromPoints( plane4, poly->verts[0].xyz, poly->verts[1].xyz, poly->verts[2].xyz ); VectorCopy( plane4, plane->normal ); plane->dist = plane4[3]; return; default: Com_Memset (plane, 0, sizeof(*plane)); plane->normal[0] = 1; return; } } /* ================= R_GetPortalOrientation entityNum is the entity that the portal surface is a part of, which may be moving and rotating. Returns qtrue if it should be mirrored ================= */ qboolean R_GetPortalOrientations( drawSurf_t *drawSurf, int entityNum, orientation_t *surface, orientation_t *camera, vec3_t pvsOrigin, qboolean *mirror ) { int i; cplane_t originalPlane, plane; trRefEntity_t *e; float d; vec3_t transformed; // create plane axis for the portal we are seeing R_PlaneForSurface( drawSurf->surface, &originalPlane ); // rotate the plane if necessary if ( entityNum != REFENTITYNUM_WORLD ) { tr.currentEntityNum = entityNum; tr.currentEntity = &tr.refdef.entities[entityNum]; // get the orientation of the entity R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or ); // rotate the plane, but keep the non-rotated version for matching // against the portalSurface entities R_LocalNormalToWorld( originalPlane.normal, plane.normal ); plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin ); // translate the original plane originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin ); } else { plane = originalPlane; } VectorCopy( plane.normal, surface->axis[0] ); PerpendicularVector( surface->axis[1], surface->axis[0] ); CrossProduct( surface->axis[0], surface->axis[1], surface->axis[2] ); // locate the portal entity closest to this plane. // origin will be the origin of the portal, origin2 will be // the origin of the camera for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) { e = &tr.refdef.entities[i]; if ( e->e.reType != RT_PORTALSURFACE ) { continue; } d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist; if ( d > 64 || d < -64) { continue; } // get the pvsOrigin from the entity VectorCopy( e->e.oldorigin, pvsOrigin ); // if the entity is just a mirror, don't use as a camera point if ( e->e.oldorigin[0] == e->e.origin[0] && e->e.oldorigin[1] == e->e.origin[1] && e->e.oldorigin[2] == e->e.origin[2] ) { VectorScale( plane.normal, plane.dist, surface->origin ); VectorCopy( surface->origin, camera->origin ); VectorSubtract( vec3_origin, surface->axis[0], camera->axis[0] ); VectorCopy( surface->axis[1], camera->axis[1] ); VectorCopy( surface->axis[2], camera->axis[2] ); *mirror = qtrue; return qtrue; } // project the origin onto the surface plane to get // an origin point we can rotate around d = DotProduct( e->e.origin, plane.normal ) - plane.dist; VectorMA( e->e.origin, -d, surface->axis[0], surface->origin ); // now get the camera origin and orientation VectorCopy( e->e.oldorigin, camera->origin ); AxisCopy( e->e.axis, camera->axis ); VectorSubtract( vec3_origin, camera->axis[0], camera->axis[0] ); VectorSubtract( vec3_origin, camera->axis[1], camera->axis[1] ); // optionally rotate if ( e->e.oldframe ) { // if a speed is specified if ( e->e.frame ) { // continuous rotate d = (tr.refdef.time/1000.0f) * e->e.frame; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } else { // bobbing rotate, with skinNum being the rotation offset d = sin( tr.refdef.time * 0.003f ); d = e->e.skinNum + d * 4; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } } else if ( e->e.skinNum ) { d = e->e.skinNum; VectorCopy( camera->axis[1], transformed ); RotatePointAroundVector( camera->axis[1], camera->axis[0], transformed, d ); CrossProduct( camera->axis[0], camera->axis[1], camera->axis[2] ); } *mirror = qfalse; return qtrue; } // if we didn't locate a portal entity, don't render anything. // We don't want to just treat it as a mirror, because without a // portal entity the server won't have communicated a proper entity set // in the snapshot // unfortunately, with local movement prediction it is easily possible // to see a surface before the server has communicated the matching // portal surface entity, so we don't want to print anything here... //ri.Printf( PRINT_ALL, "Portal surface without a portal entity\n" ); return qfalse; } static qboolean IsMirror( const drawSurf_t *drawSurf, int entityNum ) { int i; cplane_t originalPlane, plane; trRefEntity_t *e; float d; // create plane axis for the portal we are seeing R_PlaneForSurface( drawSurf->surface, &originalPlane ); // rotate the plane if necessary if ( entityNum != REFENTITYNUM_WORLD ) { tr.currentEntityNum = entityNum; tr.currentEntity = &tr.refdef.entities[entityNum]; // get the orientation of the entity R_RotateForEntity( tr.currentEntity, &tr.viewParms, &tr.or ); // rotate the plane, but keep the non-rotated version for matching // against the portalSurface entities R_LocalNormalToWorld( originalPlane.normal, plane.normal ); plane.dist = originalPlane.dist + DotProduct( plane.normal, tr.or.origin ); // translate the original plane originalPlane.dist = originalPlane.dist + DotProduct( originalPlane.normal, tr.or.origin ); } // locate the portal entity closest to this plane. // origin will be the origin of the portal, origin2 will be // the origin of the camera for ( i = 0 ; i < tr.refdef.num_entities ; i++ ) { e = &tr.refdef.entities[i]; if ( e->e.reType != RT_PORTALSURFACE ) { continue; } d = DotProduct( e->e.origin, originalPlane.normal ) - originalPlane.dist; if ( d > 64 || d < -64) { continue; } // if the entity is just a mirror, don't use as a camera point if ( e->e.oldorigin[0] == e->e.origin[0] && e->e.oldorigin[1] == e->e.origin[1] && e->e.oldorigin[2] == e->e.origin[2] ) { return qtrue; } return qfalse; } return qfalse; } /* ** SurfIsOffscreen ** ** Determines if a surface is completely offscreen. */ static qboolean SurfIsOffscreen( const drawSurf_t *drawSurf, vec4_t clipDest[128] ) { float shortest = 100000000; int entityNum; int numTriangles; shader_t *shader; int fogNum; int dlighted; int pshadowed; vec4_t clip, eye; int i; unsigned int pointOr = 0; unsigned int pointAnd = (unsigned int)~0; R_RotateForViewer(); R_DecomposeSort( drawSurf->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed ); RB_BeginSurface( shader, fogNum, drawSurf->cubemapIndex); rb_surfaceTable[ *drawSurf->surface ]( drawSurf->surface ); assert( tess.numVertexes < 128 ); for ( i = 0; i < tess.numVertexes; i++ ) { int j; unsigned int pointFlags = 0; R_TransformModelToClip( tess.xyz[i], tr.or.modelMatrix, tr.viewParms.projectionMatrix, eye, clip ); for ( j = 0; j < 3; j++ ) { if ( clip[j] >= clip[3] ) { pointFlags |= (1 << (j*2)); } else if ( clip[j] <= -clip[3] ) { pointFlags |= ( 1 << (j*2+1)); } } pointAnd &= pointFlags; pointOr |= pointFlags; } // trivially reject if ( pointAnd ) { return qtrue; } // determine if this surface is backfaced and also determine the distance // to the nearest vertex so we can cull based on portal range. Culling // based on vertex distance isn't 100% correct (we should be checking for // range to the surface), but it's good enough for the types of portals // we have in the game right now. numTriangles = tess.numIndexes / 3; for ( i = 0; i < tess.numIndexes; i += 3 ) { vec3_t normal, tNormal; float len; VectorSubtract( tess.xyz[tess.indexes[i]], tr.viewParms.or.origin, normal ); len = VectorLengthSquared( normal ); // lose the sqrt if ( len < shortest ) { shortest = len; } R_VaoUnpackNormal(tNormal, tess.normal[tess.indexes[i]]); if ( DotProduct( normal, tNormal ) >= 0 ) { numTriangles--; } } if ( !numTriangles ) { return qtrue; } // mirrors can early out at this point, since we don't do a fade over distance // with them (although we could) if ( IsMirror( drawSurf, entityNum ) ) { return qfalse; } if ( shortest > (tess.shader->portalRange*tess.shader->portalRange) ) { return qtrue; } return qfalse; } /* ======================== R_MirrorViewBySurface Returns qtrue if another view has been rendered ======================== */ qboolean R_MirrorViewBySurface (drawSurf_t *drawSurf, int entityNum) { vec4_t clipDest[128]; viewParms_t newParms; viewParms_t oldParms; orientation_t surface, camera; // don't recursively mirror if (tr.viewParms.isPortal) { ri.Printf( PRINT_DEVELOPER, "WARNING: recursive mirror/portal found\n" ); return qfalse; } if ( r_noportals->integer || (r_fastsky->integer == 1) ) { return qfalse; } // trivially reject portal/mirror if ( SurfIsOffscreen( drawSurf, clipDest ) ) { return qfalse; } // save old viewParms so we can return to it after the mirror view oldParms = tr.viewParms; newParms = tr.viewParms; newParms.isPortal = qtrue; newParms.zFar = 0.0f; newParms.flags &= ~VPF_FARPLANEFRUSTUM; if ( !R_GetPortalOrientations( drawSurf, entityNum, &surface, &camera, newParms.pvsOrigin, &newParms.isMirror ) ) { return qfalse; // bad portal, no portalentity } if (newParms.isMirror) newParms.flags |= VPF_NOVIEWMODEL; R_MirrorPoint (oldParms.or.origin, &surface, &camera, newParms.or.origin ); VectorSubtract( vec3_origin, camera.axis[0], newParms.portalPlane.normal ); newParms.portalPlane.dist = DotProduct( camera.origin, newParms.portalPlane.normal ); R_MirrorVector (oldParms.or.axis[0], &surface, &camera, newParms.or.axis[0]); R_MirrorVector (oldParms.or.axis[1], &surface, &camera, newParms.or.axis[1]); R_MirrorVector (oldParms.or.axis[2], &surface, &camera, newParms.or.axis[2]); // OPTIMIZE: restrict the viewport on the mirrored view // render the mirror view R_RenderView (&newParms); tr.viewParms = oldParms; return qtrue; } /* ================= R_SpriteFogNum See if a sprite is inside a fog volume ================= */ int R_SpriteFogNum( trRefEntity_t *ent ) { int i, j; fog_t *fog; if ( tr.refdef.rdflags & RDF_NOWORLDMODEL ) { return 0; } if ( ent->e.renderfx & RF_CROSSHAIR ) { return 0; } for ( i = 1 ; i < tr.world->numfogs ; i++ ) { fog = &tr.world->fogs[i]; for ( j = 0 ; j < 3 ; j++ ) { if ( ent->e.origin[j] - ent->e.radius >= fog->bounds[1][j] ) { break; } if ( ent->e.origin[j] + ent->e.radius <= fog->bounds[0][j] ) { break; } } if ( j == 3 ) { return i; } } return 0; } /* ========================================================================================== DRAWSURF SORTING ========================================================================================== */ /* =============== R_Radix =============== */ static ID_INLINE void R_Radix( int byte, int size, drawSurf_t *source, drawSurf_t *dest ) { int count[ 256 ] = { 0 }; int index[ 256 ]; int i; unsigned char *sortKey = NULL; unsigned char *end = NULL; sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte; end = sortKey + ( size * sizeof( drawSurf_t ) ); for( ; sortKey < end; sortKey += sizeof( drawSurf_t ) ) ++count[ *sortKey ]; index[ 0 ] = 0; for( i = 1; i < 256; ++i ) index[ i ] = index[ i - 1 ] + count[ i - 1 ]; sortKey = ( (unsigned char *)&source[ 0 ].sort ) + byte; for( i = 0; i < size; ++i, sortKey += sizeof( drawSurf_t ) ) dest[ index[ *sortKey ]++ ] = source[ i ]; } /* =============== R_RadixSort Radix sort with 4 byte size buckets =============== */ static void R_RadixSort( drawSurf_t *source, int size ) { static drawSurf_t scratch[ MAX_DRAWSURFS ]; #ifdef Q3_LITTLE_ENDIAN R_Radix( 0, size, source, scratch ); R_Radix( 1, size, scratch, source ); R_Radix( 2, size, source, scratch ); R_Radix( 3, size, scratch, source ); #else R_Radix( 3, size, source, scratch ); R_Radix( 2, size, scratch, source ); R_Radix( 1, size, source, scratch ); R_Radix( 0, size, scratch, source ); #endif //Q3_LITTLE_ENDIAN } //========================================================================================== /* ================= R_AddDrawSurf ================= */ void R_AddDrawSurf( surfaceType_t *surface, shader_t *shader, int fogIndex, int dlightMap, int pshadowMap, int cubemap ) { int index; // instead of checking for overflow, we just mask the index // so it wraps around index = tr.refdef.numDrawSurfs & DRAWSURF_MASK; // the sort data is packed into a single 32 bit value so it can be // compared quickly during the qsorting process tr.refdef.drawSurfs[index].sort = (shader->sortedIndex << QSORT_SHADERNUM_SHIFT) | tr.shiftedEntityNum | ( fogIndex << QSORT_FOGNUM_SHIFT ) | ((int)pshadowMap << QSORT_PSHADOW_SHIFT) | (int)dlightMap; tr.refdef.drawSurfs[index].cubemapIndex = cubemap; tr.refdef.drawSurfs[index].surface = surface; tr.refdef.numDrawSurfs++; } /* ================= R_DecomposeSort ================= */ void R_DecomposeSort( unsigned sort, int *entityNum, shader_t **shader, int *fogNum, int *dlightMap, int *pshadowMap ) { *fogNum = ( sort >> QSORT_FOGNUM_SHIFT ) & 31; *shader = tr.sortedShaders[ ( sort >> QSORT_SHADERNUM_SHIFT ) & (MAX_SHADERS-1) ]; *entityNum = ( sort >> QSORT_REFENTITYNUM_SHIFT ) & REFENTITYNUM_MASK; *pshadowMap = (sort >> QSORT_PSHADOW_SHIFT ) & 1; *dlightMap = sort & 1; } /* ================= R_SortDrawSurfs ================= */ void R_SortDrawSurfs( drawSurf_t *drawSurfs, int numDrawSurfs ) { shader_t *shader; int fogNum; int entityNum; int dlighted; int pshadowed; int i; //ri.Printf(PRINT_ALL, "firstDrawSurf %d numDrawSurfs %d\n", (int)(drawSurfs - tr.refdef.drawSurfs), numDrawSurfs); // it is possible for some views to not have any surfaces if ( numDrawSurfs < 1 ) { // we still need to add it for hyperspace cases R_AddDrawSurfCmd( drawSurfs, numDrawSurfs ); return; } // sort the drawsurfs by sort type, then orientation, then shader R_RadixSort( drawSurfs, numDrawSurfs ); // skip pass through drawing if rendering a shadow map if (tr.viewParms.flags & (VPF_SHADOWMAP | VPF_DEPTHSHADOW)) { R_AddDrawSurfCmd( drawSurfs, numDrawSurfs ); return; } // check for any pass through drawing, which // may cause another view to be rendered first for ( i = 0 ; i < numDrawSurfs ; i++ ) { R_DecomposeSort( (drawSurfs+i)->sort, &entityNum, &shader, &fogNum, &dlighted, &pshadowed ); if ( shader->sort > SS_PORTAL ) { break; } // no shader should ever have this sort type if ( shader->sort == SS_BAD ) { ri.Error (ERR_DROP, "Shader '%s'with sort == SS_BAD", shader->name ); } // if the mirror was completely clipped away, we may need to check another surface if ( R_MirrorViewBySurface( (drawSurfs+i), entityNum) ) { // this is a debug option to see exactly what is being mirrored if ( r_portalOnly->integer ) { return; } break; // only one mirror view at a time } } R_AddDrawSurfCmd( drawSurfs, numDrawSurfs ); } static void R_AddEntitySurface (int entityNum) { trRefEntity_t *ent; shader_t *shader; tr.currentEntityNum = entityNum; ent = tr.currentEntity = &tr.refdef.entities[tr.currentEntityNum]; ent->needDlights = qfalse; // preshift the value we are going to OR into the drawsurf sort tr.shiftedEntityNum = tr.currentEntityNum << QSORT_REFENTITYNUM_SHIFT; // // the weapon model must be handled special -- // we don't want the hacked weapon position showing in // mirrors, because the true body position will already be drawn // if ( (ent->e.renderfx & RF_FIRST_PERSON) && (tr.viewParms.flags & VPF_NOVIEWMODEL)) { return; } // simple generated models, like sprites and beams, are not culled switch ( ent->e.reType ) { case RT_PORTALSURFACE: break; // don't draw anything case RT_SPRITE: case RT_BEAM: case RT_LIGHTNING: case RT_RAIL_CORE: case RT_RAIL_RINGS: // self blood sprites, talk balloons, etc should not be drawn in the primary // view. We can't just do this check for all entities, because md3 // entities may still want to cast shadows from them if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) { return; } shader = R_GetShaderByHandle( ent->e.customShader ); R_AddDrawSurf( &entitySurface, shader, R_SpriteFogNum( ent ), 0, 0, 0 /*cubeMap*/ ); break; case RT_MODEL: // we must set up parts of tr.or for model culling R_RotateForEntity( ent, &tr.viewParms, &tr.or ); tr.currentModel = R_GetModelByHandle( ent->e.hModel ); if (!tr.currentModel) { R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0, 0 /*cubeMap*/ ); } else { switch ( tr.currentModel->type ) { case MOD_MESH: R_AddMD3Surfaces( ent ); break; case MOD_MDR: R_MDRAddAnimSurfaces( ent ); break; case MOD_IQM: R_AddIQMSurfaces( ent ); break; case MOD_BRUSH: R_AddBrushModelSurfaces( ent ); break; case MOD_BAD: // null model axis if ( (ent->e.renderfx & RF_THIRD_PERSON) && !tr.viewParms.isPortal) { break; } R_AddDrawSurf( &entitySurface, tr.defaultShader, 0, 0, 0, 0 ); break; default: ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad modeltype" ); break; } } break; default: ri.Error( ERR_DROP, "R_AddEntitySurfaces: Bad reType" ); } } /* ============= R_AddEntitySurfaces ============= */ void R_AddEntitySurfaces (void) { int i; if ( !r_drawentities->integer ) { return; } for ( i = 0; i < tr.refdef.num_entities; i++) R_AddEntitySurface(i); } /* ==================== R_GenerateDrawSurfs ==================== */ void R_GenerateDrawSurfs( void ) { R_AddWorldSurfaces (); R_AddPolygonSurfaces(); // set the projection matrix with the minimum zfar // now that we have the world bounded // this needs to be done before entities are // added, because they use the projection // matrix for lod calculation // dynamically compute far clip plane distance if (!(tr.viewParms.flags & VPF_SHADOWMAP)) { R_SetFarClip(); } // we know the size of the clipping volume. Now set the rest of the projection matrix. R_SetupProjectionZ (&tr.viewParms); R_AddEntitySurfaces (); } /* ================ R_DebugPolygon ================ */ void R_DebugPolygon( int color, int numPoints, float *points ) { // FIXME: implement this #if 0 int i; GL_State( GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE ); // draw solid shade qglColor3f( color&1, (color>>1)&1, (color>>2)&1 ); qglBegin( GL_POLYGON ); for ( i = 0 ; i < numPoints ; i++ ) { qglVertex3fv( points + i * 3 ); } qglEnd(); // draw wireframe outline GL_State( GLS_POLYMODE_LINE | GLS_DEPTHMASK_TRUE | GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE ); qglDepthRange( 0, 0 ); qglColor3f( 1, 1, 1 ); qglBegin( GL_POLYGON ); for ( i = 0 ; i < numPoints ; i++ ) { qglVertex3fv( points + i * 3 ); } qglEnd(); qglDepthRange( 0, 1 ); #endif } /* ==================== R_DebugGraphics Visualization aid for movement clipping debugging ==================== */ void R_DebugGraphics( void ) { if ( !r_debugSurface->integer ) { return; } R_IssuePendingRenderCommands(); GL_BindToTMU(tr.whiteImage, TB_COLORMAP); GL_Cull( CT_FRONT_SIDED ); ri.CM_DrawDebugSurface( R_DebugPolygon ); } /* ================ R_RenderView A view may be either the actual camera view, or a mirror / remote location ================ */ void R_RenderView (viewParms_t *parms) { int firstDrawSurf; int numDrawSurfs; if ( parms->viewportWidth <= 0 || parms->viewportHeight <= 0 ) { return; } tr.viewCount++; tr.viewParms = *parms; tr.viewParms.frameSceneNum = tr.frameSceneNum; tr.viewParms.frameCount = tr.frameCount; firstDrawSurf = tr.refdef.numDrawSurfs; tr.viewCount++; // set viewParms.world R_RotateForViewer (); R_SetupProjection(&tr.viewParms, r_zproj->value, tr.viewParms.zFar, qtrue); R_GenerateDrawSurfs(); // if we overflowed MAX_DRAWSURFS, the drawsurfs // wrapped around in the buffer and we will be missing // the first surfaces, not the last ones numDrawSurfs = tr.refdef.numDrawSurfs; if ( numDrawSurfs > MAX_DRAWSURFS ) { numDrawSurfs = MAX_DRAWSURFS; } R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, numDrawSurfs - firstDrawSurf ); // draw main system development information (surface outlines, etc) R_DebugGraphics(); } void R_RenderDlightCubemaps(const refdef_t *fd) { int i; for (i = 0; i < tr.refdef.num_dlights; i++) { viewParms_t shadowParms; int j; // use previous frame to determine visible dlights if ((1 << i) & tr.refdef.dlightMask) continue; Com_Memset( &shadowParms, 0, sizeof( shadowParms ) ); shadowParms.viewportX = tr.refdef.x; shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + PSHADOW_MAP_SIZE ); shadowParms.viewportWidth = PSHADOW_MAP_SIZE; shadowParms.viewportHeight = PSHADOW_MAP_SIZE; shadowParms.isPortal = qfalse; shadowParms.isMirror = qtrue; // because it is shadowParms.fovX = 90; shadowParms.fovY = 90; shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW | VPF_NOVIEWMODEL; shadowParms.zFar = tr.refdef.dlights[i].radius; VectorCopy( tr.refdef.dlights[i].origin, shadowParms.or.origin ); for (j = 0; j < 6; j++) { switch(j) { case 0: // -X VectorSet( shadowParms.or.axis[0], -1, 0, 0); VectorSet( shadowParms.or.axis[1], 0, 0, -1); VectorSet( shadowParms.or.axis[2], 0, 1, 0); break; case 1: // +X VectorSet( shadowParms.or.axis[0], 1, 0, 0); VectorSet( shadowParms.or.axis[1], 0, 0, 1); VectorSet( shadowParms.or.axis[2], 0, 1, 0); break; case 2: // -Y VectorSet( shadowParms.or.axis[0], 0, -1, 0); VectorSet( shadowParms.or.axis[1], 1, 0, 0); VectorSet( shadowParms.or.axis[2], 0, 0, -1); break; case 3: // +Y VectorSet( shadowParms.or.axis[0], 0, 1, 0); VectorSet( shadowParms.or.axis[1], 1, 0, 0); VectorSet( shadowParms.or.axis[2], 0, 0, 1); break; case 4: // -Z VectorSet( shadowParms.or.axis[0], 0, 0, -1); VectorSet( shadowParms.or.axis[1], 1, 0, 0); VectorSet( shadowParms.or.axis[2], 0, 1, 0); break; case 5: // +Z VectorSet( shadowParms.or.axis[0], 0, 0, 1); VectorSet( shadowParms.or.axis[1], -1, 0, 0); VectorSet( shadowParms.or.axis[2], 0, 1, 0); break; } R_RenderView(&shadowParms); R_AddCapShadowmapCmd( i, j ); } } } void R_RenderPshadowMaps(const refdef_t *fd) { viewParms_t shadowParms; int i; // first, make a list of shadows for ( i = 0; i < tr.refdef.num_entities; i++) { trRefEntity_t *ent = &tr.refdef.entities[i]; if((ent->e.renderfx & (RF_FIRST_PERSON | RF_NOSHADOW))) continue; //if((ent->e.renderfx & RF_THIRD_PERSON)) //continue; if (ent->e.reType == RT_MODEL) { model_t *model = R_GetModelByHandle( ent->e.hModel ); pshadow_t shadow; float radius = 0.0f; float scale = 1.0f; vec3_t diff; int j; if (!model) continue; if (ent->e.nonNormalizedAxes) { scale = VectorLength( ent->e.axis[0] ); } switch (model->type) { case MOD_MESH: { mdvFrame_t *frame = &model->mdv[0]->frames[ent->e.frame]; radius = frame->radius * scale; } break; case MOD_MDR: { // FIXME: never actually tested this mdrHeader_t *header = model->modelData; int frameSize = (size_t)( &((mdrFrame_t *)0)->bones[ header->numBones ] ); mdrFrame_t *frame = ( mdrFrame_t * ) ( ( byte * ) header + header->ofsFrames + frameSize * ent->e.frame); radius = frame->radius; } break; case MOD_IQM: { // FIXME: never actually tested this iqmData_t *data = model->modelData; vec3_t diag; float *framebounds; framebounds = data->bounds + 6*ent->e.frame; VectorSubtract( framebounds+3, framebounds, diag ); radius = 0.5f * VectorLength( diag ); } break; default: break; } if (!radius) continue; // Cull entities that are behind the viewer by more than lightRadius VectorSubtract(ent->e.origin, fd->vieworg, diff); if (DotProduct(diff, fd->viewaxis[0]) < -r_pshadowDist->value) continue; memset(&shadow, 0, sizeof(shadow)); shadow.numEntities = 1; shadow.entityNums[0] = i; shadow.viewRadius = radius; shadow.lightRadius = r_pshadowDist->value; VectorCopy(ent->e.origin, shadow.viewOrigin); shadow.sort = DotProduct(diff, diff) / (radius * radius); VectorCopy(ent->e.origin, shadow.entityOrigins[0]); shadow.entityRadiuses[0] = radius; for (j = 0; j < MAX_CALC_PSHADOWS; j++) { pshadow_t swap; if (j + 1 > tr.refdef.num_pshadows) { tr.refdef.num_pshadows = j + 1; tr.refdef.pshadows[j] = shadow; break; } // sort shadows by distance from camera divided by radius // FIXME: sort better if (tr.refdef.pshadows[j].sort <= shadow.sort) continue; swap = tr.refdef.pshadows[j]; tr.refdef.pshadows[j] = shadow; shadow = swap; } } } // next, merge touching pshadows for ( i = 0; i < tr.refdef.num_pshadows; i++) { pshadow_t *ps1 = &tr.refdef.pshadows[i]; int j; for (j = i + 1; j < tr.refdef.num_pshadows; j++) { pshadow_t *ps2 = &tr.refdef.pshadows[j]; int k; qboolean touch; if (ps1->numEntities == 8) break; touch = qfalse; if (SpheresIntersect(ps1->viewOrigin, ps1->viewRadius, ps2->viewOrigin, ps2->viewRadius)) { for (k = 0; k < ps1->numEntities; k++) { if (SpheresIntersect(ps1->entityOrigins[k], ps1->entityRadiuses[k], ps2->viewOrigin, ps2->viewRadius)) { touch = qtrue; break; } } } if (touch) { vec3_t newOrigin; float newRadius; BoundingSphereOfSpheres(ps1->viewOrigin, ps1->viewRadius, ps2->viewOrigin, ps2->viewRadius, newOrigin, &newRadius); VectorCopy(newOrigin, ps1->viewOrigin); ps1->viewRadius = newRadius; ps1->entityNums[ps1->numEntities] = ps2->entityNums[0]; VectorCopy(ps2->viewOrigin, ps1->entityOrigins[ps1->numEntities]); ps1->entityRadiuses[ps1->numEntities] = ps2->viewRadius; ps1->numEntities++; for (k = j; k < tr.refdef.num_pshadows - 1; k++) { tr.refdef.pshadows[k] = tr.refdef.pshadows[k + 1]; } j--; tr.refdef.num_pshadows--; } } } // cap number of drawn pshadows if (tr.refdef.num_pshadows > MAX_DRAWN_PSHADOWS) { tr.refdef.num_pshadows = MAX_DRAWN_PSHADOWS; } // next, fill up the rest of the shadow info for ( i = 0; i < tr.refdef.num_pshadows; i++) { pshadow_t *shadow = &tr.refdef.pshadows[i]; vec3_t up; vec3_t ambientLight, directedLight, lightDir; VectorSet(lightDir, 0.57735f, 0.57735f, 0.57735f); #if 1 R_LightForPoint(shadow->viewOrigin, ambientLight, directedLight, lightDir); // sometimes there's no light if (DotProduct(lightDir, lightDir) < 0.9f) VectorSet(lightDir, 0.0f, 0.0f, 1.0f); #endif if (shadow->viewRadius * 3.0f > shadow->lightRadius) { shadow->lightRadius = shadow->viewRadius * 3.0f; } VectorMA(shadow->viewOrigin, shadow->viewRadius, lightDir, shadow->lightOrigin); // make up a projection, up doesn't matter VectorScale(lightDir, -1.0f, shadow->lightViewAxis[0]); VectorSet(up, 0, 0, -1); if ( abs(DotProduct(up, shadow->lightViewAxis[0])) > 0.9f ) { VectorSet(up, -1, 0, 0); } CrossProduct(shadow->lightViewAxis[0], up, shadow->lightViewAxis[1]); VectorNormalize(shadow->lightViewAxis[1]); CrossProduct(shadow->lightViewAxis[0], shadow->lightViewAxis[1], shadow->lightViewAxis[2]); VectorCopy(shadow->lightViewAxis[0], shadow->cullPlane.normal); shadow->cullPlane.dist = DotProduct(shadow->cullPlane.normal, shadow->lightOrigin); shadow->cullPlane.type = PLANE_NON_AXIAL; SetPlaneSignbits(&shadow->cullPlane); } // next, render shadowmaps for ( i = 0; i < tr.refdef.num_pshadows; i++) { int firstDrawSurf; pshadow_t *shadow = &tr.refdef.pshadows[i]; int j; Com_Memset( &shadowParms, 0, sizeof( shadowParms ) ); if (glRefConfig.framebufferObject) { shadowParms.viewportX = 0; shadowParms.viewportY = 0; } else { shadowParms.viewportX = tr.refdef.x; shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + PSHADOW_MAP_SIZE ); } shadowParms.viewportWidth = PSHADOW_MAP_SIZE; shadowParms.viewportHeight = PSHADOW_MAP_SIZE; shadowParms.isPortal = qfalse; shadowParms.isMirror = qfalse; shadowParms.fovX = 90; shadowParms.fovY = 90; if (glRefConfig.framebufferObject) shadowParms.targetFbo = tr.pshadowFbos[i]; shadowParms.flags = VPF_SHADOWMAP | VPF_DEPTHSHADOW | VPF_NOVIEWMODEL; shadowParms.zFar = shadow->lightRadius; VectorCopy(shadow->lightOrigin, shadowParms.or.origin); VectorCopy(shadow->lightViewAxis[0], shadowParms.or.axis[0]); VectorCopy(shadow->lightViewAxis[1], shadowParms.or.axis[1]); VectorCopy(shadow->lightViewAxis[2], shadowParms.or.axis[2]); { tr.viewCount++; tr.viewParms = shadowParms; tr.viewParms.frameSceneNum = tr.frameSceneNum; tr.viewParms.frameCount = tr.frameCount; firstDrawSurf = tr.refdef.numDrawSurfs; tr.viewCount++; // set viewParms.world R_RotateForViewer (); { float xmin, xmax, ymin, ymax, znear, zfar; viewParms_t *dest = &tr.viewParms; vec3_t pop; xmin = ymin = -shadow->viewRadius; xmax = ymax = shadow->viewRadius; znear = 0; zfar = shadow->lightRadius; dest->projectionMatrix[0] = 2 / (xmax - xmin); dest->projectionMatrix[4] = 0; dest->projectionMatrix[8] = (xmax + xmin) / (xmax - xmin); dest->projectionMatrix[12] =0; dest->projectionMatrix[1] = 0; dest->projectionMatrix[5] = 2 / (ymax - ymin); dest->projectionMatrix[9] = ( ymax + ymin ) / (ymax - ymin); // normally 0 dest->projectionMatrix[13] = 0; dest->projectionMatrix[2] = 0; dest->projectionMatrix[6] = 0; dest->projectionMatrix[10] = 2 / (zfar - znear); dest->projectionMatrix[14] = 0; dest->projectionMatrix[3] = 0; dest->projectionMatrix[7] = 0; dest->projectionMatrix[11] = 0; dest->projectionMatrix[15] = 1; VectorScale(dest->or.axis[1], 1.0f, dest->frustum[0].normal); VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[0].normal, pop); dest->frustum[0].dist = DotProduct(pop, dest->frustum[0].normal); VectorScale(dest->or.axis[1], -1.0f, dest->frustum[1].normal); VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[1].normal, pop); dest->frustum[1].dist = DotProduct(pop, dest->frustum[1].normal); VectorScale(dest->or.axis[2], 1.0f, dest->frustum[2].normal); VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[2].normal, pop); dest->frustum[2].dist = DotProduct(pop, dest->frustum[2].normal); VectorScale(dest->or.axis[2], -1.0f, dest->frustum[3].normal); VectorMA(dest->or.origin, -shadow->viewRadius, dest->frustum[3].normal, pop); dest->frustum[3].dist = DotProduct(pop, dest->frustum[3].normal); VectorScale(dest->or.axis[0], -1.0f, dest->frustum[4].normal); VectorMA(dest->or.origin, -shadow->lightRadius, dest->frustum[4].normal, pop); dest->frustum[4].dist = DotProduct(pop, dest->frustum[4].normal); for (j = 0; j < 5; j++) { dest->frustum[j].type = PLANE_NON_AXIAL; SetPlaneSignbits (&dest->frustum[j]); } dest->flags |= VPF_FARPLANEFRUSTUM; } for (j = 0; j < shadow->numEntities; j++) { R_AddEntitySurface(shadow->entityNums[j]); } R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf ); if (!glRefConfig.framebufferObject) R_AddCapShadowmapCmd( i, -1 ); } } } static float CalcSplit(float n, float f, float i, float m) { return (n * pow(f / n, i / m) + (f - n) * i / m) / 2.0f; } void R_RenderSunShadowMaps(const refdef_t *fd, int level) { viewParms_t shadowParms; vec4_t lightDir, lightCol; vec3_t lightViewAxis[3]; vec3_t lightOrigin; float splitZNear, splitZFar, splitBias; float viewZNear, viewZFar; vec3_t lightviewBounds[2]; qboolean lightViewIndependentOfCameraView = qfalse; if (r_forceSun->integer == 2) { int scale = 32768; float angle = (fd->time % scale) / (float)scale * M_PI; lightDir[0] = cos(angle); lightDir[1] = sin(35.0f * M_PI / 180.0f); lightDir[2] = sin(angle) * cos(35.0f * M_PI / 180.0f); lightDir[3] = 0.0f; if (1) //((fd->time % (scale * 2)) < scale) { lightCol[0] = lightCol[1] = lightCol[2] = CLAMP(sin(angle) * 2.0f, 0.0f, 1.0f) * 2.0f; lightCol[3] = 1.0f; } else { lightCol[0] = lightCol[1] = lightCol[2] = CLAMP(sin(angle) * 2.0f * 0.1f, 0.0f, 0.1f); lightCol[3] = 1.0f; } VectorCopy4(lightDir, tr.refdef.sunDir); VectorCopy4(lightCol, tr.refdef.sunCol); VectorScale4(lightCol, 0.2f, tr.refdef.sunAmbCol); } else { VectorCopy4(tr.refdef.sunDir, lightDir); } viewZNear = r_shadowCascadeZNear->value; viewZFar = r_shadowCascadeZFar->value; splitBias = r_shadowCascadeZBias->value; switch(level) { case 0: default: //splitZNear = r_znear->value; //splitZFar = 256; splitZNear = viewZNear; splitZFar = CalcSplit(viewZNear, viewZFar, 1, 3) + splitBias; break; case 1: splitZNear = CalcSplit(viewZNear, viewZFar, 1, 3) + splitBias; splitZFar = CalcSplit(viewZNear, viewZFar, 2, 3) + splitBias; //splitZNear = 256; //splitZFar = 896; break; case 2: splitZNear = CalcSplit(viewZNear, viewZFar, 2, 3) + splitBias; splitZFar = viewZFar; //splitZNear = 896; //splitZFar = 3072; break; } if (level != 3) VectorCopy(fd->vieworg, lightOrigin); else VectorCopy(tr.world->lightGridOrigin, lightOrigin); // Make up a projection VectorScale(lightDir, -1.0f, lightViewAxis[0]); if (level == 3 || lightViewIndependentOfCameraView) { // Use world up as light view up VectorSet(lightViewAxis[2], 0, 0, 1); } else if (level == 0) { // Level 0 tries to use a diamond texture orientation relative to camera view // Use halfway between camera view forward and left for light view up VectorAdd(fd->viewaxis[0], fd->viewaxis[1], lightViewAxis[2]); } else { // Use camera view up as light view up VectorCopy(fd->viewaxis[2], lightViewAxis[2]); } // Check if too close to parallel to light direction if (abs(DotProduct(lightViewAxis[2], lightViewAxis[0])) > 0.9f) { if (level == 3 || lightViewIndependentOfCameraView) { // Use world left as light view up VectorSet(lightViewAxis[2], 0, 1, 0); } else if (level == 0) { // Level 0 tries to use a diamond texture orientation relative to camera view // Use halfway between camera view forward and up for light view up VectorAdd(fd->viewaxis[0], fd->viewaxis[2], lightViewAxis[2]); } else { // Use camera view left as light view up VectorCopy(fd->viewaxis[1], lightViewAxis[2]); } } // clean axes CrossProduct(lightViewAxis[2], lightViewAxis[0], lightViewAxis[1]); VectorNormalize(lightViewAxis[1]); CrossProduct(lightViewAxis[0], lightViewAxis[1], lightViewAxis[2]); // Create bounds for light projection using slice of view projection { mat4_t lightViewMatrix; vec4_t point, base, lightViewPoint; float lx, ly; base[3] = 1; point[3] = 1; lightViewPoint[3] = 1; Mat4View(lightViewAxis, lightOrigin, lightViewMatrix); ClearBounds(lightviewBounds[0], lightviewBounds[1]); if (level != 3) { // add view near plane lx = splitZNear * tan(fd->fov_x * M_PI / 360.0f); ly = splitZNear * tan(fd->fov_y * M_PI / 360.0f); VectorMA(fd->vieworg, splitZNear, fd->viewaxis[0], base); VectorMA(base, lx, fd->viewaxis[1], point); VectorMA(point, ly, fd->viewaxis[2], point); Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); VectorMA(base, -lx, fd->viewaxis[1], point); VectorMA(point, ly, fd->viewaxis[2], point); Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); VectorMA(base, lx, fd->viewaxis[1], point); VectorMA(point, -ly, fd->viewaxis[2], point); Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); VectorMA(base, -lx, fd->viewaxis[1], point); VectorMA(point, -ly, fd->viewaxis[2], point); Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); // add view far plane lx = splitZFar * tan(fd->fov_x * M_PI / 360.0f); ly = splitZFar * tan(fd->fov_y * M_PI / 360.0f); VectorMA(fd->vieworg, splitZFar, fd->viewaxis[0], base); VectorMA(base, lx, fd->viewaxis[1], point); VectorMA(point, ly, fd->viewaxis[2], point); Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); VectorMA(base, -lx, fd->viewaxis[1], point); VectorMA(point, ly, fd->viewaxis[2], point); Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); VectorMA(base, lx, fd->viewaxis[1], point); VectorMA(point, -ly, fd->viewaxis[2], point); Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); VectorMA(base, -lx, fd->viewaxis[1], point); VectorMA(point, -ly, fd->viewaxis[2], point); Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); } else { // use light grid size as level size // FIXME: could be tighter vec3_t bounds; bounds[0] = tr.world->lightGridSize[0] * tr.world->lightGridBounds[0]; bounds[1] = tr.world->lightGridSize[1] * tr.world->lightGridBounds[1]; bounds[2] = tr.world->lightGridSize[2] * tr.world->lightGridBounds[2]; point[0] = tr.world->lightGridOrigin[0]; point[1] = tr.world->lightGridOrigin[1]; point[2] = tr.world->lightGridOrigin[2]; Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); point[0] = tr.world->lightGridOrigin[0] + bounds[0]; point[1] = tr.world->lightGridOrigin[1]; point[2] = tr.world->lightGridOrigin[2]; Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); point[0] = tr.world->lightGridOrigin[0]; point[1] = tr.world->lightGridOrigin[1] + bounds[1]; point[2] = tr.world->lightGridOrigin[2]; Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); point[0] = tr.world->lightGridOrigin[0] + bounds[0]; point[1] = tr.world->lightGridOrigin[1] + bounds[1]; point[2] = tr.world->lightGridOrigin[2]; Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); point[0] = tr.world->lightGridOrigin[0]; point[1] = tr.world->lightGridOrigin[1]; point[2] = tr.world->lightGridOrigin[2] + bounds[2]; Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); point[0] = tr.world->lightGridOrigin[0] + bounds[0]; point[1] = tr.world->lightGridOrigin[1]; point[2] = tr.world->lightGridOrigin[2] + bounds[2]; Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); point[0] = tr.world->lightGridOrigin[0]; point[1] = tr.world->lightGridOrigin[1] + bounds[1]; point[2] = tr.world->lightGridOrigin[2] + bounds[2]; Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); point[0] = tr.world->lightGridOrigin[0] + bounds[0]; point[1] = tr.world->lightGridOrigin[1] + bounds[1]; point[2] = tr.world->lightGridOrigin[2] + bounds[2]; Mat4Transform(lightViewMatrix, point, lightViewPoint); AddPointToBounds(lightViewPoint, lightviewBounds[0], lightviewBounds[1]); } if (!glRefConfig.depthClamp) lightviewBounds[0][0] = lightviewBounds[1][0] - 8192; // Moving the Light in Texel-Sized Increments // from http://msdn.microsoft.com/en-us/library/windows/desktop/ee416324%28v=vs.85%29.aspx // if (lightViewIndependentOfCameraView) { float cascadeBound, worldUnitsPerTexel, invWorldUnitsPerTexel; cascadeBound = MAX(lightviewBounds[1][0] - lightviewBounds[0][0], lightviewBounds[1][1] - lightviewBounds[0][1]); cascadeBound = MAX(cascadeBound, lightviewBounds[1][2] - lightviewBounds[0][2]); worldUnitsPerTexel = cascadeBound / tr.sunShadowFbo[level]->width; invWorldUnitsPerTexel = 1.0f / worldUnitsPerTexel; VectorScale(lightviewBounds[0], invWorldUnitsPerTexel, lightviewBounds[0]); lightviewBounds[0][0] = floor(lightviewBounds[0][0]); lightviewBounds[0][1] = floor(lightviewBounds[0][1]); lightviewBounds[0][2] = floor(lightviewBounds[0][2]); VectorScale(lightviewBounds[0], worldUnitsPerTexel, lightviewBounds[0]); VectorScale(lightviewBounds[1], invWorldUnitsPerTexel, lightviewBounds[1]); lightviewBounds[1][0] = floor(lightviewBounds[1][0]); lightviewBounds[1][1] = floor(lightviewBounds[1][1]); lightviewBounds[1][2] = floor(lightviewBounds[1][2]); VectorScale(lightviewBounds[1], worldUnitsPerTexel, lightviewBounds[1]); } //ri.Printf(PRINT_ALL, "level %d znear %f zfar %f\n", level, lightviewBounds[0][0], lightviewBounds[1][0]); //ri.Printf(PRINT_ALL, "xmin %f xmax %f ymin %f ymax %f\n", lightviewBounds[0][1], lightviewBounds[1][1], -lightviewBounds[1][2], -lightviewBounds[0][2]); } { int firstDrawSurf; Com_Memset( &shadowParms, 0, sizeof( shadowParms ) ); if (glRefConfig.framebufferObject) { shadowParms.viewportX = 0; shadowParms.viewportY = 0; } else { shadowParms.viewportX = tr.refdef.x; shadowParms.viewportY = glConfig.vidHeight - ( tr.refdef.y + tr.sunShadowFbo[level]->height ); } shadowParms.viewportWidth = tr.sunShadowFbo[level]->width; shadowParms.viewportHeight = tr.sunShadowFbo[level]->height; shadowParms.isPortal = qfalse; shadowParms.isMirror = qfalse; shadowParms.fovX = 90; shadowParms.fovY = 90; if (glRefConfig.framebufferObject) shadowParms.targetFbo = tr.sunShadowFbo[level]; shadowParms.flags = VPF_DEPTHSHADOW | VPF_DEPTHCLAMP | VPF_ORTHOGRAPHIC | VPF_NOVIEWMODEL; shadowParms.zFar = lightviewBounds[1][0]; VectorCopy(lightOrigin, shadowParms.or.origin); VectorCopy(lightViewAxis[0], shadowParms.or.axis[0]); VectorCopy(lightViewAxis[1], shadowParms.or.axis[1]); VectorCopy(lightViewAxis[2], shadowParms.or.axis[2]); VectorCopy(lightOrigin, shadowParms.pvsOrigin ); { tr.viewCount++; tr.viewParms = shadowParms; tr.viewParms.frameSceneNum = tr.frameSceneNum; tr.viewParms.frameCount = tr.frameCount; firstDrawSurf = tr.refdef.numDrawSurfs; tr.viewCount++; // set viewParms.world R_RotateForViewer (); R_SetupProjectionOrtho(&tr.viewParms, lightviewBounds); R_AddWorldSurfaces (); R_AddPolygonSurfaces(); R_AddEntitySurfaces (); R_SortDrawSurfs( tr.refdef.drawSurfs + firstDrawSurf, tr.refdef.numDrawSurfs - firstDrawSurf ); } Mat4Multiply(tr.viewParms.projectionMatrix, tr.viewParms.world.modelMatrix, tr.refdef.sunShadowMvp[level]); } } void R_RenderCubemapSide( int cubemapIndex, int cubemapSide, qboolean subscene ) { refdef_t refdef; viewParms_t parms; float oldColorScale = tr.refdef.colorScale; memset( &refdef, 0, sizeof( refdef ) ); refdef.rdflags = 0; VectorCopy(tr.cubemaps[cubemapIndex].origin, refdef.vieworg); switch(cubemapSide) { case 0: // -X VectorSet( refdef.viewaxis[0], -1, 0, 0); VectorSet( refdef.viewaxis[1], 0, 0, -1); VectorSet( refdef.viewaxis[2], 0, 1, 0); break; case 1: // +X VectorSet( refdef.viewaxis[0], 1, 0, 0); VectorSet( refdef.viewaxis[1], 0, 0, 1); VectorSet( refdef.viewaxis[2], 0, 1, 0); break; case 2: // -Y VectorSet( refdef.viewaxis[0], 0, -1, 0); VectorSet( refdef.viewaxis[1], 1, 0, 0); VectorSet( refdef.viewaxis[2], 0, 0, -1); break; case 3: // +Y VectorSet( refdef.viewaxis[0], 0, 1, 0); VectorSet( refdef.viewaxis[1], 1, 0, 0); VectorSet( refdef.viewaxis[2], 0, 0, 1); break; case 4: // -Z VectorSet( refdef.viewaxis[0], 0, 0, -1); VectorSet( refdef.viewaxis[1], 1, 0, 0); VectorSet( refdef.viewaxis[2], 0, 1, 0); break; case 5: // +Z VectorSet( refdef.viewaxis[0], 0, 0, 1); VectorSet( refdef.viewaxis[1], -1, 0, 0); VectorSet( refdef.viewaxis[2], 0, 1, 0); break; } refdef.fov_x = 90; refdef.fov_y = 90; refdef.x = 0; refdef.y = 0; refdef.width = tr.renderCubeFbo->width; refdef.height = tr.renderCubeFbo->height; refdef.time = 0; if (!subscene) { RE_BeginScene(&refdef); // FIXME: sun shadows aren't rendered correctly in cubemaps // fix involves changing r_FBufScale to fit smaller cubemap image size, or rendering cubemap to framebuffer first if(0) //(glRefConfig.framebufferObject && r_sunlightMode->integer && (r_forceSun->integer || tr.sunShadows)) { R_RenderSunShadowMaps(&refdef, 0); R_RenderSunShadowMaps(&refdef, 1); R_RenderSunShadowMaps(&refdef, 2); R_RenderSunShadowMaps(&refdef, 3); } } { vec3_t ambient, directed, lightDir; R_LightForPoint(tr.refdef.vieworg, ambient, directed, lightDir); tr.refdef.colorScale = 1.0f; //766.0f / (directed[0] + directed[1] + directed[2] + 1.0f); // only print message for first side if (directed[0] + directed[1] + directed[2] == 0 && cubemapSide == 0) { ri.Printf(PRINT_ALL, "cubemap %d (%f, %f, %f) is outside the lightgrid!\n", cubemapIndex, tr.refdef.vieworg[0], tr.refdef.vieworg[1], tr.refdef.vieworg[2]); } } Com_Memset( &parms, 0, sizeof( parms ) ); parms.viewportX = 0; parms.viewportY = 0; parms.viewportWidth = tr.renderCubeFbo->width; parms.viewportHeight = tr.renderCubeFbo->height; parms.isPortal = qfalse; parms.isMirror = qtrue; parms.flags = VPF_NOVIEWMODEL | VPF_NOCUBEMAPS; parms.fovX = 90; parms.fovY = 90; VectorCopy( refdef.vieworg, parms.or.origin ); VectorCopy( refdef.viewaxis[0], parms.or.axis[0] ); VectorCopy( refdef.viewaxis[1], parms.or.axis[1] ); VectorCopy( refdef.viewaxis[2], parms.or.axis[2] ); VectorCopy( refdef.vieworg, parms.pvsOrigin ); // FIXME: sun shadows aren't rendered correctly in cubemaps // fix involves changing r_FBufScale to fit smaller cubemap image size, or rendering cubemap to framebuffer first if (0) //(r_depthPrepass->value && ((r_forceSun->integer) || tr.sunShadows)) { parms.flags = VPF_USESUNLIGHT; } parms.targetFbo = tr.renderCubeFbo; parms.targetFboLayer = cubemapSide; parms.targetFboCubemapIndex = cubemapIndex; R_RenderView(&parms); if (subscene) { tr.refdef.colorScale = oldColorScale; } else { RE_EndScene(); } }