mirror of
https://github.com/UberGames/GtkRadiant.git
synced 2024-11-23 04:12:06 +00:00
12b372f89c
git-svn-id: svn://svn.icculus.org/gtkradiant/GtkRadiant@1 8a3a26a2-13c4-0310-b231-cf6edde360e5
78 lines
2 KiB
C++
78 lines
2 KiB
C++
/*
|
|
Copyright (C) 1999-2006 Id Software, Inc. and contributors.
|
|
For a list of contributors, see the accompanying CONTRIBUTORS file.
|
|
|
|
This file is part of GtkRadiant.
|
|
|
|
GtkRadiant is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
GtkRadiant is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GtkRadiant; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*/
|
|
|
|
#include "math_quaternion.h"
|
|
#include "math_matrix.h"
|
|
|
|
void toQuat( idVec3 &src, quat_t &dst ) {
|
|
dst.x = src.x;
|
|
dst.y = src.y;
|
|
dst.z = src.z;
|
|
dst.w = 0.0f;
|
|
}
|
|
|
|
void toQuat( angles_t &src, quat_t &dst ) {
|
|
mat3_t temp;
|
|
|
|
toMatrix( src, temp );
|
|
toQuat( temp, dst );
|
|
}
|
|
|
|
void toQuat( mat3_t &src, quat_t &dst ) {
|
|
float trace;
|
|
float s;
|
|
int i;
|
|
int j;
|
|
int k;
|
|
|
|
static int next[ 3 ] = { 1, 2, 0 };
|
|
|
|
trace = src[ 0 ][ 0 ] + src[ 1 ][ 1 ] + src[ 2 ][ 2 ];
|
|
if ( trace > 0.0f ) {
|
|
s = ( float )sqrt( trace + 1.0f );
|
|
dst.w = s * 0.5f;
|
|
s = 0.5f / s;
|
|
|
|
dst.x = ( src[ 2 ][ 1 ] - src[ 1 ][ 2 ] ) * s;
|
|
dst.y = ( src[ 0 ][ 2 ] - src[ 2 ][ 0 ] ) * s;
|
|
dst.z = ( src[ 1 ][ 0 ] - src[ 0 ][ 1 ] ) * s;
|
|
} else {
|
|
i = 0;
|
|
if ( src[ 1 ][ 1 ] > src[ 0 ][ 0 ] ) {
|
|
i = 1;
|
|
}
|
|
if ( src[ 2 ][ 2 ] > src[ i ][ i ] ) {
|
|
i = 2;
|
|
}
|
|
|
|
j = next[ i ];
|
|
k = next[ j ];
|
|
|
|
s = ( float )sqrt( ( src[ i ][ i ] - ( src[ j ][ j ] + src[ k ][ k ] ) ) + 1.0f );
|
|
dst[ i ] = s * 0.5f;
|
|
|
|
s = 0.5f / s;
|
|
|
|
dst.w = ( src[ k ][ j ] - src[ j ][ k ] ) * s;
|
|
dst[ j ] = ( src[ j ][ i ] + src[ i ][ j ] ) * s;
|
|
dst[ k ] = ( src[ k ][ i ] + src[ i ][ k ] ) * s;
|
|
}
|
|
}
|