gtkradiant/tools/quake2/q2map/brushbsp.c

1354 lines
26 KiB
C
Raw Normal View History

/*
Copyright (C) 1999-2007 id Software, Inc. and contributors.
For a list of contributors, see the accompanying CONTRIBUTORS file.
This file is part of GtkRadiant.
GtkRadiant is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
GtkRadiant is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GtkRadiant; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "qbsp.h"
int c_nodes;
int c_nonvis;
int c_active_brushes;
// if a brush just barely pokes onto the other side,
// let it slide by without chopping
#define PLANESIDE_EPSILON 0.001
//0.1
#define PSIDE_FRONT 1
#define PSIDE_BACK 2
#define PSIDE_BOTH ( PSIDE_FRONT | PSIDE_BACK )
#define PSIDE_FACING 4
void FindBrushInTree( node_t *node, int brushnum ){
bspbrush_t *b;
if ( node->planenum == PLANENUM_LEAF ) {
for ( b = node->brushlist ; b ; b = b->next )
if ( b->original->brushnum == brushnum ) {
Sys_Printf( "here\n" );
}
return;
}
FindBrushInTree( node->children[0], brushnum );
FindBrushInTree( node->children[1], brushnum );
}
//==================================================
/*
================
DrawBrushList
================
*/
void DrawBrushList( bspbrush_t *brush, node_t *node ){
int i;
side_t *s;
GLS_BeginScene();
for ( ; brush ; brush = brush->next )
{
for ( i = 0 ; i < brush->numsides ; i++ )
{
s = &brush->sides[i];
if ( !s->winding ) {
continue;
}
if ( s->texinfo == TEXINFO_NODE ) {
GLS_Winding( s->winding, 1 );
}
else if ( !s->visible ) {
GLS_Winding( s->winding, 2 );
}
else{
GLS_Winding( s->winding, 0 );
}
}
}
GLS_EndScene();
}
/*
================
WriteBrushList
================
*/
void WriteBrushList( char *name, bspbrush_t *brush, qboolean onlyvis ){
int i;
side_t *s;
FILE *f;
Sys_FPrintf( SYS_VRB, "writing %s\n", name );
f = SafeOpenWrite( name );
for ( ; brush ; brush = brush->next )
{
for ( i = 0 ; i < brush->numsides ; i++ )
{
s = &brush->sides[i];
if ( !s->winding ) {
continue;
}
if ( onlyvis && !s->visible ) {
continue;
}
OutputWinding( brush->sides[i].winding, f );
}
}
fclose( f );
}
void PrintBrush( bspbrush_t *brush ){
int i;
Sys_Printf( "brush: %p\n", brush );
for ( i = 0; i < brush->numsides ; i++ )
{
pw( brush->sides[i].winding );
Sys_Printf( "\n" );
}
}
/*
==================
BoundBrush
Sets the mins/maxs based on the windings
==================
*/
void BoundBrush( bspbrush_t *brush ){
int i, j;
winding_t *w;
ClearBounds( brush->mins, brush->maxs );
for ( i = 0 ; i < brush->numsides ; i++ )
{
w = brush->sides[i].winding;
if ( !w ) {
continue;
}
for ( j = 0 ; j < w->numpoints ; j++ )
AddPointToBounds( w->p[j], brush->mins, brush->maxs );
}
}
/*
==================
CreateBrushWindings
==================
*/
void CreateBrushWindings( bspbrush_t *brush ){
int i, j;
winding_t *w;
side_t *side;
plane_t *plane;
for ( i = 0 ; i < brush->numsides ; i++ )
{
side = &brush->sides[i];
plane = &mapplanes[side->planenum];
w = BaseWindingForPlane( plane->normal, plane->dist );
for ( j = 0 ; j < brush->numsides && w; j++ )
{
if ( i == j ) {
continue;
}
if ( brush->sides[j].bevel ) {
continue;
}
plane = &mapplanes[brush->sides[j].planenum ^ 1];
ChopWindingInPlace( &w, plane->normal, plane->dist, 0 ); //CLIP_EPSILON);
}
side->winding = w;
}
BoundBrush( brush );
}
/*
==================
BrushFromBounds
Creates a new axial brush
==================
*/
bspbrush_t *BrushFromBounds( vec3_t mins, vec3_t maxs ){
bspbrush_t *b;
int i;
vec3_t normal;
vec_t dist;
b = AllocBrush( 6 );
b->numsides = 6;
for ( i = 0 ; i < 3 ; i++ )
{
VectorClear( normal );
normal[i] = 1;
dist = maxs[i];
b->sides[i].planenum = FindFloatPlane( normal, dist );
normal[i] = -1;
dist = -mins[i];
b->sides[3 + i].planenum = FindFloatPlane( normal, dist );
}
CreateBrushWindings( b );
return b;
}
/*
==================
BrushVolume
==================
*/
vec_t BrushVolume( bspbrush_t *brush ){
int i;
winding_t *w;
vec3_t corner;
vec_t d, area, volume;
plane_t *plane;
if ( !brush ) {
return 0;
}
// grab the first valid point as the corner
w = NULL;
for ( i = 0 ; i < brush->numsides ; i++ )
{
w = brush->sides[i].winding;
if ( w ) {
break;
}
}
if ( !w ) {
return 0;
}
VectorCopy( w->p[0], corner );
// make tetrahedrons to all other faces
volume = 0;
for ( ; i < brush->numsides ; i++ )
{
w = brush->sides[i].winding;
if ( !w ) {
continue;
}
plane = &mapplanes[brush->sides[i].planenum];
d = -( DotProduct( corner, plane->normal ) - plane->dist );
area = WindingArea( w );
volume += d * area;
}
volume /= 3;
return volume;
}
/*
================
CountBrushList
================
*/
int CountBrushList( bspbrush_t *brushes ){
int c;
c = 0;
for ( ; brushes ; brushes = brushes->next )
c++;
return c;
}
/*
================
AllocTree
================
*/
tree_t *AllocTree( void ){
tree_t *tree;
tree = malloc( sizeof( *tree ) );
memset( tree, 0, sizeof( *tree ) );
ClearBounds( tree->mins, tree->maxs );
return tree;
}
/*
================
AllocNode
================
*/
node_t *AllocNode( void ){
node_t *node;
node = malloc( sizeof( *node ) );
memset( node, 0, sizeof( *node ) );
return node;
}
/*
================
AllocBrush
================
*/
bspbrush_t *AllocBrush( int numsides ){
bspbrush_t *bb;
int c;
c = (int)&( ( (bspbrush_t *)0 )->sides[numsides] );
bb = malloc( c );
memset( bb, 0, c );
if ( numthreads == 1 ) {
c_active_brushes++;
}
return bb;
}
/*
================
FreeBrush
================
*/
void FreeBrush( bspbrush_t *brushes ){
int i;
for ( i = 0 ; i < brushes->numsides ; i++ )
if ( brushes->sides[i].winding ) {
FreeWinding( brushes->sides[i].winding );
}
free( brushes );
if ( numthreads == 1 ) {
c_active_brushes--;
}
}
/*
================
FreeBrushList
================
*/
void FreeBrushList( bspbrush_t *brushes ){
bspbrush_t *next;
for ( ; brushes ; brushes = next )
{
next = brushes->next;
FreeBrush( brushes );
}
}
/*
==================
CopyBrush
Duplicates the brush, the sides, and the windings
==================
*/
bspbrush_t *CopyBrush( bspbrush_t *brush ){
bspbrush_t *newbrush;
int size;
int i;
size = (int)&( ( (bspbrush_t *)0 )->sides[brush->numsides] );
newbrush = AllocBrush( brush->numsides );
memcpy( newbrush, brush, size );
for ( i = 0 ; i < brush->numsides ; i++ )
{
if ( brush->sides[i].winding ) {
newbrush->sides[i].winding = CopyWinding( brush->sides[i].winding );
}
}
return newbrush;
}
/*
==================
PointInLeaf
==================
*/
node_t *PointInLeaf( node_t *node, vec3_t point ){
vec_t d;
plane_t *plane;
while ( node->planenum != PLANENUM_LEAF )
{
plane = &mapplanes[node->planenum];
d = DotProduct( point, plane->normal ) - plane->dist;
if ( d > 0 ) {
node = node->children[0];
}
else{
node = node->children[1];
}
}
return node;
}
//========================================================
/*
==============
BoxOnPlaneSide
Returns PSIDE_FRONT, PSIDE_BACK, or PSIDE_BOTH
==============
*/
int BoxOnPlaneSide( vec3_t mins, vec3_t maxs, plane_t *plane ){
int side;
int i;
vec3_t corners[2];
vec_t dist1, dist2;
// axial planes are easy
if ( plane->type < 3 ) {
side = 0;
if ( maxs[plane->type] > plane->dist + PLANESIDE_EPSILON ) {
side |= PSIDE_FRONT;
}
if ( mins[plane->type] < plane->dist - PLANESIDE_EPSILON ) {
side |= PSIDE_BACK;
}
return side;
}
// create the proper leading and trailing verts for the box
for ( i = 0 ; i < 3 ; i++ )
{
if ( plane->normal[i] < 0 ) {
corners[0][i] = mins[i];
corners[1][i] = maxs[i];
}
else
{
corners[1][i] = mins[i];
corners[0][i] = maxs[i];
}
}
dist1 = DotProduct( plane->normal, corners[0] ) - plane->dist;
dist2 = DotProduct( plane->normal, corners[1] ) - plane->dist;
side = 0;
if ( dist1 >= PLANESIDE_EPSILON ) {
side = PSIDE_FRONT;
}
if ( dist2 < PLANESIDE_EPSILON ) {
side |= PSIDE_BACK;
}
return side;
}
/*
============
QuickTestBrushToPlanenum
============
*/
int QuickTestBrushToPlanenum( bspbrush_t *brush, int planenum, int *numsplits ){
int i, num;
plane_t *plane;
int s;
*numsplits = 0;
// if the brush actually uses the planenum,
// we can tell the side for sure
for ( i = 0 ; i < brush->numsides ; i++ )
{
num = brush->sides[i].planenum;
if ( num >= 0x10000 ) {
Error( "bad planenum" );
}
if ( num == planenum ) {
return PSIDE_BACK | PSIDE_FACING;
}
if ( num == ( planenum ^ 1 ) ) {
return PSIDE_FRONT | PSIDE_FACING;
}
}
// box on plane side
plane = &mapplanes[planenum];
s = BoxOnPlaneSide( brush->mins, brush->maxs, plane );
// if both sides, count the visible faces split
if ( s == PSIDE_BOTH ) {
*numsplits += 3;
}
return s;
}
/*
============
TestBrushToPlanenum
============
*/
int TestBrushToPlanenum( bspbrush_t *brush, int planenum,
int *numsplits, qboolean *hintsplit, int *epsilonbrush ){
int i, j, num;
plane_t *plane;
int s;
winding_t *w;
vec_t d, d_front, d_back;
int front, back;
*numsplits = 0;
*hintsplit = false;
// if the brush actually uses the planenum,
// we can tell the side for sure
for ( i = 0 ; i < brush->numsides ; i++ )
{
num = brush->sides[i].planenum;
if ( num >= 0x10000 ) {
Error( "bad planenum" );
}
if ( num == planenum ) {
return PSIDE_BACK | PSIDE_FACING;
}
if ( num == ( planenum ^ 1 ) ) {
return PSIDE_FRONT | PSIDE_FACING;
}
}
// box on plane side
plane = &mapplanes[planenum];
s = BoxOnPlaneSide( brush->mins, brush->maxs, plane );
if ( s != PSIDE_BOTH ) {
return s;
}
// if both sides, count the visible faces split
d_front = d_back = 0;
for ( i = 0 ; i < brush->numsides ; i++ )
{
if ( brush->sides[i].texinfo == TEXINFO_NODE ) {
continue; // on node, don't worry about splits
}
if ( !brush->sides[i].visible ) {
continue; // we don't care about non-visible
}
w = brush->sides[i].winding;
if ( !w ) {
continue;
}
front = back = 0;
for ( j = 0 ; j < w->numpoints; j++ )
{
d = DotProduct( w->p[j], plane->normal ) - plane->dist;
if ( d > d_front ) {
d_front = d;
}
if ( d < d_back ) {
d_back = d;
}
if ( d > 0.1 ) { // PLANESIDE_EPSILON)
front = 1;
}
if ( d < -0.1 ) { // PLANESIDE_EPSILON)
back = 1;
}
}
if ( front && back ) {
if ( !( brush->sides[i].surf & SURF_SKIP ) ) {
( *numsplits )++;
if ( brush->sides[i].surf & SURF_HINT ) {
*hintsplit = true;
}
}
}
}
if ( ( d_front > 0.0 && d_front < 1.0 )
|| ( d_back < 0.0 && d_back > -1.0 ) ) {
( *epsilonbrush )++;
}
#if 0
if ( *numsplits == 0 ) { // didn't really need to be split
if ( front ) {
s = PSIDE_FRONT;
}
else if ( back ) {
s = PSIDE_BACK;
}
else{
s = 0;
}
}
#endif
return s;
}
//========================================================
/*
================
WindingIsTiny
Returns true if the winding would be crunched out of
existance by the vertex snapping.
================
*/
#define EDGE_LENGTH 0.2
qboolean WindingIsTiny( winding_t *w ){
#if 0
if ( WindingArea( w ) < 1 ) {
return true;
}
return false;
#else
int i, j;
vec_t len;
vec3_t delta;
int edges;
edges = 0;
for ( i = 0 ; i < w->numpoints ; i++ )
{
j = i == w->numpoints - 1 ? 0 : i + 1;
VectorSubtract( w->p[j], w->p[i], delta );
len = (float) VectorLength( delta );
if ( len > EDGE_LENGTH ) {
if ( ++edges == 3 ) {
return false;
}
}
}
return true;
#endif
}
/*
================
WindingIsHuge
Returns true if the winding still has one of the points
from basewinding for plane
================
*/
qboolean WindingIsHuge( winding_t *w ){
int i, j;
for ( i = 0 ; i < w->numpoints ; i++ )
{
for ( j = 0 ; j < 3 ; j++ )
if ( w->p[i][j] < -8000 || w->p[i][j] > 8000 ) {
return true;
}
}
return false;
}
//============================================================
/*
================
Leafnode
================
*/
void LeafNode( node_t *node, bspbrush_t *brushes ){
bspbrush_t *b;
int i;
node->planenum = PLANENUM_LEAF;
node->contents = 0;
for ( b = brushes ; b ; b = b->next )
{
// if the brush is solid and all of its sides are on nodes,
// it eats everything
if ( b->original->contents & CONTENTS_SOLID ) {
for ( i = 0 ; i < b->numsides ; i++ )
if ( b->sides[i].texinfo != TEXINFO_NODE ) {
break;
}
if ( i == b->numsides ) {
node->contents = CONTENTS_SOLID;
break;
}
}
node->contents |= b->original->contents;
}
node->brushlist = brushes;
}
//============================================================
void CheckPlaneAgainstParents( int pnum, node_t *node ){
node_t *p;
for ( p = node->parent ; p ; p = p->parent )
{
if ( p->planenum == pnum ) {
Error( "Tried parent" );
}
}
}
qboolean CheckPlaneAgainstVolume( int pnum, node_t *node ){
bspbrush_t *front, *back;
qboolean good;
SplitBrush( node->volume, pnum, &front, &back );
good = ( front && back );
if ( front ) {
FreeBrush( front );
}
if ( back ) {
FreeBrush( back );
}
return good;
}
/*
================
SelectSplitSide
Using a hueristic, choses one of the sides out of the brushlist
to partition the brushes with.
Returns NULL if there are no valid planes to split with..
================
*/
side_t *SelectSplitSide( bspbrush_t *brushes, node_t *node ){
int value, bestvalue;
bspbrush_t *brush, *test;
side_t *side, *bestside;
int i, j, pass, numpasses;
int pnum;
int s;
int front, back, both, facing, splits;
int bsplits;
int bestsplits;
int epsilonbrush;
qboolean hintsplit;
bestside = NULL;
bestvalue = -99999;
bestsplits = 0;
// the search order goes: visible-structural, visible-detail,
// nonvisible-structural, nonvisible-detail.
// If any valid plane is available in a pass, no further
// passes will be tried.
numpasses = 4;
for ( pass = 0 ; pass < numpasses ; pass++ )
{
for ( brush = brushes ; brush ; brush = brush->next )
{
if ( ( pass & 1 ) && !( brush->original->contents & CONTENTS_DETAIL ) ) {
continue;
}
if ( !( pass & 1 ) && ( brush->original->contents & CONTENTS_DETAIL ) ) {
continue;
}
for ( i = 0 ; i < brush->numsides ; i++ )
{
side = brush->sides + i;
if ( side->bevel ) {
continue; // never use a bevel as a spliter
}
if ( !side->winding ) {
continue; // nothing visible, so it can't split
}
if ( side->texinfo == TEXINFO_NODE ) {
continue; // allready a node splitter
}
if ( side->tested ) {
continue; // we allready have metrics for this plane
}
if ( side->surf & SURF_SKIP ) {
continue; // skip surfaces are never chosen
}
if ( side->visible ^ ( pass < 2 ) ) {
continue; // only check visible faces on first pass
}
pnum = side->planenum;
pnum &= ~1; // allways use positive facing plane
CheckPlaneAgainstParents( pnum, node );
if ( !CheckPlaneAgainstVolume( pnum, node ) ) {
continue; // would produce a tiny volume
}
front = 0;
back = 0;
both = 0;
facing = 0;
splits = 0;
epsilonbrush = 0;
for ( test = brushes ; test ; test = test->next )
{
s = TestBrushToPlanenum( test, pnum, &bsplits, &hintsplit, &epsilonbrush );
splits += bsplits;
if ( bsplits && ( s & PSIDE_FACING ) ) {
Error( "PSIDE_FACING with splits" );
}
test->testside = s;
// if the brush shares this face, don't bother
// testing that facenum as a splitter again
if ( s & PSIDE_FACING ) {
facing++;
for ( j = 0 ; j < test->numsides ; j++ )
{
if ( ( test->sides[j].planenum & ~1 ) == pnum ) {
test->sides[j].tested = true;
}
}
}
if ( s & PSIDE_FRONT ) {
front++;
}
if ( s & PSIDE_BACK ) {
back++;
}
if ( s == PSIDE_BOTH ) {
both++;
}
}
// give a value estimate for using this plane
value = 5 * facing - 5 * splits - abs( front - back );
// value = -5*splits;
// value = 5*facing - 5*splits;
if ( mapplanes[pnum].type < 3 ) {
value += 5; // axial is better
}
value -= epsilonbrush * 1000; // avoid!
// never split a hint side except with another hint
if ( hintsplit && !( side->surf & SURF_HINT ) ) {
value = -9999999;
}
// save off the side test so we don't need
// to recalculate it when we actually seperate
// the brushes
if ( value > bestvalue ) {
bestvalue = value;
bestside = side;
bestsplits = splits;
for ( test = brushes ; test ; test = test->next )
test->side = test->testside;
}
}
}
// if we found a good plane, don't bother trying any
// other passes
if ( bestside ) {
if ( pass > 1 ) {
if ( numthreads == 1 ) {
c_nonvis++;
}
}
if ( pass > 0 ) {
node->detail_seperator = true; // not needed for vis
}
break;
}
}
//
// clear all the tested flags we set
//
for ( brush = brushes ; brush ; brush = brush->next )
{
for ( i = 0 ; i < brush->numsides ; i++ )
brush->sides[i].tested = false;
}
return bestside;
}
/*
==================
BrushMostlyOnSide
==================
*/
int BrushMostlyOnSide( bspbrush_t *brush, plane_t *plane ){
int i, j;
winding_t *w;
vec_t d, max;
int side;
max = 0;
side = PSIDE_FRONT;
for ( i = 0 ; i < brush->numsides ; i++ )
{
w = brush->sides[i].winding;
if ( !w ) {
continue;
}
for ( j = 0 ; j < w->numpoints ; j++ )
{
d = DotProduct( w->p[j], plane->normal ) - plane->dist;
if ( d > max ) {
max = d;
side = PSIDE_FRONT;
}
if ( -d > max ) {
max = -d;
side = PSIDE_BACK;
}
}
}
return side;
}
/*
================
SplitBrush
Generates two new brushes, leaving the original
unchanged
================
*/
void SplitBrush( bspbrush_t *brush, int planenum,
bspbrush_t **front, bspbrush_t **back ){
bspbrush_t *b[2];
int i, j;
winding_t *w, *cw[2], *midwinding;
plane_t *plane, *plane2;
side_t *s, *cs;
float d, d_front, d_back;
*front = *back = NULL;
plane = &mapplanes[planenum];
// check all points
d_front = d_back = 0;
for ( i = 0 ; i < brush->numsides ; i++ )
{
w = brush->sides[i].winding;
if ( !w ) {
continue;
}
for ( j = 0 ; j < w->numpoints ; j++ )
{
d = DotProduct( w->p[j], plane->normal ) - plane->dist;
if ( d > 0 && d > d_front ) {
d_front = d;
}
if ( d < 0 && d < d_back ) {
d_back = d;
}
}
}
if ( d_front < 0.1 ) { // PLANESIDE_EPSILON)
// only on back
*back = CopyBrush( brush );
return;
}
if ( d_back > -0.1 ) { // PLANESIDE_EPSILON)
// only on front
*front = CopyBrush( brush );
return;
}
// create a new winding from the split plane
w = BaseWindingForPlane( plane->normal, plane->dist );
for ( i = 0 ; i < brush->numsides && w ; i++ )
{
plane2 = &mapplanes[brush->sides[i].planenum ^ 1];
ChopWindingInPlace( &w, plane2->normal, plane2->dist, 0 ); // PLANESIDE_EPSILON);
}
if ( !w || WindingIsTiny( w ) ) { // the brush isn't really split
int side;
side = BrushMostlyOnSide( brush, plane );
if ( side == PSIDE_FRONT ) {
*front = CopyBrush( brush );
}
if ( side == PSIDE_BACK ) {
*back = CopyBrush( brush );
}
return;
}
if ( WindingIsHuge( w ) ) {
Sys_FPrintf( SYS_VRB, "WARNING: huge winding\n" );
}
midwinding = w;
// split it for real
for ( i = 0 ; i < 2 ; i++ )
{
b[i] = AllocBrush( brush->numsides + 1 );
b[i]->original = brush->original;
}
// split all the current windings
for ( i = 0 ; i < brush->numsides ; i++ )
{
s = &brush->sides[i];
w = s->winding;
if ( !w ) {
continue;
}
ClipWindingEpsilon( w, plane->normal, plane->dist,
0 /*PLANESIDE_EPSILON*/, &cw[0], &cw[1] );
for ( j = 0 ; j < 2 ; j++ )
{
if ( !cw[j] ) {
continue;
}
#if 0
if ( WindingIsTiny( cw[j] ) ) {
FreeWinding( cw[j] );
continue;
}
#endif
cs = &b[j]->sides[b[j]->numsides];
b[j]->numsides++;
*cs = *s;
// cs->planenum = s->planenum;
// cs->texinfo = s->texinfo;
// cs->visible = s->visible;
// cs->original = s->original;
cs->winding = cw[j];
cs->tested = false;
}
}
// see if we have valid polygons on both sides
for ( i = 0 ; i < 2 ; i++ )
{
BoundBrush( b[i] );
for ( j = 0 ; j < 3 ; j++ )
{
if ( b[i]->mins[j] < -4096 || b[i]->maxs[j] > 4096 ) {
Sys_FPrintf( SYS_VRB, "bogus brush after clip\n" );
break;
}
}
if ( b[i]->numsides < 3 || j < 3 ) {
FreeBrush( b[i] );
b[i] = NULL;
}
}
if ( !( b[0] && b[1] ) ) {
if ( !b[0] && !b[1] ) {
Sys_FPrintf( SYS_VRB, "split removed brush\n" );
}
else{
Sys_FPrintf( SYS_VRB, "split not on both sides\n" );
}
if ( b[0] ) {
FreeBrush( b[0] );
*front = CopyBrush( brush );
}
if ( b[1] ) {
FreeBrush( b[1] );
*back = CopyBrush( brush );
}
return;
}
// add the midwinding to both sides
for ( i = 0 ; i < 2 ; i++ )
{
cs = &b[i]->sides[b[i]->numsides];
b[i]->numsides++;
cs->planenum = planenum ^ i ^ 1;
cs->texinfo = TEXINFO_NODE;
cs->visible = false;
cs->tested = false;
if ( i == 0 ) {
cs->winding = CopyWinding( midwinding );
}
else{
cs->winding = midwinding;
}
}
{
vec_t v1;
int i;
for ( i = 0 ; i < 2 ; i++ )
{
v1 = BrushVolume( b[i] );
if ( v1 < 1.0 ) {
FreeBrush( b[i] );
b[i] = NULL;
Sys_FPrintf( SYS_VRB, "tiny volume after clip\n" );
}
}
}
*front = b[0];
*back = b[1];
}
/*
================
SplitBrushList
================
*/
void SplitBrushList( bspbrush_t *brushes,
node_t *node, bspbrush_t **front, bspbrush_t **back ){
bspbrush_t *brush, *newbrush, *newbrush2;
side_t *side;
int sides;
int i;
*front = *back = NULL;
for ( brush = brushes ; brush ; brush = brush->next )
{
sides = brush->side;
if ( sides == PSIDE_BOTH ) { // split into two brushes
SplitBrush( brush, node->planenum, &newbrush, &newbrush2 );
if ( newbrush ) {
newbrush->next = *front;
*front = newbrush;
}
if ( newbrush2 ) {
newbrush2->next = *back;
*back = newbrush2;
}
continue;
}
newbrush = CopyBrush( brush );
// if the planenum is actualy a part of the brush
// find the plane and flag it as used so it won't be tried
// as a splitter again
if ( sides & PSIDE_FACING ) {
for ( i = 0 ; i < newbrush->numsides ; i++ )
{
side = newbrush->sides + i;
if ( ( side->planenum & ~1 ) == node->planenum ) {
side->texinfo = TEXINFO_NODE;
}
}
}
if ( sides & PSIDE_FRONT ) {
newbrush->next = *front;
*front = newbrush;
continue;
}
if ( sides & PSIDE_BACK ) {
newbrush->next = *back;
*back = newbrush;
continue;
}
}
}
/*
================
BuildTree_r
================
*/
node_t *BuildTree_r( node_t *node, bspbrush_t *brushes ){
node_t *newnode;
side_t *bestside;
int i;
bspbrush_t *children[2];
if ( numthreads == 1 ) {
c_nodes++;
}
if ( drawflag ) {
DrawBrushList( brushes, node );
}
// find the best plane to use as a splitter
bestside = SelectSplitSide( brushes, node );
if ( !bestside ) {
// leaf node
node->side = NULL;
node->planenum = -1;
LeafNode( node, brushes );
return node;
}
// this is a splitplane node
node->side = bestside;
node->planenum = bestside->planenum & ~1; // always use front facing
SplitBrushList( brushes, node, &children[0], &children[1] );
FreeBrushList( brushes );
// allocate children before recursing
for ( i = 0 ; i < 2 ; i++ )
{
newnode = AllocNode();
newnode->parent = node;
node->children[i] = newnode;
}
SplitBrush( node->volume, node->planenum, &node->children[0]->volume,
&node->children[1]->volume );
// recursively process children
for ( i = 0 ; i < 2 ; i++ )
{
node->children[i] = BuildTree_r( node->children[i], children[i] );
}
return node;
}
//===========================================================
/*
=================
BrushBSP
The incoming list will be freed before exiting
=================
*/
tree_t *BrushBSP( bspbrush_t *brushlist, vec3_t mins, vec3_t maxs ){
node_t *node;
bspbrush_t *b;
int c_faces, c_nonvisfaces;
int c_brushes;
tree_t *tree;
int i;
vec_t volume;
Sys_FPrintf( SYS_VRB, "--- BrushBSP ---\n" );
tree = AllocTree();
c_faces = 0;
c_nonvisfaces = 0;
c_brushes = 0;
for ( b = brushlist ; b ; b = b->next )
{
c_brushes++;
volume = BrushVolume( b );
if ( volume < microvolume ) {
Sys_Printf( "WARNING: entity %i, brush %i: microbrush\n",
b->original->entitynum, b->original->brushnum );
}
for ( i = 0 ; i < b->numsides ; i++ )
{
if ( b->sides[i].bevel ) {
continue;
}
if ( !b->sides[i].winding ) {
continue;
}
if ( b->sides[i].texinfo == TEXINFO_NODE ) {
continue;
}
if ( b->sides[i].visible ) {
c_faces++;
}
else{
c_nonvisfaces++;
}
}
AddPointToBounds( b->mins, tree->mins, tree->maxs );
AddPointToBounds( b->maxs, tree->mins, tree->maxs );
}
Sys_FPrintf( SYS_VRB, "%5i brushes\n", c_brushes );
Sys_FPrintf( SYS_VRB, "%5i visible faces\n", c_faces );
Sys_FPrintf( SYS_VRB, "%5i nonvisible faces\n", c_nonvisfaces );
c_nodes = 0;
c_nonvis = 0;
node = AllocNode();
node->volume = BrushFromBounds( mins, maxs );
tree->headnode = node;
node = BuildTree_r( node, brushlist );
Sys_FPrintf( SYS_VRB, "%5i visible nodes\n", c_nodes / 2 - c_nonvis );
Sys_FPrintf( SYS_VRB, "%5i nonvis nodes\n", c_nonvis );
Sys_FPrintf( SYS_VRB, "%5i leafs\n", ( c_nodes + 1 ) / 2 );
#if 0
{ // debug code
static node_t *tnode;
vec3_t p;
p[0] = -1469;
p[1] = -118;
p[2] = 119;
tnode = PointInLeaf( tree->headnode, p );
Sys_Printf( "contents: %i\n", tnode->contents );
p[0] = 0;
}
#endif
return tree;
}