mirror of
https://github.com/UberGames/GtkRadiant.git
synced 2024-11-30 15:41:19 +00:00
274 lines
6.5 KiB
C
274 lines
6.5 KiB
C
|
/*
|
||
|
Copyright (C) 2001-2006, William Joseph.
|
||
|
All Rights Reserved.
|
||
|
|
||
|
This file is part of GtkRadiant.
|
||
|
|
||
|
GtkRadiant is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
GtkRadiant is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with GtkRadiant; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#if !defined(INCLUDED_MATH_CURVE_H)
|
||
|
#define INCLUDED_MATH_CURVE_H
|
||
|
|
||
|
/// \file
|
||
|
/// \brief Curve data types and related operations.
|
||
|
|
||
|
#include "debugging/debugging.h"
|
||
|
#include "container/array.h"
|
||
|
#include <math/matrix.h>
|
||
|
|
||
|
|
||
|
template<typename I, typename Degree>
|
||
|
struct BernsteinPolynomial
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return 1; // general case not implemented
|
||
|
}
|
||
|
};
|
||
|
|
||
|
typedef IntegralConstant<0> Zero;
|
||
|
typedef IntegralConstant<1> One;
|
||
|
typedef IntegralConstant<2> Two;
|
||
|
typedef IntegralConstant<3> Three;
|
||
|
typedef IntegralConstant<4> Four;
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<Zero, Zero>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<Zero, One>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return 1 - t;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<One, One>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return t;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<Zero, Two>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return (1 - t) * (1 - t);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<One, Two>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return 2 * (1 - t) * t;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<Two, Two>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return t * t;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<Zero, Three>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return (1 - t) * (1 - t) * (1 - t);
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<One, Three>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return 3 * (1 - t) * (1 - t) * t;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<Two, Three>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return 3 * (1 - t) * t * t;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template<>
|
||
|
struct BernsteinPolynomial<Three, Three>
|
||
|
{
|
||
|
static double apply(double t)
|
||
|
{
|
||
|
return t * t * t;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
typedef Array<Vector3> ControlPoints;
|
||
|
|
||
|
inline Vector3 CubicBezier_evaluate(const Vector3* firstPoint, double t)
|
||
|
{
|
||
|
Vector3 result(0, 0, 0);
|
||
|
double denominator = 0;
|
||
|
|
||
|
{
|
||
|
double weight = BernsteinPolynomial<Zero, Three>::apply(t);
|
||
|
result += vector3_scaled(*firstPoint++, weight);
|
||
|
denominator += weight;
|
||
|
}
|
||
|
{
|
||
|
double weight = BernsteinPolynomial<One, Three>::apply(t);
|
||
|
result += vector3_scaled(*firstPoint++, weight);
|
||
|
denominator += weight;
|
||
|
}
|
||
|
{
|
||
|
double weight = BernsteinPolynomial<Two, Three>::apply(t);
|
||
|
result += vector3_scaled(*firstPoint++, weight);
|
||
|
denominator += weight;
|
||
|
}
|
||
|
{
|
||
|
double weight = BernsteinPolynomial<Three, Three>::apply(t);
|
||
|
result += vector3_scaled(*firstPoint++, weight);
|
||
|
denominator += weight;
|
||
|
}
|
||
|
|
||
|
return result / denominator;
|
||
|
}
|
||
|
|
||
|
inline Vector3 CubicBezier_evaluateMid(const Vector3* firstPoint)
|
||
|
{
|
||
|
return vector3_scaled(firstPoint[0], 0.125)
|
||
|
+ vector3_scaled(firstPoint[1], 0.375)
|
||
|
+ vector3_scaled(firstPoint[2], 0.375)
|
||
|
+ vector3_scaled(firstPoint[3], 0.125);
|
||
|
}
|
||
|
|
||
|
inline Vector3 CatmullRom_evaluate(const ControlPoints& controlPoints, double t)
|
||
|
{
|
||
|
// scale t to be segment-relative
|
||
|
t *= double(controlPoints.size() - 1);
|
||
|
|
||
|
// subtract segment index;
|
||
|
std::size_t segment = 0;
|
||
|
for(std::size_t i = 0; i < controlPoints.size() - 1; ++i)
|
||
|
{
|
||
|
if(t <= double(i+1))
|
||
|
{
|
||
|
segment = i;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
t -= segment;
|
||
|
|
||
|
const double reciprocal_alpha = 1.0 / 3.0;
|
||
|
|
||
|
Vector3 bezierPoints[4];
|
||
|
bezierPoints[0] = controlPoints[segment];
|
||
|
bezierPoints[1] = (segment > 0)
|
||
|
? controlPoints[segment] + vector3_scaled(controlPoints[segment + 1] - controlPoints[segment - 1], reciprocal_alpha * 0.5)
|
||
|
: controlPoints[segment] + vector3_scaled(controlPoints[segment + 1] - controlPoints[segment], reciprocal_alpha);
|
||
|
bezierPoints[2] = (segment < controlPoints.size() - 2)
|
||
|
? controlPoints[segment + 1] + vector3_scaled(controlPoints[segment] - controlPoints[segment + 2], reciprocal_alpha * 0.5)
|
||
|
: controlPoints[segment + 1] + vector3_scaled(controlPoints[segment] - controlPoints[segment + 1], reciprocal_alpha);
|
||
|
bezierPoints[3] = controlPoints[segment + 1];
|
||
|
return CubicBezier_evaluate(bezierPoints, t);
|
||
|
}
|
||
|
|
||
|
typedef Array<float> Knots;
|
||
|
|
||
|
inline double BSpline_basis(const Knots& knots, std::size_t i, std::size_t degree, double t)
|
||
|
{
|
||
|
if(degree == 0)
|
||
|
{
|
||
|
if(knots[i] <= t
|
||
|
&& t < knots[i + 1]
|
||
|
&& knots[i] < knots[i + 1])
|
||
|
{
|
||
|
return 1;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
double leftDenom = knots[i + degree] - knots[i];
|
||
|
double left = (leftDenom == 0) ? 0 : ((t - knots[i]) / leftDenom) * BSpline_basis(knots, i, degree - 1, t);
|
||
|
double rightDenom = knots[i + degree + 1] - knots[i + 1];
|
||
|
double right = (rightDenom == 0) ? 0 : ((knots[i + degree + 1] - t) / rightDenom) * BSpline_basis(knots, i + 1, degree - 1, t);
|
||
|
return left + right;
|
||
|
}
|
||
|
|
||
|
inline Vector3 BSpline_evaluate(const ControlPoints& controlPoints, const Knots& knots, std::size_t degree, double t)
|
||
|
{
|
||
|
Vector3 result(0, 0, 0);
|
||
|
for(std::size_t i = 0; i < controlPoints.size(); ++i)
|
||
|
{
|
||
|
result += vector3_scaled(controlPoints[i], BSpline_basis(knots, i, degree, t));
|
||
|
}
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
typedef Array<float> NURBSWeights;
|
||
|
|
||
|
inline Vector3 NURBS_evaluate(const ControlPoints& controlPoints, const NURBSWeights& weights, const Knots& knots, std::size_t degree, double t)
|
||
|
{
|
||
|
Vector3 result(0, 0, 0);
|
||
|
double denominator = 0;
|
||
|
for(std::size_t i = 0; i < controlPoints.size(); ++i)
|
||
|
{
|
||
|
double weight = weights[i] * BSpline_basis(knots, i, degree, t);
|
||
|
result += vector3_scaled(controlPoints[i], weight);
|
||
|
denominator += weight;
|
||
|
}
|
||
|
return result / denominator;
|
||
|
}
|
||
|
|
||
|
inline void KnotVector_openUniform(Knots& knots, std::size_t count, std::size_t degree)
|
||
|
{
|
||
|
knots.resize(count + degree + 1);
|
||
|
|
||
|
std::size_t equalKnots = 1;
|
||
|
|
||
|
for(std::size_t i = 0; i < equalKnots; ++i)
|
||
|
{
|
||
|
knots[i] = 0;
|
||
|
knots[knots.size() - (i + 1)] = 1;
|
||
|
}
|
||
|
|
||
|
std::size_t difference = knots.size() - 2 * (equalKnots);
|
||
|
for(std::size_t i = 0; i < difference; ++i)
|
||
|
{
|
||
|
knots[i + equalKnots] = Knots::value_type(double(i + 1) * 1.0 / double(difference + 1));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif
|