mirror of
https://github.com/UberGames/GtkRadiant.git
synced 2024-11-23 20:32:42 +00:00
141 lines
4.3 KiB
C
141 lines
4.3 KiB
C
|
/*
|
||
|
Copyright (C) 2001-2006, William Joseph.
|
||
|
All Rights Reserved.
|
||
|
|
||
|
This file is part of GtkRadiant.
|
||
|
|
||
|
GtkRadiant is free software; you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation; either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
GtkRadiant is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with GtkRadiant; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
|
||
|
#include "mathlib.h"
|
||
|
#include <float.h>
|
||
|
|
||
|
vec3_t identity = { 0,0,0 };
|
||
|
|
||
|
void ray_construct_for_vec3(ray_t *ray, const vec3_t origin, const vec3_t direction)
|
||
|
{
|
||
|
VectorCopy(origin, ray->origin);
|
||
|
VectorCopy(direction, ray->direction);
|
||
|
}
|
||
|
|
||
|
void ray_transform(ray_t *ray, const m4x4_t matrix)
|
||
|
{
|
||
|
m4x4_transform_point(matrix, ray->origin);
|
||
|
m4x4_transform_normal(matrix, ray->direction);
|
||
|
}
|
||
|
|
||
|
vec_t ray_intersect_point(const ray_t *ray, const vec3_t point, vec_t epsilon, vec_t divergence)
|
||
|
{
|
||
|
vec3_t displacement;
|
||
|
vec_t depth;
|
||
|
|
||
|
// calc displacement of test point from ray origin
|
||
|
VectorSubtract(point, ray->origin, displacement);
|
||
|
// calc length of displacement vector along ray direction
|
||
|
depth = DotProduct(displacement, ray->direction);
|
||
|
if(depth < 0.0f) return (vec_t)FLT_MAX;
|
||
|
// calc position of closest point on ray to test point
|
||
|
VectorMA (ray->origin, depth, ray->direction, displacement);
|
||
|
// calc displacement of test point from closest point
|
||
|
VectorSubtract(point, displacement, displacement);
|
||
|
// calc length of displacement, subtract depth-dependant epsilon
|
||
|
if (VectorLength(displacement) - (epsilon + (depth * divergence)) > 0.0f) return (vec_t)FLT_MAX;
|
||
|
return depth;
|
||
|
}
|
||
|
|
||
|
// Tomas Moller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. Journal of graphics tools, 2(1):21-28, 1997
|
||
|
|
||
|
#define EPSILON 0.000001
|
||
|
|
||
|
vec_t ray_intersect_triangle(const ray_t *ray, qboolean bCullBack, const vec3_t vert0, const vec3_t vert1, const vec3_t vert2)
|
||
|
{
|
||
|
float edge1[3], edge2[3], tvec[3], pvec[3], qvec[3];
|
||
|
float det,inv_det;
|
||
|
float u, v;
|
||
|
vec_t depth = (vec_t)FLT_MAX;
|
||
|
|
||
|
/* find vectors for two edges sharing vert0 */
|
||
|
VectorSubtract(vert1, vert0, edge1);
|
||
|
VectorSubtract(vert2, vert0, edge2);
|
||
|
|
||
|
/* begin calculating determinant - also used to calculate U parameter */
|
||
|
CrossProduct(ray->direction, edge2, pvec);
|
||
|
|
||
|
/* if determinant is near zero, ray lies in plane of triangle */
|
||
|
det = DotProduct(edge1, pvec);
|
||
|
|
||
|
if (bCullBack == qtrue)
|
||
|
{
|
||
|
if (det < EPSILON)
|
||
|
return depth;
|
||
|
|
||
|
// calculate distance from vert0 to ray origin
|
||
|
VectorSubtract(ray->origin, vert0, tvec);
|
||
|
|
||
|
// calculate U parameter and test bounds
|
||
|
u = DotProduct(tvec, pvec);
|
||
|
if (u < 0.0 || u > det)
|
||
|
return depth;
|
||
|
|
||
|
// prepare to test V parameter
|
||
|
CrossProduct(tvec, edge1, qvec);
|
||
|
|
||
|
// calculate V parameter and test bounds
|
||
|
v = DotProduct(ray->direction, qvec);
|
||
|
if (v < 0.0 || u + v > det)
|
||
|
return depth;
|
||
|
|
||
|
// calculate t, scale parameters, ray intersects triangle
|
||
|
depth = DotProduct(edge2, qvec);
|
||
|
inv_det = 1.0f / det;
|
||
|
depth *= inv_det;
|
||
|
//u *= inv_det;
|
||
|
//v *= inv_det;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
/* the non-culling branch */
|
||
|
if (det > -EPSILON && det < EPSILON)
|
||
|
return depth;
|
||
|
inv_det = 1.0f / det;
|
||
|
|
||
|
/* calculate distance from vert0 to ray origin */
|
||
|
VectorSubtract(ray->origin, vert0, tvec);
|
||
|
|
||
|
/* calculate U parameter and test bounds */
|
||
|
u = DotProduct(tvec, pvec) * inv_det;
|
||
|
if (u < 0.0 || u > 1.0)
|
||
|
return depth;
|
||
|
|
||
|
/* prepare to test V parameter */
|
||
|
CrossProduct(tvec, edge1, qvec);
|
||
|
|
||
|
/* calculate V parameter and test bounds */
|
||
|
v = DotProduct(ray->direction, qvec) * inv_det;
|
||
|
if (v < 0.0 || u + v > 1.0)
|
||
|
return depth;
|
||
|
|
||
|
/* calculate t, ray intersects triangle */
|
||
|
depth = DotProduct(edge2, qvec) * inv_det;
|
||
|
}
|
||
|
return depth;
|
||
|
}
|
||
|
|
||
|
vec_t ray_intersect_plane(const ray_t* ray, const vec3_t normal, vec_t dist)
|
||
|
{
|
||
|
return -(DotProduct(normal, ray->origin) - dist) / DotProduct(ray->direction, normal);
|
||
|
}
|
||
|
|